ON THE RELATION BETWEEN THE DISTRIBUTIONS OF THE
QUEUE SIZE AND THE WAITING TIME

By HIDENORI MORIMURA

§1. Introduction.

In many articles on queuing theory, two measures of effectiveness, that is,
queue size and waiting time are dealt with. However, it seems that their
handlings are separated in many cases.

In this paper, we shall remark on the relation between the distribution
of queue size and that of waiting time (especially the relation of the expee-
tations). In some text books on operations research (e.g. [8]) by the rough
and intuitive argument, the relation: E(L)=AE(W) is described, where 1/4
is the mean interarrival time, E(W) is the expected waiting time and E(L)
is the mean queue size in the equilibrium state. And, the exact proof of this
relation were done by calculating the both sides of this equality separately in
some special cases. For instance, Morse [8] showed that the relation is wvalid
in the cases M/M/s, M/E./1 and E,/M/1.

We shall consider here four types of queue size in the equilibrium state
which are denoted by L, L*, @ and Q* as follows:

L: queue size (not include the customer being served) observed at any time,
L*: queue size observed at the epoch just before a customer arrives,
Q: queue size observed at the epoch just before the service of a customer
begins,
Q*: queue size observed at the epoch just after the service of a customer has
finished.
In the above if we try to describe more exactly, (for example, to say about L),
we must define L as the random variable obeying to the limit distribution of
L(t) as t — oo, where L(t) means the queue size at time ¢.

Throughout this paper we shall assume that sE(X,)> E(Y;), which
guarantees the existence of the limit distribution of L(t), where s, E(X,) and
E(Y,) mean the number of servers, the expected interarrival time and the
expected service time, respectively.

Furthermore, this assumption will guarantee the existence of the equi-
librium distribution (i. e., the limit distribution) of the other quantities men-
tioned in the above. (This facts were shown in [1] and [5].)

In the present paper we shall show that
(i) the distribution of L* will be expressed using the distribution of the

waiting time W in the equilibrium state;
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(ii) the distributions of L*, Q* and @ are identical in the single server case;

(iii) the same fact will hold in the many server case under the assumption
that the distributions of the interarrival time and service time are both
absolutely continuous;

(iv) the relation E(L*) = E(L)= E(Q)=E(Q*)=AE(W) is valid for the case
M/G/s (but the statement is somewhat rough);

(v) in the case M/G/1, E(L) and Var(L) will be expressed in some exact
forms; A

(vi) in the case of non-Poissonian arrivals, there are two examples that the
inequalities E(Q)>E(W)/E(X,) and E(Q) >E(W)/E(Y,) hold respectively;

(vii) but the inequality E(Q) <E(W)/E(Y,) will hold in a general case;

and remark on some other facts;

§2. Some properties of the function G(x).

In this section, we shall restrict ourselves in the single server case, and
use the method of the imbedded queuing process of general type due to Kawata
[8]. Then, first of all, some notations and relations needed to do the following
discussions will be introduced here.

As in [3], we shall use the following notations. Let

o<t <ta<en-

be a sequence of instants when customers successively arrive at the service
station, and set

t]—‘J_1=X'], j:l,z,...

which are interarrival times. Furthermore let Y, (7=1,2, ---) be the service
time which is required by the j-th customer who has arrived at the epoch ¢,_;.
Throughout the paper, we assume that each of {X,} and {Y,} is a sequence
of independent random variables having identical distributions, and X, and Y,
are also mutually independent. Set Z,=Y,—X,(j=1,2, ---) and

Snzizj:

9=

an=P(S1>OySZ>Oy"'rSn>O) (n;l),
ao=1,

bn=P(S,>0) (n=1).

We assume also —oo <E(Z;) <0.

Moreover, we shall denote the number of customers in the system at time
t by 7(t). It was already shown (e.g. [3]) that the distribution of (¢, —0)
converges to the limit distribution {p™} (m=0,1,2, ---) as n— o under the
condition — oo < E(Z;) <0.

Now, for the sake of expression of the limit distribution in the exact form,
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Kawata [3] introduced the following funection:

@.1) G) =31 F™(x),

n=1

where F“(x) is defined recurrently as

FO(x) = P(S; < ),
Fo(g) = ij(x —y)dFVy),
2.2) ’

Fo (@)= | “Flo—y)dF (),
0
from which we have
P(Si>0, 8230, -+, Si_i >0, S > 1) = jmdF““(y).

