ON CERTAIN COEFFICIENT INEQUALITIES
OF UNIVALENT FUNCTIONS

By Mitsuru Ozawa

1. Introduction. In the present paper we shall establish some coefficient
inequalities of univalent functions by Schiffer’s variational method [2].

Let S be a family of normalized functions f(z) regular and univalent in [2]|<1,
that is, let f(z) have the Taylor expansion

f@)=z+ i 2™

in |z]<1.
THEOREM 1. In S there holds an inequality
|as—3azas+2a.®| =2.
Equality can occur only for the Koebe function z/(1—ei%2)2.

THEOREM 2. In S there holds an inequality

1

Re{a5—2a2a4— %‘ a32+4a22a3 — Q az‘} = 7.

54

Equality can occur only for every function in S satisfying an equation
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2. Proof of theorem 1. By Schiffer’s variational method for a problem

max Re(a,—3aza;+2a.%),
S
we have a differential equation

2
( %) %[(azz—ag)w2+1]+1=0

satisfied by the image curve of |z|=1 for every extremal function w(z). This extremal
function w(z) satisfies a differential equation
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/2

22 e (a2 —as)w*+1]

1
= ? - —Z;‘ +(d4—3d203+2028)—5222+23.

The image curve of |z]=1 by w(z) has at least one finite end point, which cor-
responds to a zero point of w’(z) on |z|=1. Therefore the right hand side term
g(z) can be factorized in the following form

9(2)= % (z—-E)%(z*+ Dz*+-Cz*+ Bz+ A).

Further there holds a functional equation

g(2)=g( )

AE*=1, |E|=1, |A|=1, BE*-2AE=—a,;, C—2ED+E?=0,
B—2EC+E?D=3(a:—3axas+2a:?), D=BA, C=CA.

N:Iv—*

These lead to the following relations:

Let E be ¢ and if Cx0, then A=e %Y, C=reter~ (rx0), D=(re-%"er=4-¢i)/2,
B=(rer~+¢-%1%)/2, where p is an integer.
Case 1. erm=1. Then we have

3(as—3azas+2a.%)= cos 30—7.

On the other hand for Koebe’s function 3(as—3a.as+2a.*)=6. Therefore we have
an inequality 6= cos 30—r. This leads to an absurdity relation »=-—5.
Case II. err*=—1. Then we have

A= —z—e“” + % e 3(a;—3axas+2a.*)= cos 30+7.

Since |az| =2, we have
72467 cos 30—7=0.

By this inequality we can say
0<r==3x+ 4/7+9x% = cos 30.
This leads to an inequality 0<#=7. On the other hand by Koebe’s function
6= cos 30+7,
thus 5=7. Let y be x+7, then
5r2—6yr+7=0,
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that is,

by = 57247 _
v

Since the right hand side term is monotone increasing in 5=<#=7, we have y=6.
If the equality occurs, then =7 and hence x=—1, that is, 30=2px-+= for an
integer p. Then

a>=2 or 2¢* or 2e'5
which lead to three Koebe’s functions

z z V4
(1_2)2 ’ (1_e2ni/32)2 ’ (1~e4”/32)2 ’

respectively.
If =0, then D=FE/2 and B=DA. Thus putting £=¢?, then A=e 2, D=¢"?
B=e¢"%%2_ Hence

e 370

= — 620 _0p—210gi0 — _ <2+ é—)e‘i”.

Thus |a.|=2+1/2>2. This is a contradiction.

N. Suita gave another proof of this theorem. His method is quite simjlar in
Charzynski-Schiffer’s paper [1] in which they gave a quite elementary proof of the
Bieberbach conjecture for the fourth coefficient.

