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1. Introduction.

The concept of the finite memory channel of Shannon has been formulated in
the purely mathematical form by McMillan and Khinchin (Cf. [10]), and established in
the present elegant style by Feinstein [6]. Around the finite memory channels as
its focal point, there exist various theorems, in which one of the most important
results is the theorem of the equality of Cs and Ce of stationary and ergodic capa-
cities. The problem 'whether the equality holds' has been an open question since
Khinchin's paper [10]. This equality has been recently proved by many authors:
Tsaregradsky [13], Carleson [3], Feinstein [7], Breiman [2], Parthasarathy [11] and
others. In this paper we shall describe it in an abstract form.

The purpose of this paper is to introduce an abstract characterization of finite
or infinite memory channel in which the input space and the output space are com-
pact (totally disconnected) Hausdorff spaces with a pair of fixed homeomorphisms,
and in which the channel distribution has a continuous property. In particular,
every memory channel has always these properties. The usual memory channels
are based upon their message symbols with practical applications. However their
symbols may sometimes produce certain troublesome complications for the deve-
lopments of several mathematical computations of them. The message symbols, in
the present construction of the channel, will not be presented, and they will be
replaced by sets with the property of the closed-openness (clopen, say). The des-
criptions will be given only by topological and functional forms, that is, they will
be described by topological and Banach spaces methods. The entropy functional
H(') (cf. Umegaki [15] and [16]) and the transmission functional 9t( ) are defined
over the Banach space of bounded signed regular measures, and they depend upon
a clopen partition, or upon a pair of such partitions in the input and output spaces.

In § 2, in order to clarify the abstract stationary channel (X, v, Y) defined below,
the definition of stationary finite memory channel (A1, u, B1) will be first stated
with respect to the conditions (m l)^(m 5). These conditions will be replaced below
by the conditions (C 1)~(C 5) in the channel (X, v, Y), respectively. In § 3, several
notations and preliminaries will be given, and in § 4 the stationary channel (X, v, Y)
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will be defined by the conditions (C 1)~(C 3), and it will be described the linear trans-
formations K' and K" associated with the channel distribution, which was previously
introduced, from a point of view of the theory of von Neumann algebra, by Echigo
and Nakamura [5]. In order to derive a functional analysis for the theory of
channel, it seems to us that the description of Kr and K" may become one of the
starting points of it. In § 5, using a method in the author's recent papers [15] and
[16] it will be defined a functional derived from the transmission rate, and under
assumption of total disconnectedness for the input and output spaces, the integral
representation theorems of Parthasarathy [11] for the memory channel will be proved
for the channel (X, v, F), and also proved that the transmission rate is always re-
presented by an integral of the universal entropy function (cf. § 4, p. 25 of [16]) with
respect to a measure over the compound space. In §6, it will be introduced the
condition (C4) of a concept of continuity of the channel (X, v, Y), which is an
abstractly generalized condition (m4) of Khinchin. Under the condition (C4), the
weak continuities of the transformations Kr and K" are proved. Furthermore, along
Breiman's construction, the existence of the stationary capacity Cs is proved, and
combining Adler's condition (C5), cf. [1], of asymptotic independence of the channel
distribution v, the equality Cs = Ce of stationary and ergodic capacities will be proved,
in (X, v, Y).

The abstract of this paper was partly published in [14].

2. A concept of finite memory channel.

Let A be an alphabet, that is, A is a discrete set consisting of finite number
of elements. Denote Az= x^.00Ak(Ak=A, *=0, ±1, ±2, •••) the doubly infinite
product of A, this is the set of all doubly infinite sequences

α = (•••, 0-1, 0o, 0ι, •••)>

akGA, &=0, ±1, ±2, •••. Let 9I0 be the family of all finite dimensional cylinder
sets and 91 the Borel field generated by 910 Then (A1, 91) is a measurable space
with the denombrable (measurable) generator 9ί0. Let S be the shift transformation
defined by

S( , 0-ι, 0o, 01, •••) = (•••> 0-ι> av a'ι> •'•)

where af

k = aJc+ιt k=Q, ±1, ±2, •••. Then S is an invertible measurable transformation
from A1 onto A1. Denote the cylinder sets

{αeA J; k-th coordinate = ak, k = n, n—l, •••}

or

{αe^47; k-th coordinate = ak, k — m? •••, n} (m^ri)
by

[••• an] Or [dm '•• 0«],

respectively. These sets are called messages, especially the set [am ••• an] is called
finite message of length n—m+1, and A1 or (A1, 9ϊ, S) is called message space.
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Let (A1, % S) and (B1, 33, T) be a pair of the message spaces, with their shift
transformations S and T, which are introduced by the corresponding pair A and B
of alphabets, respectively.

