
ON FREQUENCY RESPONSE OF A HYDRAULIC SERVOMOTOR

BY KIYOZO SATO

§ 1. Introduction.

The mechanism of a pilot valve controlled hydraulic servomotor can be ex-
plained with reference to Fig. 1. The flow of oil induced by a displacement of the
pilot valve A causes a similar displacement of the piston B. It is important in the
design of an apparatus like this to investigate
how faithfully B follows the displacement of A.

One of the methods often used is to in-
vestigate the frequency response of an ap-
paratus; i.e. to investigate the motion of B when
A is displaced sinusoidally.

Let y denote the displacement of B when
the displacement of A is

#=.AΓsin ωt, X, ω: positive constants, t: time.
Then it is known that y satisfies following dif-
ferential equation:
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Fig. 1. The mechanism of a pilot
valve controlled hydraulic servo-
motor

for

where m, A, k, R, Ps and F are physical constants determined by the characteristics
of the apparatus; cf. [1]. Further explanation of the constants will be omitted.

Put
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Then the above differential equation will be reduced to
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( L 2 ) iϊ-{iέ<r
It is known from physical conditions that

(1.3) 0<b<a<c.

The purpose of this paper is to find a solution of (1. 1) and (1. 2) which represents
the motion of the piston B.

§2. The symmetry characters of solutions.

If u=f(θ) is one of the solutions of (1. 1) and if g(θ)=f(θ-π), then

— 7r)}2—c=0,

which can be easily reduced to

dg{θ)

„„ Hϊ« + 1 ) l t ( f | l "" ί - 0

showing that u=g(θ)=f(θ—π) is also a solution of (1.1). This means that when
one integral curve of (1.1) is obtained, it can be translated π units in the θ-
direction to obtain another one.

If h(θ) = -f(θ), then

dh(β)
dθ

showing that u=h(θ)=—f(θ) is a solution of (1. 2) when u=f(θ) is a solution of

(1. 1).
From the above, the following is established:
Obtain all the solutions of (1. 1) for O^θ^π. Translate them in the ^-direction

by π and change their sign to obtain all the solutions of (1. 2) for π^θ^2π. Con-
nect these two sets of integral curves at θ=π and we obtain all the integral curves
of the given differential equation for 0^θ^2π. Successive translations in the θ-
direction by 2π will provide the complete set of solutions of (1. 1) and (1. 2) for
0^#<oo. Therefore it suffices to know the behavior of integral curves of (1.1)
for O^θ^π to obtain the complete knowledge of the solutions of (1. 1) and (1. 2)
for O^0<co.
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In constructing the solution curves by the method stated above, there naturally
remains some ambiguity since the connection of the integral curves at θ=nπ is
still left arbitrary. However, physical consideration will show that, to obtain the
solution we are seeking for, it is most plausible to choose the possibly smooth
connection at θ—nπ.

Prior to the investigation of the integral curves of

<"•»

in the interval O^θ^π, the following fact should be noticed. If u—fiβ) is one of
the solutions of (1. 1) and -f(π-θ)=φ(θ), then

dφ(fl)
dθ '

= df(π-θ)
d(π-θ)

showing that u=φ(θ) = —f(π—θ) is also a solution of (1.1). So if we rotate an
integral curve of (1. 1) for O^θ^π by an angle π about a point θ=π/2, u=0,
another integral curve of the same equation is obtained.

§3. Behavior of the solutions at 0=0 and θ=π.

As the discussions of §2 have shown, we should naturally lay an emphasis
upon the study of solution curves of (1.1) for

A transformation

/ dw
u—cw t dθ

will reduce (1.1) to a linear equation

The indicial equation at a regular singular point 0=0 is

with two roots
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According to the condition (1. 3), Λ>0 and Λ2<0. Further we add an assumption
that λλ—^2=A/1+4<ZC is not an integer.

In the vicinity of 0=0, the general solution of (3.1) is expressed in a form

where a and β are constants and the unwritten terms inside the brackets are
convergent power series of θ without constant terms. From this follows that

/ dw
U==cw/Ίw

==c-

To the solutions of (3.1) with ,8=0 corresponds a solution of (1.1):

=
U C aλ18

ι'-1(X+-)

such that

Except this one, the solutions of (1. 1) are written in the form

u~c

where we have put a/β=k. Since 2λ1—l=λ/ι+4cac >0, and ^i>l, we have

It is thus concluded that all the integral curves of (1. 1) tend to zero as Θ-*Q,
and only one among them is tangent to the line
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while the others are all tanget to the line

The behavior of the integral curves at θ=π can be easily inferred by a remark
mentioned at the end of §2. Therefore u->0 as 0-+π and only one of the integral
curves is tangent to the line

while the others are all tangent to the line

§4. Fundamental properties of integral curves.