Using the function G(x) he gets the expression of the limit distribution as
follows:

2.3) PO=e K= exp<—~ é%)

@.9) = | (] a6w) ) AP i) —Fu@]  (mz1)
where

@.5) Fol®) =P<§")1 X, < a:)

Furthermore, recently he shows [4] that the all »-th moments of G(x) exist
v=1,2,-.-,m) if B{Zp}< oo (v=1,2,---,n+1) under some analytical con-
dition.

First of all, we shall show that G(x) multiplying by the constant ¢-* means
the disiribution function of the waiting time in the steady state for x> 0.

In fact, for some v if the service station which was vacant at the arrival
epoch of the (n—v)th customer has been not vacant continuously from the
epoch, then the waiting time of the n-th customer W, will be equal to Z,-,.1
+Zn-vi2+++++2Z,. Then, we have?

(2'6) P{Wn>x} ::épn*y(o)P(Sl >0, S2 > 0, ey Su—l >0, Sp >w> fOI‘ xzo,
v=1

where p,” means the probability that the system is empty at the time when
v-th customer arrives. Then we can easily see from the results in [3] that

1) In this formula, P(S,>0, S:>0, -+, S,-1 >0, S,>x) must be interpreted as
P(S;>x) for v=1. For convenience’ sake, the same notation will be used below.
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lim P(W, > x)

n—oo

@.7) = e ES1P(S, >0, 8:>0, -, S,.1>0, S, > )
v=1

- e-KrdG@).
On the other hand, we have

oo

" 46w =" afEPE>0 -, 540,58, <4

[S——

Il
M8

@2.8) r’ AP(S1>0, -+, Sy >0, S, <)

v

]
-

Ms

=31P(Si>0, -+, 8> 0) = San =,

v=0

Il

since the termwise integrability in above was guaranteed in [3].
Thus, we have for x>0,

(2.9) PWLx)=limP(W,<x)=e X <eK— j de(y)) =e *G(x).

n—oo

Further, since

(2.10) G(0) = j 4G@ = SIP(S>0, -+, Sy >0, S:<0)

equal to unity, the probability that a customer will find an empty system when
he has just arrived corresponds to ¢ XG(0). For x <0, the interpretation of
the physical meaning of G(x) is troublesome.

Since the steady state distribution of the number of customers in the system
at the time just before the arrival is given by (2.4), we can calculate it using
(2.9) if the steady state distribution of the waiting time was known, which will
be calculated easer than the queue size distribution in many cases.

For example, we have easily the following results based on the waiting
time distribution obtained by Pollaczek [9] as examples of Poisson arrival case
with single server. In these examples since the distributions of interarrival
time are always negative exponential with parameter 4,

{ xm-lxm—z _ lmxm-l
m—2)!  (m—=1)
0 (x=0).

2.11)  d{Fu @) —Fux)} = [ }e-“‘ de (x>0),

ExamMPLE 1 (Negative exponential service).
(2.12) PY,<z)=1-—e",
(2.13) P(W>x)=2e*»*  (£>0).
Thus,
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@.14) rz D L A R U
0 (m—1)! ’

hence

(2.15) ™ = (14",

which is the well known result.

ExaMmprLE 2 (Hyper-exponential service).

(2.16) P(Y, <2)=a;(1 —e017) 4 ax(1 — e7027), a+ax=1; by, b >0,

Be—1+2 _ Bi—1+2 _ >
2.17 P(W =41 Bz B2
@17) (W>2) < B—p ¢ tTa—m )
where 3; and B, are the roots of the following quadratic equation:
(2.18) 2%+ (by — by — A + biba(1 — 2) = 0.
Thus, since
i Attt Ba—14+24 1 Bi—1-+4 1 }
P 2Ty = gl s
Jo PO >y e = | P ek B
we have
am Bi(Be—1+4) Ba(Bi—1+4) }
2.19 m — — .
(2.19) = G OEE

§3. Relations between the various types of queue size.

In the case of many servers, the above discussion can not be applied. But,
Kiefer and Wolfowitz [5] showed the similar and general relation as follows:

@.1) PQz=m)= KP(XI b X < 2)dG*@)

where @ denotes the queue size just before the service of a customer begins,
and G*(x) is the distribution of the waiting time in the steady state.