A function v(a, D) defined over the cartesian product A x 33 (or the triple
(A1, v, B1)) is called stationary memory channel, if

(ml) For each Z>e33, v( , D) is a measurable function over the space (A1, 2ϊ),
(m2) For each αeA 7, v(α, •) is a probability measure over the space (B1, 33),
(m3) the equality v(Sα, TD)=v(a, D) holds for every α€^L7 and for every

and it is called nonanticipating if it satisfies that: for each α° = (-•, #_?, a*, a\,
and for any message [••• bn-\

holds for every α = ( , <z_ι, a0, aίt --^A1 within ak=a\ (k—n, n—1, •••).
Moreover the distribution v( , •) (or the triple (/LJ, v, £7)) is called finite memory,

if there exists an integer />0 satisfying the following conditions:
(m4) for each α^A1 and for any message [bm ••• δw]cβ7 (m^ri) the equality

y(α°, [frm — WD = I<α» [*m - W)

holds for every α=( , «-ι, «0, «ι, •• )€A 7 within αk=α\ (k=m—ly •••, w), and
(m5) for any two finite messages [fe ••• ̂  ] and [b'm ••• %]c^7 such that j+l<m,

the equality

holds for all as A1.
The smallest integer />0 for which (m4) and (m5) hold, is called the

memory length or the memory of the channel. If no such />0 exists, the channel
(A1, v, B1) will be called infinite memory.

The message space A1 is a totally disconnected compact metric space by the
weak product topology, the field $0 of finite dimensional cylinder sets is the base
of this topology and it consists of denombrable clopen sets, in which S is a homeo-
morphism (cf. [16], Theorem 1). And so are the message space B1 and the compound
message space A[xB! with the denombrable bases 330 and 5ί0®330 of all finite
dimensional cylinder sets, respectiveley.

3. Preliminary and notatinns.

Let X be a compact Hausdorff space with a (fixed) homeomorphism S. Denote
C(X) the Banach space of all (real) continuous functions on X with the sup-norm
and L(X) the Banach space of all the bounded signed regular measures with norm
|| ||ι of total variation, then each measure ζζL(X) corresponds to a bounded linear
functional Fξ of C(X) such as

(1) Fξ(f)={ f(x)dξ(x) for every feC(X),
Jx
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and conversely. The correspondence ζ-+Fξ defines a linear isometric mapping be-
tween L(X) and the conjugate space C*(X) of C(X), and for the sake of notational
convenience they will be identified: L(X) = C*(X) by ξ=Fξ, or put

(10 Fξ(f) = <f,ξ>.

Denote P(X) the set of all probability regular measures on X. Then P(X) coincides
with the space of functional p€C*(X) with norm one and p(/) = l (/ being the
identity function on X\ and hence P(X) is convex and weakly* compact set.υ For
any function /and measure ξ denote (Sf)(x)=f(Sx) and (Sξ)(U) = ξ(S'lU). Denote
L(X, S)c:L(X) the set of all measures with Sξ=ξ (called S-invariant) and put P(X, S)
=P(X)^L(X, S). By the fixed point theorem, L(X, S) and P(X, S) are non-empty,
and hence L(X, S) is closed linear subspace of L(X) and P(X, S) is the weakly*
closed convex hull of the set of extreme points in P(X, S). Denote Pe(X) the set
of all ergodic (relative to S) measures p€P(X, S). Then Pe(X) coincides with the
set of all extreme points of P(X, S).

Let 36 be the σ-field of all Borel subsets of X. A subfamily 2 of 36 is called a
partition, if it covers X and any pair of different sets in 3 is disjoint. Denote by

2n = VΪ-,S-*2(S-*2 = {S-*Z/; ί/€2}) or 2<χ,= V*=ιS-*2 the σ-subfield of 36 generated
by {S~*3}jfc==ι or by {S~fc3}*=ι> respectively, and by 3£ the partition which generates
3,.

