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1. Introduction.

The theory of information, originated by Shannon, was applied in the new
subject to investigate the theory of transformation with invariant measure by
Kolmogorov and his school, cf. Rokhlin [12]. Recently, Halmos [7] gave a very
clarified note relative to their investigations. While, in order to achieving the
channel capacity in stationary finite memory channels, cf. Feinstein [6], some im-
portant properties of the entropy (the average amount of information) of information
sources in these channels were studied by Khinchin [8], Takano [13], Traregradsky
[14], Breiman [2], Parthasarathy [11] and others. The basic space of information
sources of the channels is the doubly infinite product set A1 (the messages space)
of the alphabet A, which becomes a compact metric space relative to the weak
product topology and in which the shift transformation is a homeomorphism on A1

(so-called the Bernoulli automorphism).

The purpose of this paper is to study a functional property of the entropy of
information sources of general type in the abstract analysistic formula. From a
general point of view, throuthout this paper, the basic space of the information
sources will be taken as a measurable space with an invertible measurable trans-
formation (automorphism, say). The description for such general space is not
only used to discuss the functional properties of the amounts of entropies of
various information sources, but also will be given a preliminary method of
the concept of information for von Neumann algebras, some of which were partly
discussed in the papers, cf. Nakamura-Umegaki [9], [10], Daivs [3], Echigo-Nakamura
[5] and Umegaki [15].

In §2, a functional form of the amount of entropies for finite partition and
automorphism will be defined as functional of invariant measures which will be
called the entropy functional, and, in §3, it is represented as non-negative linear
functional over the Banach space of the invariant bounded signed measures. The
method will be done by using a technique of Breiman [2]. In § §4 and 5, as the basic
space take a measurable space with denombrably generated Borel field and apply to
it the result in the previous section. This space contains various basic spaces of
information sources, e.g. the message space A1, the phase spaces in dynamical
systems, the compact metric space or the spectrum of commutative von Neumann
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algebra on separable Hubert space. In § 4, the extension of the entropy functional
to stationary functional over Banach space of signed measures is proved and this
fact is applied to prove the integral representations of this functionals for finite parti-
tions and automorphism. This is a generalization of Parthasarathy's theorem [11].
In § 5, the entropy of automorphism is defined, and Rokhlin approximation theorem
will be proved and it is applied, with the theorem given in §4, to the integral
representations of the entropy of automorphism. In appendix, without assuming
the denombrability of the basic space, the entropy functional for finite partition 2
and automorphism S is defined over the space of bounded signed measures which
are bounded measures defined on the subfield generated by 2 and S.

The concept of the entropy functional may be used for a generalization of
theorems in finite memory channels. This will be discussed in the forthcoming
paper. The abstract of this paper was published in [16].

2. Definition of entropy functional.

Let (X, 36) be a measurable space with an automorphism S(=invertible measurable
transformation from X onto X). A subfamily 2 of 36 is called a partition, if it
covers X and any pair of different sets U, Fe2 is disjoint. Denote F(X) the col-
lection of all finite partitions {3, 2, •••}. For 2, 2C1), 3(2), •••, 2Cw) and 2e/*TO,
denote

2V2 or V2α )

k=ί

the partitions generated by 2 and 2 or, by {3C f c )}/?=ι, respectively, that is, e.g., 2 V2
consists of UΓ\V (£/€2, V^S), and also denote

(1) 2n=VS~ f c2, S-*3 = {S-*t/; Z/€2}.
fc = l

Then 2V2, VSU2(fc), S~fc3 and 3n are finite partitions. Furthermore, for <geF(X),
denote

(2) 3n-US- f c2 or 2L=U2.
k=ι π=ι

the o -subfields of 36 generated by {S~fc2; & = 1, 2, •••, n] or {2™; n=l, 2, •••} respec-
tively. For 2, Q€F(X), if any £7e3 contains some Fe2 then 2 is finer than 2
and this relation is denoted by

2 < 2 .

Let P(Xy S) be the set of all S-invariaαt probability measures over the measur-
able space (X, 36). Assume that P(X, S) is non-empty. Let L(X, S) be the linear
space of all S-invariant bounded (complex) signed measures f, η, •••. Then the space
L(X9 S) is a complex Banach space with the norm:

( 3) 1 1 f 111=total-variation of ζ.