Comparing the above relation to ours in the single server case, we can
easily see that (2.4) and (8.1) are essentially similar except a slight difference
on the observation epochs of queue size. In fact, if we denote by L* the queue
size in the equilibrium state at the epoch just before a customer arrives, we
can see that

2 P L* _ B p(m+1> fOI' m 2 1,
3.2) (L*=m)= PO+ p®  for m=0
and

P(L*z=n)= ﬁ+1p(m>
3.8) B

=t [ F@icw=P@zm for nz1,
0
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from the relations (3.2), (2.4), (2.5), (2.9) and (3.1). Of course, the equality (8.3)
will be meaningful only in the case of single server. But we shall note below
that this relation will hold in the case of Poisson arrival, many servers and
absolutely continuous service time distribution.

First of all, we shall show that the distributions of L*, @* and @ are all
identical in the many server case under the condition that the distributions of
the interarrival time and the service time are both absolutely continuous. And,
we must quote the result due to Finch [1] to do this. He showed in the s
server case, if the distributions of the interarrival time and service time are
both absolutely continuous and E(Y,) < sE(X;), then the following limit exists:

(3.4) a0t = lim P{y(t 4 6t) = 5(t) +1|5(t) =k} (k=0,1,2,---)
t—oo
and
(3.5) PP =q® =E(X.) a;-lim P{y(t) = k}.
t—o0

In the following, we shall denote as
lim P{(t,+ Wo+ Y, +0) =k} =q*,

the existence of which was known (for instance, [1]).

By the definition of @, we can see that the event @=m (m=1) will
happen if and only if the system is busy when the costomer has arrived.
Then we have

(3.6) PR=m)=q™> (mz1)

since the epochs when the service of a customer begins and that of the
previous customer finishes consist with each other in this case. And, the
event @ =0 will happen in two ways, one of which is the case to exist free
servers in the system when a customer arrives and the other is the case of no
queue behind him when the service of the customer begins. Then, we have

8.7 PQ=0)=p@4 pPp.req pl-Dp g®
(8.8) =qO4 g4 fq®

by (8.5). Obviously, P(Q*=0) and P(Q*=m) (m=1) are equal to the right
hand of (3.7) and (3.6), respectively. Thus, we can say from (3.5) that the
distributions of L*, Q* and @ are all identical in our case.

If we restrict ourselves to the single server case, then we can see that the
distributions of @, @* and L* are all identical without the condition that the
distributions of the interarrival time and the service time are both absolutely
continuous. In fact, in this case (3.7) will be reduced as

3.9 P(Q=0)=p®+q®.

But the event p(t,+W,+Y,+0)=0 is equivalent to the event 7({,..—0)=0,
then we can easily see that p®=¢. Thus we may assert that the distribu-
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tion of Q and Q* are mutually identical in the single server case. Further-
more, we know (for instance, [1]) that the limit distribution of #(¢,—0) will
equal to that of 7(t,+W.+Y,+0). Thus we have an assertion that the di-
stributions of @, Q* and L* are all identical in the single server case which is
an alternative proof of (3.3).

By the way, in the many server case with the condition that the distribu-
tion of service time is absolutely continuous, if the arrival is Poissonian, it is
easily seen that a;,=4 and E(X;)=1/4, then the three limit distributions in
(3.5)are identical. Thus, we can say that the distributions of L*, L, Q and Q*
consist with each other in the case of many servers in which the distribution
of the service time is absolutely continuous, and arrival is Poissonian.

§4. Relations between the expected waiting time and mean queue size.

Based upon (2.4) or (3.1), we can calculate the expectation of queue size
observed at some epochs. For instance, in the single server case, from (2.4),
we have

E(L*) — % mp(m+1)

m=1
4.1) :ngle—K5:<j:dG(y)> dF, (@)
(4.2) — i‘le'Kj:Fm(x) dG(@),

then, we have

(4.3) E(L*) = e-KrH(x) dG ),
0

where

H@)= 3 Fo(@)

m=1

is the expectation of the renewal number in (0, ), which converges uniformly
in any finite interval of x. Again, in the many server case, from (3.1), same
argument will imply

(4.4) EQ) = S:H(x) dG*(@).
Thus, we have the following

THEOREM 1. In a queuing system with s servers (s=1), if the arrivals
are in Poisson fashion and if E(Y;)<sE(X,), then we have

E(Q) =EW)

Jor any distridbution of the service time.