For any fixed measure peP(X) and for any fixed σ -subfield 23 c 36, denote PP(U\^S)
the conditional probability, in the probability measure space (X, 36, p\ of a sets
£7e36 conditioned by 33. Let L+(X) be the set of all non-negative measures in L(X),
i.e., the positive cone of L(X). Then for any non-trivial ζ eL+(X), ίι=ί/||ί||ι belongs
to P(X) and put P^(U \^)=P^(U\^d). For a finite partition 2, define a functional
over L+(X, S)

(2) H(ξ, 3, S)- - Σ ( Pϊ(U I Soo) log ft(C7 1 2-) dξ(x)
ut%Jx

for every ξ€L+(X, S\ where for ?=0 put H(ξ, 2, S)=0 and the base of log is 2.
Then, as the previous paper [15], this satisfies the following (cf. Halmos [8])

H(ξ, 2, S)= - Σ Hm ( Pζ(U \ 2n) log P*(U \ $n) dξ(x)
U€% n^oo J x

(3) =-l im— Σ £(Z7) log 6(ί7)n °

^- Σ «J7) log ί(ί/)+ί(^) log

1) When £" is a Banach space and E* is its conjugate space, the weak topology on E*
as functional over E is said to be weak* topology. That is, the generic (weak*) neighbour-
hoods are determined by F0eE*, ε>0 and a finite set, /i, •• ,/w, of elements in E:

N(Fo,fι, " ,/n, ε)-{F6^*; I F0(/ί)-F(/<) |<ε, i=l, •», w}. This topology is equivalent to
that denned by the weak* convergence of nets, Fa->F weak* if and only if Fa(f)-*F(f]
for every feE,
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Whence, H(ξ, 9!, S) is uniquely extended to non-negative bounded linear functional
over the space L(X, S) and is called the entropy functional, cf. Umegaki [15] and [16].

4. Stationary channel.

As described for X, let F be a compact Hausforff space with the fixed homeo-
morphism T and with the σ-field 2) of the Borel subsets in F. Denote Z=Xx Y
the cartesian product X and F, S(£)T the product homeomorphism on Z of S and
T, and 3 the σ-field 36®?). The spaces C(F), Z,(F), L(F, T), P(F, T) and C(Z),
L(Z\ L(Z, S®Γ), P(Z, S®Γ), etc. associated with F and Zare defined as in § 3 for X.

DEFINITION 1. The triple (X, v, 9)) is called stationary channel, with the homeo-
morphism S®T, if the function v(x, V) is defined on the product set Xx%) such
that:

(Cl) for each fixed Fe9), y( , V) is a Borel measurable function over (X, #),
(C2) for each fixed x$X, v(x, •) is a probability regular measure over (F, $),
(C3) the function v( , •) /5 stationary with respect to S®T, /.£.,

y(SΛ?, TV) = y(a?, F) for every #eX α^ί/ Fe?).

The function y( , •) is called channel distribution, Xand Fare called input and output
spaces, and Z compound space, respectively. The conditions (C 1), (C 2) and (C 3) are
simultaneously corresponding to the conditions (ml), (m2) and (m3) in the stationary
memory channel, cf. §2.

For every ξsL(X\ putting

ξ'(V)=( v(x, V)dξ(x\ Feφ
J γ

and

v(x, V)dξ(x), ί/eae, Fe?),

then fxeL(F) and ξf/ is uniquely extended to a bounded measure over (Z, 3)> denote
it again by ξff which belongs to L(Z). Whence it holds that for every bounded
Borel measurable function f(z) (=f(x, y}}

Γ Γ Γ
(4) \ \ f(x, y) v(x, dy) dξ(x) = \ f(z) dξ"(z).

Denote K' and K" the mappings ξ-*ξ' and ξ-*ξf/ on L(X) into L(Y) and L(Z),
respectively. Then the following will be proved:

THEOREM 1. The mappings K' and K" are non-negative, bounded linear trans-
formations with norm one on L(X) into L(Y) and on L(X) into L(Z) respectively,
satisfying

(5) l |X / f | | ι=ll^ / / f | | l =| | f | | ι for every

and
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(6) TK'=K'S and (S®T}K"=K"S.

These Kf and K" will be called the channel transformations associated with the
channel distribution v. This functional formulation of Kf and K" was firstly given
by Echigo and Nakamura [5] from the point of veiw of the theory of von Neumann
algebra.

