ON FREQUENCY RESPONSE OF A HYDRAULIC SERVOMOTOR

By Kiyozo Sato

§ 1. Introduction.

The mechanism of a pilot valve controlled hydraulic servomotor can be explained with reference to Fig. 1. The flow of oil induced by a displacement of the pilot valve A causes a similar displacement of the piston B. It is important in the design of an apparatus like this to investigate

how faithfully B follows the displacement of A.

One of the methods often used is to investigate the frequency response of an apparatus; i.e. to investigate the motion of B when A is displaced sinusoidally.

Let y denote the displacement of B when the displacement of A is

 $x=X\sin \omega t$, X, ω : positive constants, t: time. Then it is known that y satisfies following differential equation:

$$m\frac{d^2y}{dt^2} + \left(\frac{2A^3}{k^2X^2\sin^2\omega t} + RA^3\right)\left(\frac{dy}{dt}\right)^2 - (AP_s - F) = 0, \quad \text{for } \sin\omega t > 0,$$

Fig. 1. The mechanism of a pilot valve controlled hydraulic servomotor

$$m\frac{d^2y}{dt^2} - \left(\frac{2A^3}{k^2X^2\sin^2\omega t} + RA^3\right)\left(\frac{dy}{dt}\right)^2 + (AP_s - F) = 0,$$
 for $\sin\omega t < 0$,

where m, A, k, R, P_s and F are physical constants determined by the characteristics of the apparatus; cf. [1]. Further explanation of the constants will be omitted. Put

$$\omega t = \theta$$
, $\frac{dy}{d\theta} = u$, $\frac{2A^3}{mk^2X^2} = a$, $\frac{RA^3}{m} = b$, $\frac{AP_s - F}{m\omega^2} = c$.

Then the above differential equation will be reduced to

(1.1)
$$\frac{du}{d\theta} + \left(\frac{a}{\sin^2 \theta} + b\right)u^2 - c = 0, \quad \text{for } \sin \theta > 0,$$

Received July 13, 1964.

(1.2)
$$\frac{du}{d\theta} - \left(\frac{a}{\sin^2 \theta} + b\right)u^2 + c = 0, \quad \text{for } \sin \theta < 0.$$

It is known from physical conditions that

$$(1. 3)$$
 $0 < b < a \ll c$.

The purpose of this paper is to find a solution of (1.1) and (1.2) which represents the motion of the piston B.

§ 2. The symmetry characters of solutions.

If $u=f(\theta)$ is one of the solutions of (1.1) and if $g(\theta) \equiv f(\theta-\pi)$, then

$$\frac{df(\theta-\pi)}{d(\theta-\pi)} + \left(\frac{a}{\sin^2(\theta-\pi)} + b\right) \{f(\theta-\pi)\}^2 - c = 0,$$

which can be easily reduced to

$$\frac{dg(\theta)}{d\theta} + \left(\frac{a}{\sin^2\theta} + b\right) \{g(\theta)\}^2 - c = 0,$$

showing that $u=g(\theta)\equiv f(\theta-\pi)$ is also a solution of (1.1). This means that when one integral curve of (1.1) is obtained, it can be translated π units in the θ -direction to obtain another one.

If $h(\theta) \equiv -f(\theta)$, then

$$\frac{dh(\theta)}{d\theta} - \left(\frac{a}{\sin^2 \theta} + b\right) \{h(\theta)\}^2 + c$$

$$= - \left[\frac{df(\theta)}{d\theta} + \left(\frac{a}{\sin^2 \theta} + b \right) \{ f(\theta) \}^2 - c \right] = 0,$$

showing that $u=h(\theta)\equiv -f(\theta)$ is a solution of (1.2) when $u=f(\theta)$ is a solution of (1.1).