Proof. From the above discussion, we can easily see that the assertion
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E(Q)=AE(W) is equivalent to
(4.5) j:oH(w) dG*@) = 2 rx dG*@).
0
If the distribution of X, is the negative exponential with parameter A:

1—e?® f ,
4.6) Flo)= { e or x>0

for 2=<0,
it is well known that

S F,(x) =2 for x>0,
4.7) H) = ‘m2=1 )
0 for x2<0,

thus we have (4.5) directly.

COROLLARY 1. In a queuing system with s servers (s=1), if the arrivals
are in Poisson fashion and the distribution of service time is absolutely con-
tinuous, then

E@=E(L)=E(L*)=E@Q")=AEW).

Proof. The above remark in §3 will imply that E(Q)=E(L*)=E(Q*)
=E(L), then the assertion is obvious.

This theorem unify and generalize the previous results on the relation in
the case of Poisson arrivals.

By the way, Morse [8] (E:/M/1) and Kawamura [2] (E,/M/s, E,/E,./1)
showed that the relation: E(L)=AE(W) is valid. However, in our case on
E(L*) this relation is not true. To show the fact, we shall show the fol-
lowing

ExAMPLE 3. In the queuing system with single server we shall assume
that the distribution of interarrival time is Erlangian and E(Y;) <E(X;). Thus,
let the density function of X, be

(G,
4.8) Fa=lT@" T for w>0,

0 for =<0

and let {&;} be a sequence of mutually independent and identically distributed
random variables obeying to the negative exponential distribution with para-
meter 4.

Putting U, =>17_,&, we have

*.9) H@)= S P(Xi+++ -+ Xo <) = 3 P(Uu <),

since we can rewrite as X;=>"..:&, and so on. Noting
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(4.10) P(Un <) =P(Un <)

for all m <nl, (4.9) will be evaluated as

@.11) H@) g% $ P(Um<x)=%-u.x=zx.
m=1
Since the equality in (4.10) and (4.11) holds if and only if [=1, then we
can see that

(4.12) E(LY) = e‘KﬁoH(x) dG (@) < e j:’m AG() = AE(W),

if 1>1. In the other words, in the case of Erlangian input except the Poisson
input case, the relation E(L*)=AE(W) will not hold.

§5. Mean and variance of the queue size in the Poisson arrival case.

In the last section, we showed that the expected queue size at service
beginning epochs equals 4 times of mean waiting time in the case of Poisson
arrivals. Further, in this case, when the service time distribution is absolutely
continuous, it is also noted that the expected queue size at any time not neces-
sarily particular epochs is also 4 times of mean waiting time. In the single
server case with Poisson arrival, the condition on the service time will be not
necessary as was shown by Khinchin (see [10]). And in this case mean waiting
time may be found by the so-called Pollaczek-Khinchin-Kendall’s formula:

AE(Y.2)

In this connection, we shall find some concrete forms for the FE(L) and
Var(L) in Poisson arrival case.

THEOREM 2. In the case of Poisson arrivals with single server, we have
n the equilibrium state

5.1 E(L)=1EW .
6.1 B )‘2(1—11;1)’

) A% by A4b;?
(5.2)  Var(L)=2Var(W)+AE(W)= 51—y T 30—y T 40— b

where b; (1=1, 2, 3) are the i-th moments of service time which are assumed
to exist.

Proof. (5.1) is evident from the Theorem 1 and the Pollaczek-Khinchin-
Kendall’s formula. The first assertion of (5.2) will be proved in the following
theorem in the more general case. The second assertion of (5.2) is also evident
from the result by Pollaczek [9] such as

By L RbE
3(L—aby) " 41— by

Var(W) =
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THEOREM 3. In the case of Poisson arrivals with many servers,

(5.3) Var(Q) = 22 Var(W) + 2E(W).