Denote L+(X, S) the non-negative elements in L(X, S).
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For any probability measure p and for any fixed σ-subfield 53 of 36, denote
Pp(U\ 53) the conditional probability, in the probability space (X, 36, p\ of a set t/€36
conditioned by 53. For any non-trivial ξcL+(X, S), ?ι = ? / I | ? | | ι belongs to P(X, S),
and put

For a fixed <£sF(X), define a functional over L+(X, S)

( 4 ) H(ξ, 3, S)= - Σ ί /W I 3-) log /W I 3-)

for every f €L+(^, S), where for f=0 put #(?, 3, S)=0.υ Then this satisfies the
following equalities:

( 5 ) H(ξ, 3, S)= - Σ Hm ( Pξ(U \ 2n) log /W I 3n
.-Z7€2 w-»oo J2Γ

(6) =-lim— Σ
n

vSince {Pt(U\ 3«) log Pέ(f/l 2»); «=1, 2, ••-} is semi-martingale (in the sense of Doob
[4]) in the probability space (X, #, <fι), the equality (5) is proved by semi-martingale's
convergence theorem and the equality (6) is proved by McMillan's convergence
theorem (e.g. cf. Halmos [7], p. 34).

Beasides, any measure ξ£L(X, S) is uniquely expressed such as

for ?Cfc)€L+(X S)(&=1, 2, 3, 4), and the domain of the functional #(-,2,5) is ex-
tended over the space L(X, S) by

H(ξ, 2, S)=H(e">, 3, S)-^(f(2), 3, S)+iH(S«\ 3, S)-*H(fco, 3, S).

The functional //"(-, 3, S) will be called entropy functional for the partition 3
and for the automorphism S over the measurable space (X, 36). The following pro-
perties are equivalent each other: (1°) H(p, 3, S)=0 for a fixed p€P(X, S), (2°)
3c3oo (mod p) and (3°) 3oo=U-ooS~Λ3 (mod/)), where S° is the identity transforma-
tion. The well-definedness of the functional //(•, 3, S) will be proved in the next
section.

3. Linearity of entropy functional.

The entropy functional H(ξ, 3, S), which were defined in the preceeding section,
are three variable functions of measures ξ, partition 2 and automorphisms S If

1) The function λ log λ (Λ^O) is defined such as λ log λ (Λ>0), and 0(^=0). The

logarithm has the base 2.

2) For the partition 3 'Ω°t necessarily finite, the entropy functional H(ς, 2> 5) is de-

fined, and when {Σ£(£7) l°g f(^) ϊ ^e 3} is finite, ir is always finite and (5), (6) are satisfied
for such ξeL*(X, s).
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the measure ξ is stationary probability measure, then the amount H(ξ, 2, S) conicides
with the amount of the entropy of the automorphisim $, relative to the partition
2, in the usual sense, cf. e.g. Halmos [7], Rokhlin [12], The entropy functionals
have the property as linear functional and this property will be essentially used for
the channel's theory.

THEOREM 1. For any fixed finite partition 2, the entropy functional H( , 2, S)
is a non-negative bounded linear functional over the Banach space L(X, S).

To show the theorem, we shall prove five lemmas.3)

LEMMA 1.1. The entropy functional #(•, 2, S) is linear over L^(X, S) with
respect to non-negative cofficients.

Proof. The proof will be done by applying the Breiman's technique [2]. For any
pair ί, η€L+(X, S) and any pair of positive numbers α, /3>0,

- — Σ («£ + #?)(*/) log

= - — Σ («ί(f/)+̂(ί/)) logn

( 7 ) = — - Σ (««#) log ξ(U) -~ Σ βη(U) log η(U}
n n

where Σ is taken as the summation for U running over the sets in 2V2», and
where in the first and third terms of the last side of these equalities in (7) if
ί(ί/o)=0 for some J70 in 2V 2™ then let the summands containing ξ(U0) be zero
and same for the other terms if η(Uo)=ΰ. Since for £(ί/)=£θ,

it holds

[«+β

^ —ζ(X) a log a+ — βη(X\
n n

where Σ is taken in the same meaning as in (7). Therefore as -̂̂ oo the third
term in the last side of (7) tends to zero and similarily the final term of its side
tends to zero. Consequently

3) The Lemmas 1.1~1. 3 are satisfied for denombrable partition 2 within the measure
• eL+(X,s) such as {Σ \ ξ(U) log £(£/));
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- urn -L Σ («£+|fy)(CO log (aξ+βη)(U)
n-»oo H

= _« lim J_ 2 ξ(U) log f(£/)-j8 lira— £ ?(£/) log )?(£/)
W-»oo ft W-»oo ft

and hence

( 8 ) H(aξ+βη, 3, S) = aH(ξ, 3, S) + βH(η, 3, S).