From the above, the following is established:

Obtain all the solutions of (1.1) for $0 \le \theta \le \pi$. Translate them in the θ -direction by π and change their sign to obtain all the solutions of (1.2) for $\pi \le \theta \le 2\pi$. Connect these two sets of integral curves at $\theta = \pi$ and we obtain all the integral curves of the given differential equation for $0 \le \theta \le 2\pi$. Successive translations in the θ -direction by 2π will provide the complete set of solutions of (1.1) and (1.2) for $0 \le \theta < \infty$. Therefore it suffices to know the behavior of integral curves of (1.1) for $0 \le \theta \le \pi$ to obtain the complete knowledge of the solutions of (1.1) and (1.2) for $0 \le \theta < \infty$.

In constructing the solution curves by the method stated above, there naturally remains some ambiguity since the connection of the integral curves at $\theta = n\pi$ is still left arbitrary. However, physical consideration will show that, to obtain the solution we are seeking for, it is most plausible to choose the possibly smooth connection at $\theta = n\pi$.

Prior to the investigation of the integral curves of

$$\frac{du}{d\theta} + \left(\frac{a}{\sin^2\theta} + b\right)u^2 - c = 0$$

in the interval $0 \le \theta \le \pi$, the following fact should be noticed. If $u = f(\theta)$ is one of the solutions of (1, 1) and $-f(\pi - \theta) = \varphi(\theta)$, then

$$\frac{d\varphi(\theta)}{d\theta} + \left(\frac{a}{\sin^2\theta} + b\right) \{\varphi(\theta)\}^2 - c$$

$$=\frac{df(\pi-\theta)}{d(\pi-\theta)}+\left\{\frac{a}{\sin^2(\pi-\theta)}+b\right\}\left\{f(\pi-\theta)\right\}^2-c=0,$$

showing that $u=\varphi(\theta)\equiv -f(\pi-\theta)$ is also a solution of (1.1). So if we rotate an integral curve of (1.1) for $0\leq\theta\leq\pi$ by an angle π about a point $\theta=\pi/2$, u=0, another integral curve of the same equation is obtained.

§3. Behavior of the solutions at $\theta = 0$ and $\theta = \pi$.

As the discussions of §2 have shown, we should naturally lay an emphasis upon the study of solution curves of (1.1) for $0 \le \theta \le \pi$.

A transformation

$$u = cw / \frac{dw}{d\theta}$$

will reduce (1.1) to a linear equation

$$(3. 1) \qquad \frac{d^2w}{d\theta^2} - c\left(\frac{a}{\sin^2\theta} + b\right)w = 0.$$

The indicial equation at a regular singular point $\theta=0$ is

$$\lambda^2 - \lambda - ac = 0$$

with two roots

$$\lambda_1 = \frac{1 + \sqrt{1 + 4ac}}{2},$$

$$\lambda_2=1-\lambda_1=\frac{1-\sqrt{1+4ac}}{2}.$$

According to the condition (1. 3), $\lambda_1 > 0$ and $\lambda_2 < 0$. Further we add an assumption that $\lambda_1 - \lambda_2 = \sqrt{1 + 4ac}$ is not an integer.

In the vicinity of $\theta=0$, the general solution of (3.1) is expressed in a form

$$w = \alpha \theta^{\lambda_1} (1 + \cdots) + \beta \theta^{\lambda_2} (1 + \cdots)$$

where α and β are constants and the unwritten terms inside the brackets are convergent power series of θ without constant terms. From this follows that

$$u = cw / \frac{dw}{d\theta}$$

$$= c \cdot \frac{\alpha \theta^{\lambda_1}(1+\cdots) + \beta \theta^{\lambda_2}(1+\cdots)}{\alpha \lambda_1 \theta^{\lambda_1-1}(1+\cdots) + \beta \lambda_2 \theta^{\lambda_2-1}(1+\cdots)}$$

$$= c \cdot \frac{\alpha \theta^{\lambda_1}(1+\cdots) + \beta \theta^{1-\lambda_1}(1+\cdots)}{\alpha \lambda_1 \theta^{\lambda_1-1}(1+\cdots) + \beta (1-\lambda_1) \theta^{-\lambda_1}(1+\cdots)}.$$