Putting w=0 in (1.1), we get

^ = 00 for κ=0.
do

Hence:
1) The integral curve has a positive inclination when it crosses the 0-axis.
Rewriting (1.1) in a form

we immediately have:
2) du/dθ is bounded above. Therefore it never happens that u—»+oo as θ

increases from 0 to π.
Differentiating both sides of (1.1) with respect to 6, we get

d2u 2ffcosfl 2 t of a t u\ du

ΛTdθ

Put du/dβ=0 in this and get
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d2u 2a cos θ
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0 for O<0^7r/2,

0 for
• w

Therefore
3) u does not attain its maximum between 0<#<τr/2, and does not attain its

minimum between π/2<θ<π.
Our further investigation is essentially based on those properties stated above.

§ 5. Definition of the domains S, Sly S2.

As was shown in §3, lim^o u=0 and \imθ^πu=0 for all the solutions of (1. 1)
and only one of the integral curves is tangent at 0=0 to the straight line u=(c/λ1)θ.
This solution will be denoted by d: u=fi(θ). Also the one particular solution
which is tangent at θ=π to the line u = (clλ1)(θ—π) is denoted by C2: u=f2(θ).

PROPOSITION 1. As θ increases from 0 to π, f-Jβ) increases at first, reaches its
maxtmum at θ—θo>π/2, and decreases monotonically thereafter to have the limiting
values

lirn/i(0)=O
0-»JΓ

and

As θ decreases from π to O,/2(0) decreases at first, reaches its minimum at θ=π
and then increases to have the limiting values

and lim ft'(β)=
θo

Proof. As lim^o //(#)=cβ\ >0, fλ(0) increases in the
vicinity of θ=0.

As θ increases from 0 to 7r,/i(0) is bounded above
as was shown in 2) of § 4 and the curve Ci cannot cross
the #-axis with a negative inclination according to 1)
of §4. Therefore 0</i(#)<oo for 0 < # < π . In other
words, the curve Ci lies in some bounded area of the
upper half plane. In addition, l im^ 0/i(#)=lim^/i(#)
=0. Hence f{β) attains its maxima somewhere between
0<θ<π. Let the smallest of the θ's that make /i(0)
maximal be θ0. Then θo>π/2 by 3) of § 4. Then, owing

also to 3) of §4, fx(0) has no minima for θ>θo>π/2. Therefore fi(θ) is monotonically
decreasing for θ>θ0 and limθ^πf1(θ)=0. Moreover /i(0) being positive for 0<θ<π,
liniθ^f/iθ) must be negative. As the value of du/dθ at d=π is either c/Λ>0 or

3, it is proved that

/2'θ)

Fig. 2. The curves
Ci and C2
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This proves the truth of our statement concerning the behavior of f(β).
According to the remark stated at the end of §2, the curve

u=-f(π-θ)

obtained by rotating the curve CΊ by an angle π about a point (τr/2, 0) is also one
of the integral curves of (1. 1) and is tangent at θ=π to the line u^icjλ^θ—π).
However, the only integral curve which is tangent at θ=π to the line u=(c/λ1)φ—π)
being C2, the statement about the behavior of C2 described in Proposition 1 can be
immediately derived from above.

We divide the strip

O^θ^π, —oo<:u<oo

into three domains—namely the domain enclosed by Cι and C2, the domain above
Ci and the domain below C2. These domains will be named S, SΊ and S2 respectively.

§6. Behavior of the integral curves in &

First the behavior of the integral curves starting from the point θ=0, u=0
into the area S will be investigated. 5 being surrounded by two integral curves
Ci and C2, these curves cannot go out of S and they stay in S until they reach
the point θ=π, u=0. Among these solutions, Ci is the only curve which is tangent
to the straight line u=(c//(1)θ, and the others are all tangent to the line u=(c/(l—λ1))θ.
In other words, if one of the latter is denoted by u=f(β), it naturally follows that
Yιmθ^f'(θ)=cl(\-λ1)<Q. So f(θ) decreases and f(θ)<0 in the vicinity of #=0.

