ON THE ENVELOPE OF HOLOMORPHY OF A
GENERALIZED TUBE IN C*

By Joii Kajiwara

In 1937 Stein [10] proved that the envelope of holomorphy of a tube-domain in
C* coincides with its envelope of convexity. We can find no difficulty in extending
the above Stein’s proof to the case in C». In 1938 Bochner [2] obtained the above
Stein’s Theorem quite independently in C». Later Hitotumatu [7] gave a new and
elegant proof and Bremermann [5] extended the above Stein’s Theorem in complex
Banach spaces.

The main purpose of the present paper is to extend the above Stein’s Theorem
to a generalized tube in C» The main method is based on the Levi’s problem and
the convergence theorem concerning the domain of holomorphy.

For two n-tuples x=(xi, Zs,--, xx) and y=(yi, Yz, -+, ¥») of real numbers, we
shall use the notation z=x+4iy by putting z=(z1, z2,++, z,) and z,=x;+iy, 1=j=n).
The space of n real variables xi, &»,--- and x, is denoted by R} and the space of
n complex variables zi, z.,--- and z, is denoted by C7 or simply by C=.

Let A and B be subsets of R? and Rj respectively. Then A xB is called a
generalized tube in C} where z=x+1y. A is called its real base and B is called
its imaginary base. A X R} is called simply a tube in C7.

Concerning a tube in C* we have the following theorem [10].

STEIN’'S THEOREM. The envelope of holomorphy of an open connected tube in
Cn coincides with its geometrical envelope of convexity.

Lemma 1. If an open connected generalized tubz A X {(Yi, Y2+, Yn); @;<Y;<b,
(7=1,2,---,m)} is a domain of holomorphy, then A X {(Y1, Yz, -+, Yn); @j+¢;<y; <bj+c,
(j=1,2,--,m)} is also a domain of holomorphy for any real number c,.

Proof. Since the holomorphic mapping @ defined by @(z)=(z1+ici, 22+1czy -+,
Zn-+ic,) is a bi-holomorphic mapping of the closure of the former onto that of the
latter, we have our Lemma. q.e.d.

LeMMA 2. If an open connected generalized tube T=A X {(Y1, Yz,--+, Yn); @;<Y;<b;
(j=1,2,---,m)} is not a domain of holomorphy, then for any positive integer k
(1=k=mn) and for any real number d. such that (ar+by)/2<di=br, Ti:=TnN[A
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X A{(Y1, Yoo -+, Yn)ERY: ar<yr<di}] is not a domain of holomorphy.

Proof. Suppose that 7, is a domain of holomorphy. Then from Lemma 1,
To=TN[A X {(Y1, Y2, -, Yn) €RyY; ar+bi—di<yr<bi}] is a domain of holomorphy.
o Since T: and T, are domains of holomorphy which unite themselves, that is,

T\—TinTonT.—TiNTy=¢, T=T1UT, is a domain of holomorphy from [4], [8]
or [9]. Thus we have arrived at a contradiction. q.e.d.

LemmaA 3. If an open connected generalized tube A X {(y1, Yz, -+, Yn); a;<Y;<bj
(7=1,2,---,m)} is not a domain of holomorphy, then for any positive integer k (1 =k=n)
and for arbitrary real numbers a;’ and by’ such that 0<by —aiw’ =bi—ax, A X {(y1,
Yo, Yn); 1 <Y1<by,, Qo1 <Yim1 b1, @1 <Y by Qi1 <Y1 <Oiiny ooy An<Yn<bu} s
not a domain of holomorphy.

Proof. From our assumption there exists an integer p>0 such that (by—ax)2-?
<b' —ay =(br—ax)2'-». We can prove our Lemma by induction with respect to p
making use of Lemma 1 and 2. q.e.d.

We have easily the following lemma from Lemma 3.

LemMA 4. If an open connected generalized tube A X {(yi, Yo+, Yn); @;<Y;<b,
(7=1,2,--,m)} is not a domain of holomorphy, then for arbitrary real numbers a,
and by such that 0<b/—a,/=<bj—a, (j=1,2,--,n), AX{(y:, Yz, -, Yn); @,/ <y;<b;
(7=1,2,--,m)} is not a domain of holomorphy.