Proof. The linearity and non-negative definiteness of K' and K" are obvious
from the definitions of them. For every ξςL(X) there exists a real measurable
function θ(z) on Z such that

d\K"ξ\(z) =

Hence

|ι = d\K»ξ\(z) =
Jz

While for ξeL+(X),

and 1 1 K"\ |=1, similarly 11^11=1 is obtained, and (5) is proved. (6) follows from
that: for every t/€# and

and
(T^/ί)(F)=(S®T)/Γ/^(^x F)=(Λ'//Sf)(Xx V)=(K'Sξ)(V).

It follows from Theorem 1 that

COROLLARY 1. 1. For the transformations K' and K", it holds that

(7) K'P(X)cP(Y) and Kf/P(X)^P(Z)

and

( 8 ) K'P(X, S) c P( F, T) αwrf ^7/P( ,̂ S) c P(Z, S(x)Γ).

5. Transmission functional and its integral representation.

Assume that the spaces X and Y are totally disconnected with the bases of
clopen sets 360 of X and $0 of y, respectively. If the partition 3 is a subfamily of
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360 then 2 is called a clopen partition. For any fixed pair of clopen partitions 2 of
X and £ of Y, denote JC = 2(g)2 the clopen partitions {Ux V\ £/€3, Feg} of
Z=-X"X Y". Then it can be introduced three entropy functionals

(9 ) H(ξ)=H(ξ, 2, S), Hι(ή)=H(η, 2, T) and #a(ζ)=ff(ζ, <K, S®Γ)

over the spaces L(̂ Γ, S), L(Y, T) and Z,(Z, S(g)Γ), respectively. These functionals
H, HI and H2 are represented by the integrals of the bounded non-negative Borel
measurable functions h(x)=h(x,<3,S),hι(y)=h(y,SL,T) and h2(z)=h(z, <7C, S®T),
which are universally determined by the partitions 2, g and JC, resp., and by the
heomeomorphisms S, T and S(x)T, resp. (called universal entropy functions, cf. [16],
the final part of § 4). Furthermore these h, hi and hz are invariant relative to each
homeomorphism. The integral reprentations are expressed such that (cf. [16], § 4)

(10) #(£)=? h(x)dξ(x\
J X

for every ξeL(X, S), τ?eL(Γ, T) and ζeL(Z, S(g)Γ). Putting

(11) #'(£)=#!(£'), ff''(£)=ffi(£''), 5R(£; 2, 2) (or simply 3l(£))=fl(£)+/r(£)-Jff
//(£)

where £'=#'£ and £"=#"£, then these #, #', ̂ x/ and 81 are bounded non-negative
linear functionals over L(X, S) and 9Ϊ will be called the transmission functional of
the channel (X, v, Y) associated with (2, £) on (Z, 3).

These descriptions yeild the amounts of entropies in the usual sense of the
stationary memory channel (A1, u, B1). That is, let [a0] (aoGAo=the alphabet of the
0-th coordinate of A1) be the message symbol of single element a0 in the notation
of §2. Then, putting 2 = {[<Zo]; <20e^40}, 2 is a clopen partition of A1 and the field
9lo of cylinder sets in A1 is generated by the sequence of clopen partitions {SW9?;
w=0, ±1, •••}, and similarly putting 2 = {[δ0]; b^B^}, the field % is generated by
{Tn2; w=0, ±1, •••}. Therefore the entropy H(p) of the input stationary source p
(on A1} equals to H(p, 2, S) in the present sense, and similarly it holds for the
entropy of the output source q (on B1) and for the transmission rate $t(p) of the
input source p.

Now we go back to the present case. Putting

(12) h'(x)=\ h±(y}v(x,dy} and h"(x) = \ h*(x, y)v(x, dy\
J Y J F

they are bounded Borel measurable, and by (4)

h'(x)dξ(x)=\ hiMdξ'W and ( h"(x)dξ(x)Λ hz(z)dξ"(z).
x JF J^r J z

Then we obtain the integral representation theorem2) of Parthasarathy's type (cf. [11]):

2) Somewhat after than Parthasarathy, the integral representation of the transmission
rate in memory channel has been also proved by Jacobs [9] in which his proof was done
by the similar manner under Krylof-Bogokiouboff's theorem. In the preceding paper [16],
we have applied their method to a general case which will yield the present case.