To the solutions of (3.1) with $\beta=0$ corresponds a solution of (1.1):

$$u = c \frac{\alpha \theta^{\lambda_1}(1+\cdots)}{\alpha \lambda_1 \theta^{\lambda_1-1}(1+\cdots)} = c \frac{\theta(1+\cdots)}{\lambda_1(1+\cdots)}$$

such that

$$\lim_{\theta \to 0} \frac{u}{\theta} = \frac{c}{\lambda_1} > 0.$$

Except this one, the solutions of (1.1) are written in the form

$$u=c\,\frac{k\theta^{\lambda_1}(1+\cdots)+\theta^{1-\lambda_1}(1+\cdots)}{k\lambda_1\theta^{\lambda_1-1}(1+\cdots)+(1-\lambda_1)\theta^{-\lambda_1}(1+\cdots)}$$

$$=c\frac{k\theta^{2\lambda_1}(1+\cdots)+\theta(1+\cdots)}{k\lambda_1\theta^{2\lambda_1-1}(1+\cdots)+(1-\lambda_1)(1+\cdots)}$$

where we have put $\alpha/\beta = k$. Since $2\lambda_1 - 1 = \sqrt{1 + 4ac} > 0$, and $\lambda_1 > 1$, we have

$$\lim_{\theta\to 0}\frac{u}{\theta}=\frac{c}{1-\lambda_1}<0.$$

It is thus concluded that all the integral curves of (1.1) tend to zero as $\theta \rightarrow 0$, and only one among them is tangent to the line

$$u = \frac{c}{\lambda_1} \theta$$
 $\left(\frac{c}{\lambda_1} > 0\right)$,

while the others are all tanget to the line

$$u = \frac{c}{1 - \lambda_1} \theta \qquad \left(\frac{c}{1 - \lambda_1} < 0\right).$$

The behavior of the integral curves at $\theta = \pi$ can be easily inferred by a remark mentioned at the end of §2. Therefore $u \rightarrow 0$ as $\theta \rightarrow \pi$ and only one of the integral curves is tangent to the line

$$u = \frac{c}{\lambda_1} (\theta - \pi)$$

while the others are all tangent to the line

$$u = \frac{c}{1 - \lambda_1} (\theta - \pi).$$

§ 4. Fundamental properties of integral curves.

Putting u=0 in (1.1), we get

$$\frac{du}{d\theta} = c > 0$$
 for $u = 0$.

Hence:

1) The integral curve has a positive inclination when it crosses the θ -axis. Rewriting (1.1) in a form

$$0 \leq \left(\frac{a}{\sin^2 \theta} + b\right) u^2 = c - \frac{du}{d\theta},$$

we immediately have:

2) $du/d\theta$ is bounded above. Therefore it never happens that $u \rightarrow +\infty$ as θ increases from 0 to π .

Differentiating both sides of (1.1) with respect to θ , we get

$$\frac{d^2u}{d\theta^2} - \frac{2a\cos\theta}{\sin^3\theta}u^2 + 2\left(\frac{a}{\sin^2\theta} + b\right)u\frac{du}{d\theta} = 0.$$

Put $du/d\theta = 0$ in this and get

$$\frac{d^2 u}{d\theta^2} = \frac{2a\cos\theta}{\sin^3\theta} u^2 \begin{cases} \ge 0 & \text{for } 0 < \theta \le \pi/2, \\ \le 0 & \text{for } \pi/2 \le \theta < \pi. \end{cases}$$

Therefore

3) u does not attain its maximum between $0 < \theta < \pi/2$, and does not attain its minimum between $\pi/2 < \theta < \pi$.

Our further investigation is essentially based on those properties stated above.

§ 5. Definition of the domains S, S_1 , S_2 .