3. Proof of theorem 2. We shall consider an extremal problem

max ReF, F=as;—2a:a1— __3—a32 +4as’a;— —7—9— azt.
S 2 54

We shall denote the maximum value by F,. Then any extremal function satisfies
a differential equation

/2 2
zzz—Z)T<1+ %w) <1—}—%a2w>

= —217 [1+ Rz Tzt + Rz5+28] (=¢(2)),

R=2a4 — 4@2623‘{‘ %a?, T:4F

Case I. a,#0. If w(z)=—3/a, for |z|<1, then 2, and 1/Z, are two double
zeros of g(z). A point on |z]=1, which corresponds to a finite end point of the
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image curve of |z|=1 by the mapping w(z), is also a double zero of ¢(2). If w(z)
=—3/a, for some z, on |z|=1, then the image w(|z|=1) locally forks to four analytic
curves whose directions are equally distributed and one of which runs into w=oco.
Thus there are at least three finite end points in general which correspond to three
double zeros of g(z). If the number of finite end points is less than 3, then —3/a.
also corresponds to a double zero or two double zeros of g(z) according as the
number of finite end points is two or one. Therefore in any cases g(z) is of the
following form

9(2)= 2—14 (W Vz Uz +22)%Y + Xz+22).

Further g¢(z) satisfies a functional equation g¢(z)=g¢(1/z). Thus there hold the
following relations:

weY=1, |W|=|Y|=1, U=WV, X=YX,
2U+X=0.

2V4U4-2UX+Y =0,

W 2VWX+ Y V2 2UWY =0,

T=V2 A 2UW--2XWH2XUV--2VY +U?Y,
R=2VW+2UWX+ VX+2WY+2UVY.

If X=0, then U=V=0 and hence Y=0, which contradicts |Y|=1. Let U and V
be ret® and re'o, respectively, since |U|=|V]| by |W|=1. Then Y=e¥, X=—2re®,
W=e¢'¢t®, By two relations

2V+U4-2UX+Y =0,

W2-R2VWX+Y V24 2UWY =0
we have
2VU—-30U*+-U=0 and V:—-3UUV?*4-2VU*=0.
Thus we have
2rettea? —3y24-1=0),

270 —3y2 4-1=0.

Hence we have
ol 4p-2w =1

If ei@®-o=1 then 372—2r—1=0. Therefore »=1. Since W?Y=1, we have 1
=gtUh+20 =861 that is, 88=2pr for some integer p. By the expression of T by
V,U, W, X, Y, we have T=—2¢*i=+2, Further then R=0. If e®-2=—1, then
3r24+2r—1=0 and hence »=1/3. Further e***=1. Hence T=10¢*/27=410/27.
Case II, a,=0. Then the extremal function w(z) satisfies a differential equation



COEFFICIENT INEQUALITIES OF UNIVALENT FUNCTIONS 187

wlz 1 _
2 =——[14+2a,2%+ (das—6as2)z* +2d:2°+28).

wﬁ 24

In this case at the point at infinity w=oo the trajectory forks to four analytic
curves whose successive two curves make the angle n/2 there. Thus the right
hand side term is of perfectly square form

zi‘* (A+Az+Bz?+Cz* +Dz%)2
Then A=B=C=0 and D?=1. Hence a,=a.=0 and 4a;—6as®=-+2. Hence in any

case we have

Fo= max Re F'= —1—
S 2
Now we shall examine when equality occurs. In case I, the extremal function
satisfies the differential equation

w’? a \* 4 1 .
o <1+ Tw) (1—{-—3—a2w>——z—;+2—|—z.

z2
Integrating this differential equation, we have

%"\/@;‘%'021/{))3 = —l—:—zifizi, 2C=2a;— —g—af.
In Case II, the extremal function satisfies the differential equation
Integrating this, we have
1 _ 1—-2a,2*—2*

w? 22

This is contained in the earlier case with a,=0.

4. By Schiffer’s variational method certain extermal problem leads us to a
differential equation satisfied by every extremal function

& Pu)=Qe)

where P(w) and Q(z) are a polynomial of w and a rational function of 2, respectively.
If P(w) is of perfect square form, then the exact estimation for the original problem
can be done relatively simple. This has very close relation to the one obtained by
the Faber polynomial. Such an example is the following
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= 242l

13
as—2azas+ ED) a’*+ 2a<a3 - % af) +aa,
which was most effectively used by Charzynski and Schiffer [1].

Our two results are not of the above form and are few examples showing
that P(w) is not perfectly square but exact estimation is possible only in the ele-
mentary manner. However there is no general theory exhausting all the combina-
tions of coefficients for which exact estimations.are possible by only the algebraic
calculations from the corresponding Schiffer’s differential equations.
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