When α /3=0, (8) is obvious from the definition of //(•, 3, S) and #(0, 3, S)=0.

LEMMA 1.2. For 0#y two pairs ξ, ηsL+(X, S) «wc? ζ',η'eL+(X, S) with ξ—
=ξ'—η', the following equality holds:

(9) #(£, 3, S)-H(η, 3, S)=^(r, 3, S)-W 3, S).

Proo/ Since ζ—η=ζ'—η' implies ί+J7/=ί/+^, by Lemma 1.1

H(ξ, 3, SJ+fffe7, 3, S)=ίΓ(f +37', 3> S)

=ff(f/+i7, 3, S)

=#(£' 3, S)+^fe, 3, S)

and (9) holds.

LEMMA 1.3. H( , 3, S) w well-defined and real linear over the real part
L^(X, S) of L(X, S).

Proof. By Lemmas 1.1, 1.2, and by the definition of H( , 3, S), the fact that

H(aζ, 3, S)=aH(ξ, 3, S) for all real a and all ζεL+(X, S)

and the well-definedness are obvious. Taking f=Σ2=ιf*> f*=f/*— ί/7fc with ί̂ , ί̂
€L+(Z, S), since f=Σf /*-Σf / /* and Σf7*, Σί/xA;€L+(X, S).

H(ξ, 3, S)=
*=1 Λ=l

by Lemma 1.2,

= Σ {^(f7*, 3, S)-^(f/x*, 3, S)}
fc = l

by Lemma 1. 1,

= Σ H(ξ'k-ξ"*, 3, S)
A=l

= Σ H(ξk, 2, S).
t = l

Also for ξ=ξ'-ξ" with f, f"eL+(X, S)

fl (-e, 3, s)=ίf(e"-r, 2, s>
=ίf(f, a, s)-
= -//(?, 2, S),
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hence by Lemma 1.1, for any real a

H(aξ, 3, S)=«fl(£', 3, S)-αfftf", 3, S)

= aH(ξ'-ξ", 3, S)=αff(f, 3, S).

LEMMA 1.4. //(•, 3, S) is strongly continous over LM(X, S), more precisely

(10) | f f ( ? , S , S ) | Ξ i | S H I £ | | ι / 2

feZ/r)(^Γ, S), where | 3 I w //?£ number of the disjoint sets in 3.

/. For ξeL+(X, S)

ico) log

^£-ess. sup I Pξ(U\ 3oo)(#) log

Hence

For general ξzLM(X, S), putting \ξ \=ζ++ζ~ where ξ+ and f- are the positive and
the negative parts of £ which belong to L+(X, S), respectively, then

-mgf^m and | | | f | | | ι = | | f | | ι .

Therefore by the linearity and the non-negative definiteness of H( , 3, S)

i f f ( f , a , s ) i ^ f f ( i f i , 3 , s ) ^ ι a ι ι i f ι i ι/2
and (10) is obtained.

LEMMA 1. 5. H(- , 3, S) is well-defined linear and bounded over the space L(X, S):

(11) I #(?, 3, S) I ̂  I 3 I 1 1 f I l i for every ξtL(X, S).

Proof. By the definition of H(ζ, 3, S) for the complex measure ζ€L(X, S),
H(iξ, 3, S)=-iH(ξ, 3, S) for f €LCr)(^, S) holds, and hence the lemma is obvious from
Lemmas 1.1~1. 4 excepting the boundedness. Since for every ?, ^€LCr)(X, S)

max (|| f i l l , || η ||ι)^|| ξ+i-η ||ι^ V | | ί l U ' + l l ^ 117^2- 1

it hlods

iη9 3, S) |= V|-ff(f, 3,S)|2+|^, 3, S) I

that is, (11) is obtained.

By Lemmas 1. 1~1. 5, the proof of Theorem 1 is complete.
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4. Extension of entropy functional.