As was shown in § 3, $\lim_{\theta\to 0} u=0$ and $\lim_{\theta\to \pi} u=0$ for all the solutions of (1. 1) and only one of the integral curves is tangent at $\theta=0$ to the straight line $u=(c/\lambda_1)\theta$. This solution will be denoted by C_1 : $u=f_1(\theta)$. Also the one particular solution which is tangent at $\theta=\pi$ to the line $u=(c/\lambda_1)(\theta-\pi)$ is denoted by C_2 : $u=f_2(\theta)$.

Proposition 1. As θ increases from 0 to π , $f_1(\theta)$ increases at first, reaches its maximum at $\theta = \theta_0 > \pi/2$, and decreases monotonically thereafter to have the limiting values

$$\lim_{\theta \to \pi} f_1(\theta) = 0 \quad and \quad \lim_{\theta \to \pi} f_1'(\theta) = \frac{c}{1 - \lambda_1}.$$

As θ decreases from π to 0, $f_2(\theta)$ decreases at first, reaches its minimum at $\theta = \pi - \theta_0 < \pi/2$ and then increases to have the limiting values

$$\lim_{\theta \to 0} f_2(\theta) = 0 \quad and \quad \lim_{\theta \to 0} f_2'(\theta) = \frac{c}{1 - \lambda_1}.$$

Fig. 2. The curves C_1 and C_2

Proof. As $\lim_{\theta\to 0} f_1'(\theta) = c/\lambda_1 > 0$, $f_1(\theta)$ increases in the vicinity of $\theta = 0$.

As θ increases from 0 to π , $f_1(\theta)$ is bounded above as was shown in 2) of §4 and the curve C_1 cannot cross the θ -axis with a negative inclination according to 1) of §4. Therefore $0 < f_1(\theta) < \infty$ for $0 < \theta < \pi$. In other words, the curve C_1 lies in some bounded area of the upper half plane. In addition, $\lim_{\theta \to 0} f_1(\theta) = \lim_{\theta \to \pi} f_1(\theta) = 0$. Hence $f_1(\theta)$ attains its maxima somewhere between $0 < \theta < \pi$. Let the smallest of the θ 's that make $f_1(\theta)$ maximal be θ_0 . Then $\theta_0 > \pi/2$ by 3) of §4. Then, owing

also to 3) of § 4, $f_1(\theta)$ has no minima for $\theta > \theta_0 > \pi/2$. Therefore $f_1(\theta)$ is monotonically decreasing for $\theta > \theta_0$ and $\lim_{\theta \to \pi} f_1(\theta) = 0$. Moreover $f_1(\theta)$ being positive for $0 < \theta < \pi$, $\lim_{\theta \to \pi} f_1'(\theta)$ must be negative. As the value of $du/d\theta$ at $\theta = \pi$ is either $c/\lambda_1 > 0$ or $c/(1-\lambda_1) < 0$, it is proved that

$$\lim_{\theta\to\pi}f_1'(\theta)=\frac{c}{1-\lambda_1}.$$

This proves the truth of our statement concerning the behavior of $f_1(\theta)$. According to the remark stated at the end of § 2, the curve

$$u = -f_1(\pi - \theta)$$

obtained by rotating the curve C_1 by an angle π about a point $(\pi/2, 0)$ is also one of the integral curves of (1, 1) and is tangent at $\theta = \pi$ to the line $u = (c/\lambda_1)(\theta - \pi)$. However, the only integral curve which is tangent at $\theta = \pi$ to the line $u = (c/\lambda_1)(\theta - \pi)$ being C_2 , the statement about the behavior of C_2 described in Proposition 1 can be immediately derived from above.

We divide the strip

$$0 \le \theta \le \pi$$
, $-\infty < u < \infty$

into three domains—namely the domain enclosed by C_1 and C_2 , the domain above C_1 and the domain below C_2 . These domains will be named S_1 , S_1 and S_2 respectively.

$\S 6$. Behavior of the integral curves in S.