34 HISAHARU UMEGAKI

THEOREM 2. The transmission functional 3ft( ; 2, g) is bounded non-negative
and linear over the Banach space L(X, S) and there exists universally an S-invariant
bounded Borel measurable function ι(x) on X such that

(13) 3l(ft2, S)=lt r(α?)rff(a?) for eυery ξeL(X,S),
Jx

where the function ΐ(x) is defined by x(x)=h(x)+hf(x) — h"(x].

Proof. The S-invariance of /z" follows from hz(Sxty) = hz(xί T~ly) and

"(Sx)={ ht(Sx,yMSx,dy)=( h*(x,y)v(x,dy) = h"(x)
JY J F

h

and similarly for A'(#). It remains only to show the non-negative definiteness of

9l( ; 3, 2):
Put the finite partitions 3£ = {Z/ι, -, tfnj, 2£ = {Vi, -, V»8} and JC^(=3^(

= {£7 tχyJ; ί7ί€2;, F, €2°} (cf. §3). Whence for any fixed psP(X,S)

Σt, ̂ /7(K x VO log ί®^(CΛ x V»= Σt, yί/7(K x V» [log #E70+ log ̂ ( F

where in these equalities the indeces / and j with p(Uί)—pf(Vj)=Q are neglected,
and by the linearity of H( , JC, S®T)

3, £}=H([p®p'-p"l X, S(x)Γ)

and this is non-negative, because, for every β^>0 and ̂ X) with Σ
Σ alj[log aij— log^yJ^O. For general ξςL+(X, S), it reduces to the above.

Now, we discuss the exact form of Parthasarathy. Let ?8χ be the σ-subfield^
generated by {Sn2; w=0, ±1, ±2, •••} and let P's be the set of all S-invariant pro-
bability regular measures over (X, 33jr), where the regularity is defined within open
or closed sets belonging to ^x. Then P's consists of the measures pi, restriction of
peP(X, S) over (X, 23*), pι=(P\®x) say, and if p^P's is ergodic over (X, 23χ) relative

3) 93χ is a proper σ-subfield of 3E, because X is not assumed to be separable.
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to S then pf = (p\^&χ) for certain ergodic pzP(X, S).4) Whence by the definition of
the entropy functional #(•), H(p)=H(p) holds for p, p$P(X, S) within (/>|93*) = (/o|S3;r),
and hence H(pι) (pitP's) is defined by H(p) for psP(X, S), pι=(p\&x). In particular,
since mr (rzR) are ergodic over (X, 23χ) (where mr and J? are defined by §4 in [16]),
there corresponds an ergodic mr£P(X, S) such as mr==(mr\^x)) and hence 3t(mr)

2, g)) is defined by the amount SR(mr). For the partitions g of F and JC
of Z, similarly define the σ-fields %r (over F) and 23^ (of^r Z). Then

we obtain the theorem under the condition (CIO which contains (ml) as a special
case:

(CIO For each fixed Fe33r, »( V) is measurable over (X, S5jr).

THEOREM 3. Under the additional condition (C 10, the function $t(mr) of
is %$χ -measurable on R and satisfies

(14) »(/>; 3, S) = C 5R(Wr5 S, 2)<#>(r) for every peP(X,S).

Proof. Since the functions /Zι(?/) and /z2(z) are SF and 23^-measurable (cf. [16],
Theorem 5 and its proof), the condition (CIO implies 23χ-measurability of h'(x)
and h"(x\ and hence r(#) is so. Again by [16] (§4, Lemma 3), (14) follows from

τ(x)dp(x)=\ ( τ(x) dmr(x) dp(r) = ( ( τ(x) dmr(x) dp(r).
jΓ JRJX J RJX

While, another integral representation of the transmission functional is given
by means of the function hz(z) on Z:

THEOREM 4. For every pGP(X,S), putting μp =p<S)P' — P" > then it is a signed
measure μp€L(Z, S®T) and satisfies

(15) 9l(# 3, S)=ί h,(z)dμp(z)
J z

where h2(z)=h(z, JC, S(x)T), JC— 2®S, is the universal entropy function over Z as-
sociated with SΘS and S®T.