Assume the measurable space (X, 36) has denombrable generator, that is, there
exists a denombrable subfamily of # which generates 36. Then P(X, S) is necessarily
non-empty and there exists a measure μ€P(X, $) which dominates all peP(X, S),
that is, every pzP(X, S) is absolutely continuous with respect to μ,p<μ say. Let
L(X) be linear space of all bounded signed measures ξ, </*, with the norm | |ί | |ι
denned by its total variation, cf. the formula (3), and L+(X) be the set of non-
negative ξGL(X). Then L(X) is a Banach space which contains L(X, S) as subspace.

Since a set in X is μ-null set if and only if it is p-null set for all p&P(X, S),
the //-null sets are determined by P,X, S) and hence it is dependently determined
only on the automorphism S.4)

For a pair / g of measurable functions, the equality f(x) = g(x) μ-a.e. x^X will
be merely written by f(x)=g(x), a.e. x^X.

For any function /and measure ζ denote (Sf)(x)=f(Sx) and (Sζ)(U)=ξ(S~1U).
A linear functional F( ) on L(X) is ^-stationary if F(Sζ)=F(ξ) for every ξςL(X).
Then the following is proved:

THEOREM 2. 7%e entropy functional H( , 3, S) /or the partition Q^F(X) and
for the automorphism S is uniquely extended to non-negative bounded ^-stationary
linear functional over the space L(X).

Proof. Let (E> be the σ-subfield of 36 consisting of all S-invariant (mod μ) meas-
urable sets. Denote E[ \ @] the conditional expectation conditioned by β in the pro-
bability space (X,%,μ), cf. Doob [4]. Since £<μ for every ξsL(X)y the Radon-
Nikodym derivative dξ/dμ exists. Whence

dμ for every ξzL(X)

is a signed measure and belongs to L(X, S), and the amount

κ,3,,

is denned. Denote it by //(-, 2, S). Then #( , 3, S) is an extension of H( , 2, S),
and is well-defined and linear over the full space L(X), because the transformation

is linear. Furthermore it is bounded. Indeed, the boundedness follows from

H E\^
Lldμ

",3,S

^ ̂4) By this reason, the domain L(-SΓ) of the variable ξ of H( ,
restricted only by S. It can be also assumed that the symbols c,

within mod μ.

, S ) is automatically
U etc. are denned
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Show that H( , 3, S) is S-stationary. For every ξeL(X)

' d(Sξ)
\dμ, 2,H(Sξ, 2, S)=H

because (d(S&/dμ)(x)=(dξ/dμ)(Sx) and £[S/| ©]=£[/ 1 @] for every measurable func-
tion /.

Finally, it is shown the uniquness of the extension. Let M(X) be Banach space
of all essentially bounded measurable functions with the norm

||/IU=ess. sup {|/(Λ?) I; xsX}.

Then M(X) is the conjugate Banach space of L(X) and therefore there exists
uniquely (within a.e. xeX) a function h(x)eM(X) such that

H(ξ, 2, S) = \h(x)dζ(x) for every ξeL(X).

By the S-stationarity of 77( , 2, S)

ξ, 2, S) =

for every ς^L(X) and hence h(x)=h(Sx) a.e. xsX, i.e. h is S-invariant. If //'(O is
another S-stationary extension of H(ξ, 2, S) (ξcL(X, S)) onto LCX"), then /Γ( ) is
uniquely expressed by S-invariant h'(x)$M(x) such as

) = h'(x)dζ(x) for every ζeL(X).

Therefore for every ξsL(X)

( x ) - - dμ(x)

=H(ξ, 3, S)
by E[dξ/dμ \ <5\dμ(x)eL(X, S),

= (h(x)dξ(x)
J

and h(x)=h'(x) a.e. ̂ e^, and //(ς, 2, $)=H'(ξ) for all ξeL(X). The proof is com-
plete, q.e.d.

The extended functional obtained in Theorem 2 will be denoted by the same
symbol H( , 2, S) and also called by entropy functional for the partition 2 and the
automorphism S, which depends only of the 2 and the S, but is independendently
determined of the choice of the S-stationary probability measure μ. Therefore the
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function h(x\ obtained in the final part of the proof Theorem 2, is dependently
determined by the finite partition 3 and the autmorphism S. Denote this function
h( ) by h( , 3, S), which is essentially bounded, non-negative and S-invariant. The
following theorem is an immediate consequence of the above fact.

THEOREM 3. There exists uniquely, within a.e., a bounded non-negative S-in-
variant measurable function A( , 3, S) such that

(12) H(ξ, 3, S)=(h(x, 3, S)dξ(x) for every ξsL(X).