First the behavior of the integral curves starting from the point $\theta=0$, u=0 into the area S will be investigated. S being surrounded by two integral curves C_1 and C_2 , these curves cannot go out of S and they stay in S until they reach the point $\theta=\pi$, u=0. Among these solutions, C_1 is the only curve which is tangent to the straight line $u=(c/\lambda_1)\theta$, and the others are all tangent to the line $u=(c/(1-\lambda_1))\theta$. In other words, if one of the latter is denoted by $u=f(\theta)$, it naturally follows that $\lim_{\theta\to 0} f'(\theta) = c/(1-\lambda_1) < 0$. So $f(\theta)$ decreases and $f(\theta) < 0$ in the vicinity of $\theta=0$.

On the other hand, as $\theta \to \pi$, C_2 is the only integral curve such that $\lim_{\theta \to \pi} du/d\theta = c/\lambda_1 > 0$. Therefore for all the other curves $u = f(\theta)$, $\lim_{\theta \to \pi} f'(\theta) = c/(1-\lambda_1) < 0$ and thus we are lead to the conclusion that $f(\theta) > 0$ in the vicinity of $\theta = \pi$. Therefore as θ increases from 0 to π , $f(\theta)$ decreases at first and then attains a minimum at $\theta = \theta_1 < \pi$. From 3) of §4 follows that $\theta_1 < \pi/2$. As $f(\theta) > 0$ in the vicinity of $\theta = \pi$, $f(\theta)$ must attain its maximum at some point $\theta = \theta_2 > \theta_1$. According to 3) of §4, $\theta_2 > \pi/2$ and $f(\theta)$ cannot have a minimum for $\theta > \theta_2 > \pi/2$. So $f(\theta)$ decreases monotonically for $\theta > \theta_2$ and tends to the point $(\pi, 0)$. Thus we have reached the following

Proposition 2. Any one of the integral curves starting from the point (0, 0) into the domain S (C_1 and C_2 excluded) is tangent at (0, 0) to the curve C_2 , decreases at first, attains its minimum at $\theta = \theta_1 < \pi/2$, increases thereafter, attains its maximum at $\theta = \theta_2 > \pi/2$ and decreases to reach $(\pi, 0)$ where it is tangent to C_1 . Therefore the domain S is covered with integral curves whose shapes are

 C_1 C_2

Fig. 3. The integral curves in S

domain S is covered with integral curves whose shapes are shown in Fig. 3.

240 KIYOZO SATO

§7. Behavior of the integral curves in S_1 and S_2 .

Next the integral curves starting from (0,0) into the domain S_2 will be investigated. As they must remain in S_2 , they cannot remain bounded until they reach the line $\theta = \pi$. Because, if so, they must tend to the point $(\pi,0)$ as $\theta \to \pi$ where they must naturally be tangent to C_2 . However C_2 is the only integral curve with this property, such a situation can never arise. Therefore such solutions must tend to $-\infty$ as $\theta \to \theta_3 - 0$ for some $\theta_3 < \pi$.

To obtain the integral curves in S_1 , we have only to rotate the integral curves in S_2 by an angle π about a point $(\pi/2, 0)$ owing to the remark at the end of §2.

§8. Determination of the desired solution.

The above investigation clearly indicates the behavior of the totality of the integral curves of (1.1) for $0 \le \theta \le \pi$. Then, according to the result of §2, the integral curves of (1.2) for $\pi \le \theta \le 2\pi$ can be constructed by translating these curves by π units in the θ -direction and changing their sign.

Thus all the integral curves of the given equation for $0 \le \theta \le 2\pi$ are obtained. In order to get all the solutions for $0 \le \theta < \infty$, it is only necessary to translate them by 2π in the θ -direction repeatedly. Integral curves thus obtained are shown in Fig. 4.