On the other hand, as θ-+π, C2 is the only integral curve such that \imθ->πdu/dθ
=c/Λi>0. Therefore for all the other curves u=f(θ),\imθ,πf(θ)=c/(l~λ1)<0 and
thus we are lead to the conclusion that /(#)>0 in the vicinity of θ=π. Therefore
as θ increases from 0 to π, f(θ) decreases at first and then attains a minimum at
0=0i<τr. From 3) of §4 follows that θλ<πβ. As /(0)>O in the vicinity of θ = π,

f(θ) must attain its maximum at some point Θ=θ2>θi. According to 3) of §4,
02>7r/2 and f(β) cannot have a minimum for 0>02>7r/2.
So f(β) decreases monotonically for θ>θ2 and tends to
the point (π, 0). Thus we have reached the following

PROPOSITION 2. Any one of the integral curves start-
ing from the point (0, 0) into the domain S (Ci and C2

excluded) is tangent at (0, 0) to the curve C2, decreases at
firsty attains its minimum at 0=#i<7r/2, increases there-
after, attains its maximum at θ=02>π/2 and decreases to
reach (π, 0) where it is tangent to CΊ. Therefore the

Fig. 3. The integral
curves in S

domain S is covered with integral curves whose shapes are shown in Fig. 3,
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\7. Behavior of the integral curves in 5i and S2.

Next the integral curves starting from (0, 0) into the domain S2 will be in-
vestigated. As they must remain in S2, they cannot remain bounded until they
reach the line 0=π. Because, if so, they must tend to the point (π, 0) as θ-*π
where they must naturally be tangent to C2. However C2 is the only integral
curve with this property, such a situation can never arise. Therefore such solutions
must tend to — oo as #—*03—0 for some #3<π.

To obtain the integral curves in Si, we have only to rotate the integral curves
in S2 by an angle π about a point (τr/2, 0) owing to the remark at the end of § 2.

§8. Determination of the desired solution.

The above investigation clearly indicates the behavior of the totality of the
integral curves of (1. 1) for O^θ^π. Then, according to the result of §2, the in-
tegral curves of (1. 2) for π^θ^2π can be constructed by translating these curves
by π units in the ^-direction and changing their sign.

Thus all the integral curves of the given equation for 0^i#^27r are obtained.
In order to get all the solutions for 0^#<oo, it is only necessary to translate them
by 2π in the 0-direction repeatedly. Integral curves thus obtained are shown in
Fig. 4.

Fig. 4. Totality of the integral curves

In connecting a curve between (n—ΐ)π^θ^nπ (n=l, 2, 3, •••) with a curve
between nπ^θS{n-\-l)πy there always occurs discontinuity of respective derivatives
at 0=nπ, whatever integral curves are selected. From a physical point of view, it
is reasonable to suppose that actual connection will take place so that the jump of
the derivatives at θ=nπ is minimized. It may be said that a curve C obtained by
connecting CΊ, CV, C/', ••• is physically stable. Here C/ is constructed by transla-
ting Ci in the ^-direction by π and changing its sign, d " is constructed by transla-
tion of Ci in the ^-direction by 2π, C / " is constructed by translation of C/ in the
^-direction by 2π and so on. Whatever solution curve is chosen at #=0 (excluding
the unbounded ones), this solution will finally be connected to C as can be easily
seen from Fig. 4.

Therefore, if u=φ(θ) is the equation of the curve d , then the desired solution
will be given by
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u=φ(θ) for O^θ^π,

U=~φ(θ-π) for π^θ^2π,

u=φ(θ-2π) for 2τr^#^3τr,

u=-φ(θ~3π) for 3π^θ^4π,

§9. Analytical expression of φ(θ).

Finally the explicit analytical expression of the solution will be given.
By putting sin2(#/2)=2, (3. 1) is transformed into

Again by putting w=zλl/2(l-z)a-λi:>/2'W, (9. 1) is reduced to

(9. 2) , ( l -

This is a well-kαown Gauss' hypergeometric differential equation.
Since u-φ(θ) which represents a curve d is of the form

cθ
κ = - τ - + ,

corresponding ^ can be expressed in a form

«;=constx^1(l+ )=constx^1 / 2(l+ )

in the vicinity of 0=0. Thus, in turn, corresponding W should be a solution of
(9. 2) such that

W=l+-

in the vicinity of 2=0 where the terms not explicitly written are power series of
z. Such a solution of (9. 2) is obviously given by a hypergeometric function

W=F(a, β, r, z),

β=±

Thus we immediately have

u=φ(θ)=csmθ\
L
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