The kernel function h(-, 3, S) of the entropy functional H( , 3, S) will be
called the entropy function for the partition 3 over the measurable space (X, #).
Theorem 3 implies

(13) H(p, 3, S) = U(#, 3, S)dp(x)
j

for every S-invariant probability measure p. This is a generalization of the integral
representation theorem of Parthasarathy [11].

There are several known properties of the functional //(•, 3, S) for the fields
3 and the automorphisms S, cf. Halmos [7], such that for every ξ$L+(X}

(14) ff(£,2,S)^ff(£,2,S) if 3c V S~k£
k = -<χ>

especially

(15) #(£,2,S);i#(£,2,S) if 3C2

and

(16) H(ς, 7^3, S)=H(ξ, 3, S) for automorphism T with SΊ = TS

where ξ is invariant with respect to both automorphisms S ann T, especially

(17) £Γ(f,S-12,S)=/ί(f,a,S).

The corresponding properties of the entropy function h( , 3: S) also hold in the a.e.
sense, i.e. (14)— (17) hold for h( , , •) in the place of H(>, , •)• Furthermore, for
every pair 3, S.eF(X),

(18) H(ξ, 3V2, S)^#ί£, 3, S)+#(£, 2, S)^2H(ξ, 3V2, S)

for every f€Z,+(AΓ) and

(19) h(x, 3V2, $)^h(x, 3, S)+A(#» 2, S)^2h(x, 3V2, S)

for a.e. #€^, hold.

5. Entropy of automorphisms.

As in §4, assume the denombrability of (X,%) The amount H(ξ, 3, S) or
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h(x, 3, S) is determined by three variables ξsL(X\ 2€F(Z) and automorphisms S,
or a.e. x$X, 3€F(X) and S, respectively. Putting

(20) H[ξ, S]= sup H(ξ, 3, S), , S),5

this amount depends only on ξzL+(X) and automorphism S, and will be called the
entropy of the automorphism S with respect to the measure ξ. If for a fixed S
there exists a finite partition <3*£F(X) such that

(21)

then

(22)

U S-W3 - 36,
n—— oo

H[ξ, S]=H(ξ, 3, S),

This follows immediately from (14). The message space A1 with its shift trans-
formation has always this propecty. In general, the following holds:

THEOREM 4. For fixed automorphism S and for any monotone increasing
sequence of partitions <=ί(m)€F(X):

(23)

the equality

(24)

/or

2(1)<2(2)< U
m=ι

= lim H(ξ, 3(m), S)

Proof. By Halmos ([7], p. 36), for any fixed

; t/€

U
J=-

=I(k, m, ri)+J(m, ri), say.

Since for any ε>0 and for suitable m0

0^/(m, w)^/(m, 0)<ε

the inequality

v

δ) This amount equals also to the case when the ' sup' is taken for the denombrable
partitions 3 with finite (Σξ(U) \og ξ(U); Uc<3<}.

6) This is Rokhlin's theorem [12], which was stated for denombrable partitions in the
place of 3(w)> but the proof for its case can be done by the similar way of this proof.
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(25) -- L ΣiS(U) log £(£/); Ue vVJ2 }</(*, *
# j=o

holds. Furthermore, as &— >oo, /(&, w, n)—*H(ξ, 2(w), S) and also the left side of
(25) tends to H(ξ, 2, S). Therefore

(26) H(ξ, 2, S)g#(£, 3(w), S)+e (wi^0).

Since by (15) #(?, 3(w), S) is monotone-increasing with respect to w, there exists

this limit is uniquely determined as non-negative finite or -f oo. Hence (26) implies

and (24) is obtained. q.e.d.

By a simply modified proof of Theorem 4,

COROLLARY 4.1. If <3>(m)€F(X) is a sequence of partitions such that

(27) @(l)c(S(2)c , U

@(m)=U?=ιS"A:2(w) /s /^ subfields of 36, //z^ ^^ equality (24)

Theorem 4 is applied to the integral representation of entropy of automorphism:

THEOREM 5. For any automorphism S, there exists uniquely, within a.e., an
^-invariant non-negative measurable function h[ , S] over (X, 36) such that

(28) H[ξ, S\ = [x, S\dξ(x)

for every ζςL+(X), where the equality (28) is meant by that if either side is finite
then another side is also finite and they are equal.