Fig. 4. Totality of the integral curves

In connecting a curve between $(n-1)\pi \le \theta \le n\pi$ $(n=1, 2, 3, \cdots)$ with a curve between $n\pi \le \theta \le (n+1)\pi$, there always occurs discontinuity of respective derivatives at $\theta = n\pi$, whatever integral curves are selected. From a physical point of view, it is reasonable to suppose that actual connection will take place so that the jump of the derivatives at $\theta = n\pi$ is minimized. It may be said that a curve C obtained by connecting C_1 , C_1' , C_1'' , \cdots is physically stable. Here C_1' is constructed by translating C_1 in the θ -direction by π and changing its sign, C_1'' is constructed by translation of C_1 in the θ -direction by 2π , 2π , 2π on. Whatever solution curve is chosen at 2π 0 (excluding the unbounded ones), this solution will finally be connected to 2π 0 as can be easily seen from Fig. 4.

Therefore, if $u=\varphi(\theta)$ is the equation of the curve C_1 , then the desired solution will be given by

$$u=\varphi(\theta)$$
 for $0 \le \theta \le \pi$,
 $u=-\varphi(\theta-\pi)$ for $\pi \le \theta \le 2\pi$,
 $u=\varphi(\theta-2\pi)$ for $2\pi \le \theta \le 3\pi$,
 $u=-\varphi(\theta-3\pi)$ for $3\pi \le \theta \le 4\pi$,

§ 9. Analytical expression of $\varphi(\theta)$.

Finally the explicit analytical expression of the solution will be given. By putting $\sin^2(\theta/2) = z$, (3. 1) is transformed into

$$(9. 1) z(1-z)\frac{d^2w}{dz^2} + \frac{1}{2}(1-2z)\frac{dw}{dz} - c\left[\frac{a}{4z(1-z)} + b\right]w = 0.$$

Again by putting $w=z^{\lambda_1/2}(1-z)^{(1-\lambda_1)/2}\cdot W$, (9. 1) is reduced to

(9.2)
$$z(1-z)\frac{d^2W}{dz^2} + \left(\lambda_1 + \frac{1}{2} - 2z\right)\frac{dW}{dz} - \frac{1+4bc}{4}W = 0.$$

This is a well-known Gauss' hypergeometric differential equation. Since $u=\varphi(\theta)$ which represents a curve C_1 is of the form

$$u=\frac{c\theta}{\lambda_1}+\cdots,$$

corresponding w can be expressed in a form

$$w = \text{const} \times \theta^{\lambda_1}(1+\cdots) = \text{const} \times z^{\lambda_1/2}(1+\cdots)$$

in the vicinity of $\theta=0$. Thus, in turn, corresponding W should be a solution of (9,2) such that

$$W=1+\cdots$$

in the vicinity of z=0 where the terms not explicitly written are power series of z. Such a solution of (9, 2) is obviously given by a hypergeometric function

$$W=F(\alpha, \beta, \gamma; z),$$

$$\alpha = \frac{1}{2} + i\sqrt{bc} \; , \quad \beta = \frac{1}{2} - i\sqrt{bc} \; , \quad \gamma = \frac{2 + \sqrt{1 + 4ac}}{2} \; . \label{eq:alpha}$$

Thus we immediately have

$$u = \varphi(\theta) = c \sin \theta \left[\frac{1 + \sqrt{1 + 4ac}}{2} - \sin^2 \frac{\theta}{2} \right]$$

$$+2\sin^2\frac{\theta}{2}\cos^2\frac{\theta}{2}\frac{F'(\alpha,\beta,\gamma;\,\sin^2(\theta/2))}{F(\alpha,\beta,\gamma;\,\sin^2(\theta/2))}\bigg]^{-1}.$$

Acknowledgement. The author is indebted to Prof. Tosiya Saito of Tokyo Metropolitan University for the proper guidance.

REFERENCE

[1] IKEBE, Y., On some fundamental properties of valve-controlled integral-type hydraulic servomotors. Bull. T.I.T. (B) (1956), 93–98.

NATIONAL DEFENSE COLLEGE, TOKYO.