Proof. Since both p(&p' and p" belong to P(Z, S(x)Γ) and H2( )=H( , JC, S®Γ)

4) Let C§5 be the linear subspace of C(-X") generated by {Cu}u, U being the sets belong-
ing to the field of clopen sets U generated by {Sn2; n=Q, ±1, •••}, as in §4, page 22 of [16].
Then, by Riesz theorem, p^P's is indentified with a non-negative linear functional, with
norm one, over Cg (cf. Lemma 1, [16]), and hence, by Hahn-Banach theorem, p1 has non-
negative definite extensions over C(X) preserving its norm. Putting Pλ the set of all such
extensions of plt then Pl is invariant under S. Furthermore, Pλ is weakly* compact and
convex, and hence, by the fixed point theorem S-invariant p exists in Plf i.e., Pi=(p\S3x) for
some peP(X, S).

If pi is ergodic over (X, 9$χ), then, putting E± the set of all extreme points in P(X,
S)̂ P!, every peEi is ergodic over (X, 3E). Indeed, if there exist σ, ρeP(X, S) such that p
= aσ+βp on C(X) (a, /3^0, a+β=ΐ) and hence so on Cg. But by the ergodicity of pl9 p=σ
=p on Cg. Therefore <r, ptP(X, S)^~^Pl and hence />c£": implies p=σ=p on C(X).
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is linear over L(Z, S®Γ),

fc 3, S)=#(Λ 3, S)+H(p', 2, Ύ)-H(p", x,

' -p")=H2(μP) = ( hz(z) dμp(z).
Jz

6. Condition of continuity of channel and its capacity.

In the previous sections 4 and 5, for the stationary channel (X, v, Y) the con-
ditions corresponding to the finite memory was not assumed. Now it will be in-
troduced a condition on the channel (X, v, Y), which contains the conditions on the
finite memory.

As in § 5, assume the totally disconnectedness of X and Y with the clopen bases
#o and ξ)0, respectively.

DEFINITION 2. The stationary channel (X, v, Y) is called continuous, if the
following condition (C4) is satisfied:

(C4) for every fixed set Vz%, the functions v( , V) is continuous on X.

In the memory channel (A1, u, B1), (C4) corresponds to the condition (m 4).
More precisely, (A1, v, B1) having only the conditions (m2) and (m4), satisfies
always (C4). Indeed, as stated in §2, both the spaces A1 and B1 are totally dis-
connected with the bases 2Ϊ0 and 390 consisting of their finite dimensional cylinder
sets, respectively. Let V={bm -bn] be a finite message in B1, then, by (m4), y(α, V)
=v(a', V) holds for every pair α, a'^A1 with ak=a\ (k=m—l, •••, n). Hence, for
fixed a^A1, taking U(a) = [am-i ~ an] as a neighbouhood of α in A1, then

(16) ι<α, F)-Kα', F)=0 for every α'e£/(α).

Furthermore, since every cylinder set FeS90 is expressed by finite union of disjoint
finite messages in B1, by (m.2), we can find a neighbourhood U(a) of α in A1 such
that the equality (16) holds for the V. Therefore (m2) and (m4) imply (C4), and
in particular, in every stationary finite memory channel, the channel distribution
yfe V) is continuous of ^A1 for each fixed finite message V~[bm ••• bn].

In general, relative to the associated transformations Kf and K" the following
is proved.

THEOREM 5. If the stationary channel (X, v, Y) is continuous, then the channel
transformations K' and K" are continuous with respect to the weak* topologies on
L(X\ L(Y) and L(Z\ that is, if ξ«-^ξ in L(X) and uniformly bounded: \\ξa\\^Mt

then Krξa-+K'ξ in L(Y) and K"ξa-^Kf'ξ in L(Z), where the convergences are weakly
as conjugate spaces, (i.e. weak* convergences).

Proof. For every ί/€#o and Fe9f)o, the functions G/( ) (the characteristic
function of U) and y( , V) belong to C(X). Therefore, for such sets U and V, and
for a net {ξa}<^L(X) weakly* converging to ξeL(X) with ||fα||ι^M, the following
holds:
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V\ ξ> = Cu(x}v(x, V)dξ(x)=ξff(Ux V) = (K"ξ)(Ux V)
J X

where <, > is defined in (I/), and hence

(17) <CW, K"ξv>-><Cw, K"ξ> for every We& (=ϊo®2W

Since, by Theorem 1, | \K"ξa\ |ι^ | |ί«| |ι^M for all indeces α and since the set of linear
combinations of Cw, W€$0, is uniformly dense in C(Z), (17) implies that ξa"=K"ξa

converges weakly* to ζ"=K"ξ, that is, </, £/'>-></ ξ"> for every /eC(Z). The
continuity of Kf follows from that of K" .