Proof. Taking <g(m)eF(X) given in Theorem 4, the sequence [H(ζ, 2(m), S)}
is monotone increasing and convergences to H[ξ, S], and the corresponding sequence
{h( , 2(w), S)} of the entropy functions is also monotone increasing. Since by
Theorem 3

H(ξ, 3(m), S)= AG*, 2(m), S)dξ(x), m = l, 2, -,

taking the limit function of h( , 3(m), S), say h[ , S], then by the monotone con-
vergence theorem it satisfies (28) for every ξ $L+(X) and it is the required function.

If h'( ) is an function satisfying (28) for every ξ€L+(X), then

for every ξ€L+(X). Hence

{x; h'(x)<+oo} = {x; h[x,
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(mod null set) and h'(x)=h[x, S] a.e. xsX, admitting +00, and the uniqueness of
h[x, S] is proved. q.e.d.

By this proof, it is easily proved that

COROLLARY 5.1. Let ^(m)^F(X) be monotone increasing sequence of partitions
with Um=ι3(?w)=# or more generally satisfying (27), then the sequence of functions
h( , 3(w), S) is monotone increasing and converging to the function h[ , S] a.e. xzX.

REMARK. From Theorems 4 and 5, the integral representation theorem of the
entropy functional for denombrable partition and automorphism follows in the form
of (12), in which the corresponding integrand (the entropy function) in not neces-
sarily bounded.

Now we shall describe for the functional H[ , •] and the function h[ , •] by a
known interesting result relative to the entropy of flow. A one-parameter family
{St} of automorphisms is called flow if Ss±tX=S*(StX) for every pair of real
numbers s, t and for all x$X. A flow {Si} is called measurable, if the two variable
function ψ(t, x)=StX is measurable on the product measurable space ( — oo, oo)xX.
Let P(X, S) be the set of alt probability measures which are invariant with
respect to all atomorphisms {St', — oo<£<oo} and L(X, S) be the closed linear
subspace of L(X) generated by P(X, S) (the space of all invariant bounded signed
measures with respect to {St}). It is well-known, by the fixed-point theorem of
Markoff-Tychonoff, that P(X, S) is non-empty.

The entropy functional //( ,3, S«) over L(X) is defined for 2eF(Z) and for
every St(— oo<ί<co) and the amounts of entropies H[ς, St] of the automorphisms
St are also defined for every feL+CX). Then by the theorem of Abramov [1], it
holds that

H[ξ, St] = \t \Ή[ζ, Si] (-oo</<oo)

for ξ£L+(X). This implies

h(x, St) = \ t \'h(x, Si) (-co<α<oo)

a.e.

7. Appendix.

In this appendix, it is not necessarily assumed the denombrability of the measur-
able space (X, 36). For any finite partition ^£F(X) and for a fixed automorphism
S, putting

(X, 3co) is denombrably generated measurable space on which S is an automorphism.
Putting PaCX", S) the set of all S-invariant probability measures on (X, 2L), it is
non-empty and there exists μ2€P2(X, S) which dominates P2(Z, S). Let L2(X, S)
or Lcι(X) be Banach spaces of all S-invariant or μ2 -absolutely continuous bounded
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signed measures over (X, sL), respectively. As in the space (X, 36), the entropy
functional, denote H0( , 2, S) for 2 and S, in the space (X, SL) is denned, which
is non-negative linear and S-stationary over L%(X). Then by Theorem 3, it is
immediate that.

THEOREM 6. For any partitian <~£€F(X) and automorphism S, there exists
uniquely, within μ%-a.e., an 2L -measurable function A0( ,3, S) such that it is S-
iuυariant and

HQ(ζ, 2, S) = jJAo(tf, 2, S)dζ for every ζ€l^(X).

The equalities or inequalities (14)~(19) are also holds for the entropy functional
H0( , , •) and the functions /20( , , • ) > here ζ should be taken in Lg:+(X) or L+

2VaC30
and the a.e. terms be taken as μ&- or μ2V£-a.e. terms which depend only on S and
on 2 or 2 V2 respectively.

If (X, 36) is denombrably generated, then the measure μ% over (X, sL) can be
taken as the [μ/2 J restriction of μ onto (X, sL). Let E[dς/dμ \ Q^dμ be the con-
ditional expectation of ξ$L(X) conditioned by 2L, then it coincides with [?/sL]
(=faι say) over 3L and

holds for every ξeL(X, S) by the definition of entropy, cf. (4)~(6). Therefore for
every ξsL(X, S)

,3, S)

and hence

a.e. ^€Z holds.
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