LEMMA 5. If a domain A in R is not geometrically convex, then there exists
a positive number a, such that for every a=ao, A X {(y1, Y2, -+, Yn)ERY; —a<y,<a}
is not a domain of holomorphy in C?.

Proof. Suppose that our Lemma does not hold. Then there exists a sequence
{ap; p=1,2,3,--} of positive numbers satisfying the following conditions: a,<a.<---
<Lap<api1<-; ap—oo as p—oo; and Tpr=A X{(y, Yo", Yn)ERY; —ap<y:<a,} is a
domain of holomorphy for every p. Then from the convergence theorem of Behnke
and Stein [1], limp... Tp=A x Ry is a domain of holomorphy. Thus from Stein’s
Theorem we have arrived at a contradiction. q.e.d.

LemMMmA 6. If a domain A in R} is not geometrically convex, then there exists
a positive number a, such that for every a=a, T=A X {(y1, Yz, -+, Yn); —a<y;<a (J
=1,2,---,n)} is not a domain of holomorphy in C2.

Proof. For any integer p (I=p=wn) we shall put T,=A X {(y1, Y2, -, Yn) ERy;
—a<y<a, —a<ly:<a.-, —a<yp<a}. We can prove our Lemma by induction
with respect to p quite similarly to Lemma 5. q.e.d.

ProrosiTiON 1. Let A be a domain in R? and a, and b; be arbitrary real
numbers such that a;<b; for j=1,2,---,m. Then the generalized tube T=A X {(y1,
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Yo, o0, Yn); A5 <Y;<b; (j=1,2,---,m)} is a domain of holomorphy in CZ, if and only
if A is geomelrically convex.

Proof. The necessity of our Proposition follows from Lemmas 4 and 6.

If A is geometrically convex, then from Stein’s Theorem A x Ry and R x {(y,,
Yo,y Yu); @5<Y;<b; (j=1,2,---,m)} are domains of holomorphy. Therefore their
intersection T is a domain of holomorphy from [6]. q.e.d.

LemMmA 7. Let A be a domain in R} and B be a convex domain in R}. Then
the envelope of holomorphy H of T=AXxB in C} is also a generalized tube with
the imaginary base B in CJ.

Proof. Since B is a convex domain in R}, R?x B is a domain of holomorphy
from Stein’s Theorem. Then HN(R:XB) is a domain of holomorphy from [6] as
intersection of two domains of holomorphy. Since TCHN(R:xB)cH and H is
the envelope of holomorphy of 7', we have H=HN (R%? x B).

If we put ﬁy= {x; (x,y)eH} for each yeB, then we have H= {(x, v); xeﬁy, yeB}.
Since A is the real base of T, we have Ac A, for each yeB. Let K be any compact
subset of B and Ax be the open kernel of the intersection of all A, for yekK.
Obviously it holds that Ac Axc A, for each yeK.

Now we shall show that AxxR] is a domain of holomorphy. Since K is
compact in B, there exists >0 such that {¥/;|y,/—v;|<b (j=1,2,-,n)} CcB for
each yeK. At first we shall prove that Arx {y; ly;1<b/2 (7=1, 2,---, n)} is a domain
of holomorphy.

Let x° be any boundary point of Ax. For any neighbourhood U of 2° in RZ,
there exists a point &’ in U such that x’ is a boundary point of Ay. for some y'eK.
Let 9! be any point such that |y}|<8/2 (j=1,2,--. n).

Since H is a domain of holomorphy, HN[R2 X {y; |y;—y5+vi <b/2} 1= {z=x+iy;
zeA,, ly;— S+ <b/2 (7=1,2,--,m)} is a domain of holomorphy as interNsection of
two domains of holomorphy from [6]. Therefore H, = {z=x+41y; x€ Ay, v,/ =Y,
— i+, |yl <b/2 (7=1,2,---,m)} is a domain of holomorphy, because there exists a
bi-holomorphic mapping @(2)=(z1+ iy —vl), 2 +i(Y;—ys), -+, Za+8(y%—yn) of the
closure of H,, onto that of the domain of holomorphy as cited above.