By this proof, it follows under the same assumptions on (X, ι>, Y)

COROLLARY 5. 1. Kf and K'f are sequentially weakly* continuous over the re-
spective Banach spaces L(X), L(Y) and L(Z).

The concept of the stationary capacity, as defined in Feinstein [6], of the finite
memory channel can be similarly defined for the channel (X, v, Y):

DEFINITION 3. For a pair of finite partitions 2 of X and 2 of Yy put

(18) C.(2, 2) (or simply C.)= sup{9t(/>; 3, 2); peP(X, S)}

and it is called the stationary capacity, relative to (3, 2), of the channel (X, v, Y).
The existence of the stationary capacity Cs(2, 2) will be proved as the following:

THEOREM 6. If the channel distribution y( , •) satisfies either (Clr) or (C4), then,

(19) C,(2, 2)= sup{^(^; 2, 2); psPe(X)}

where Pe(X) is the set of all ergodic measures on X. Particularly, under (C4), the
capacity Cs can be achieved on P(X, S).

Proof. Under the condition (CIO, the equality (19) follows from Theorem 3.
While, when (C 4) is satisfied, by Theorem 5, the associated channel transformations
Kr and K" are weakly* continuous on P(X, S). Hence, by the inverse mapping of
K't every weakly* open subset in P( Y, T) is mapped onto an open subset in P(X, S),
and similarly so for K". Besides, by Theorem 4 in [16], the functional //(•), //ι( )
and #2( ) are weakly* upper-semicontinuous over P(X, S), P(Y, T) and P(Z, S®Γ),
respectively. Therefore, combining with the fact just above, H'(p)=Hι(Kfp) and
H//(p)=H2(K/p) are weakly* upper-semicontinuous on P(X, S), and so is ^(/>)
(=3t(/>; 2, 2)) Consequently, by the weak* compactness of P(X, S), Cβ=5R(/>) for
some peP(X, S). (19) and the achieving of Cs follow immediately from P(X, S)
being weakly* convex closure of PC(X) and the upper-semicontinuity of

It should be noted, that Breiman's theorem (cf. Theorem 1 of [2]) relative to
upper-semicontinuous functional implies that there exists at least one ergodic pzPe(X)
such that
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C.(3, 2)=3t(Λ 3, 2).

According to Feinstein [6], an ergodic measure psPe(X) is called admissible if
, S®Γ) is also ergodic, and denote PA(X) the set of all admissible

Put

Cβ(3, 2)= sup{^R(£; 3, 2); pePA(X)}

ana it is called ergodic capacity, relative to (3, g), of the channel (X, v, Y). Whence
Ce(3, 2)^CS(3, 2). Besides, there are channels (A1, v, B1) (satisfying (ml)— (m4)
but not (m5)) without having nonempty PA(X\ and for such channels the ergodic
capacity is undefined, cf. Feinstein [6]. However it holds that, for every finite
memory channel (A^v.B1) satisfying (ml)~(m5), PA(X)=Pe(X), cf. Takano [12],
and hence Ce(3, S) = CS(3, 2) hold. To describe this for the present stationary
channel (X, v, Y), according to Adler [1], we introduce the following: If the sta-
tionary channel (X, v, Y) satisfies

(C5) lim [v(x, TnV^V2)-v(x, TnVι) u(x, F2)]=0, xsX
n— »oo

for every FιF2€$0, then it will be called asymptotically independent. As Adler
stated, in the channel (A^^B1), (m5) implies (C5) for as A1 and Vi, F2€$B0.

In the present case we obtain that: If (X, v, Y) satisfies (C 1)— (C 3) and (C 5),
then every ergodic p€Pe(X) is transformed to ergodic measures p'sP(Y, Γ) and
p"ςP(Z, S(x)Γ) by the channel transformations Kf and K" , respectively, and hence
if {X, v, Y) satisfies (C1)~(C5) then PA(X) = Pe(X) and Ce(3, 2) = C,(3, 2) hold.
This is given by Adler's proof without any modifications, which is done by the
Halmos' well-known characteristic property of ergodicity of p:

lim — UΣP(S-kU1^U2) =p(UJ p(U2)

for every pair of
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Added in proof. After this paper was received, the author is informed by a letter of
Professor M. Nakamura, that a similar abstract characterization of finite memory channels
is also obtained and prepared to discuss in his lecture at the Osaka Gakugei Daigaku.