Therefore there exists a holomorphic function in Hp 4 which is unbounded in
any neighbourhood of the point (2, %!). This function is holomorphic in AxX {y;
ly;1<b/2 (j=1,2,---,m)}. Since U is any neighbourhood of x° and z’ is a point in
U, there exists a holomorphic function in Ax x {y; ly;1<b/2 (7=1,2,---,m)} which is
unbounded in any neighbourhood of the point (x°, ), that is, (x°, ') has the 1irontier
property in Bochner-Martin’s sense [3]. Therefore any boundary point of Ax X {y;
|y;|<b/2} has the frontier property. Hence A x{y; lysl<b/2 (j=1,2,---,m)} is a
domain of holomorphy from [3]. Consequently, ﬁKxR; is a domain of holomorphy
from Proposition 1 and Stein’s Theorem. N

Then HN (ZIKXR{}) is a domain of holomorphy satisfying TCHQ(AKXR;')CH.
Since H is the envelope of holomorphy of 7, we have H=HcC(AxXx R}). This
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implies ﬁyzﬁx for any yeK. Since K is any compact subset of B, H is a gener-
alized tube in C?. q.e.d.

PROPOSITION 2. Let A be a domain mm R, A be its geometrical envelope of
convexity and a, and b; be real numbers such that a;<b, for j=1,2,--,n. Then
the envelope of holomorphy of AX {y; a;<y;<b; (j=1,2,--,n)} in C} is Ax {y; a,
<y;<b; (=1,2,--, m)}.

Proof. From Lemma 7 the envelope of holomorphy of AXx {y;a;<y;<b; (§
=1,2,---,n)} is a generalized tube with the imaginary base {y;a;<y;<b; (j=1,2,---,n)}
and is denoted by Ex {y; a;<y;<b; (j=1,2,--,n)}. From Proposition 1, E must
be a geometrically convex domain containing A. Conversely if E’ is a geometrically
convex domain containing A, then from Proposition 1 E’ x {y; a;<y;<b;} is a domain
of holomorphy containing A X {y; a,<y;<b; (j=1,2,---,n)}. Therefore E is the
geometrical envelope of convexity A of A. q.e.d.

_ Lemma 8. Let AxB be an open connected generalized tube in C3, and A and
B be, respectively, the geometrical envelopes of convexity of A wn R% and of B in
R}, Then any holomorphic function in A X B is analytically continued in AXB.

Proof. 1t suffices to prove that any holomorphic function in A XB is analy-
tically continued in AX B.

Let y° be any point of B. Since B is open, there exists a positive number a
such that By={y; ly;—v}|<a (j=1,2,---,n)} cB. From Proposition 2, the envelope
of holomorphy of AXB° is AxB°. Therefore any holomorphic function in A X B°
is analytically continued in AxB°. Any holomorphic function in A X B is holomor-
phic in A xB° and hence is analytically continued in Ax B. q.e.d.

ProrosiTiON 3. Let AXB be an open connected generalized tube in C}, and
A and B be, respectively, the geometrical envelopes of corivexity of A in R} and of
B wn Ry}. Then the envelope of holomorphy of AXB is AXB.

Proof. Any holomorphic function in A X B is analytically continued in AxB
from Lemma 8. From Stein’s Theorem ﬁxRﬁ and R™x B are domains of holomor-
phy. Therefore their intersection AxB=(AxR3)N(R"xB) is a domain of holomor-
phy from [6]. Hence AX B is the envelope of holomorphy of AXB. q.e.d.

Let S be any subset of C» which is not necessarily open. A holomorphic
function in some neighbourhood of S is called a holomorphic function in S.

If S and T are subsets of C» such that Sc7 and any holomorphic function in
S is analytically continued in 7, then 7 is called an analytic completion of S. We
say that S has the maximal analytic completion S, if there exists a subset S of C»
satisfying the following conditions:

(1) S is an analytic completion of S:

(2) If T is an analytic completion of S, then 7'cS.
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If the intersection of the envelopes of holomorphy of all domains containing S
is univalent in Cr, then it is the maximal analytic completion of S. Conversely,
if there exists the maximal analytic completion of S, then it coincides with the
intersection of the envelopes of holomorphy of all domains containing S.

Therefore we have the following theorem from Proposition 3.

TurorREM. The geometrical envelope of convexity of a connected generalized
tube in Cr is its maximal analytic completion.
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