Proof. Since Q@ denote the queue size at the service beginning epochs,
we have

E@)= Siw'p,= $n{P@zm) —P@Zn+1)

(6.4) = 2 {lln =17 +2n—11P(Qzn) —n*P(@=n+ 1)}

n=1

=2 nglnP(Q =n) —nglP(Q =n)

5.5) =2 SnP (X, 4+ X, <0} 46HE) ~EQ)
By the way, since
tn—l
-25
P{X+---+X.<2x}= jo m—1) dt
we have
SUAP{Xi+- -+ X, <w}= je v{ d s At }dt
(5 6) n=1 " dt n=1 (n 1)'

5(22t+1)dt—1—w+2x

Hence, inserting (5.6) into (5.5), we have

B@) =2 {15+ a6+ - 5@
=1lE(W?) + 2 AE(W)—E(@Q).
Thus, Theorem 1 implies that
(5.7 E(Q)=A2E(W? + AE(W).
Hence,
Var(Q) =E(Q*) — {E@Q)}* = A Var(W) + AE(W),
which is (5.3).

Furthermore, the discussions in §3 and Theorem 3 will imply the following
COROLLARY 2. In the many server case with Poisson arrival, if the
distribution of the service time is absolutely continuous, then we have
(5.8) Var(L) =2 Var(W) + AE(W).
In (5.8), we can replace L* or Q* for L.

COROLLARY 3. In the single server case with Poisson arrival, (5.8) is
valid without the additional condition in Corollary 2.



16 HIDENORI MORIMURA

§6. Some further remarks.

REMARK 1. Kiefer and Wolfowitz [5] noted the following relation without
any proof:

©.1) EW) E(W)

E(X:) EX) -

We shall remark here something on the second inequality. In §4, we
noted two examples each of which is the case of the equality and of the
strict inequality. But we shall give an example which will give the converse
inequality.?

In a single server queuing system, let the distribution of the interarrival
time X, be

—1<E@=

H&:m:%,
6.2) 1
P(X, =200 =

where h is a fixed positive number. Furthermore let the service time be
identically 8k. Then, obviously, we have
(6.3) E(X;) =15 >3h =E(Y))

which satisfies the condition of ergodicity.

In this case, since E(Q)=E(L*) we shall consider the same inequality on
E(L*). Let L,* be the queue size at the epoch just before the n-th customer
arrives, while W, be his waiting time.

Then we shall have

Wo<Y,s-1+Yus+-+Y,1=3n(k+1)

if L,*=kF, so that
(6.4) E(W)<8h[E(L*)+1].

By the way, it is evident that

1
P(L*x=1)< e
and
(6.5) E(L*) > %
Thus, we have
1 3h

* el S

(6.6) B> H(X)—3h’

from (6.3). (6.6) implies that

2) The construction of this example is due to Dr. H. Hatori. The original one by the
author was more complicated.
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o SR[E(L*)+1]
6.7) E(L*) > EX) "
Combining (6.7) and (6.4) we have
EW)

EQ) =E(L*)> W;)*‘

which is a contrary relation to (6.1).

REMARK 2. When we replace E(Y;) for E(X;), the resulting inequality
E(Q) <E(W)/E(Y,) will hold in the single server case.

Analogously to the case of the above example, we shall consider the same
inequality on E(L*) instead of E(Q) in this case too.

The event L,*=1Fk is relevant to the sample values of the random vari-
ables X;, X5, -+-, X,,.; and Yy, Yy, -+, Y,,_1_1, that is, it is independent of the
random variables Y, , -+, Y,.1 (k=1,2, .-+, n—2). Thus, noting W,=>Y, -«
+-.-+Y,.;, we can see that

(6.8) EW,)ZIE(Y, i+ +Y,) =E(L*E(Y)).
Letting n — o0, we can say
6.9) E(W)=E(L*)-E(Y;).

In (6.8) the equality sign will be deleted except a trivial case when D/D/1
with E(X,)ZE(Y;), in the other words, W,=L,*=0 for all n.

In fact, if the probability of the event W,>Y, x+---+Y,; is positive,
then the inequality in (6.8) will hold strictly. But if it is always zero it
means that the service of (n — k)-th customer always begins at the same time
when the nm-th customer arrives. This is impossible except the trivial case
mentioned above.

REMARK 3. In the example 3, we discussed under the constraint of input
distribution as Erlangian. But, we may regard the fact as a converse theorem
of Theorem 1 in the practical sense, because we know that the relation E(L)
=K (W) is valid only in Erlangian input case [2], [8], and in the case of
general input, it may be known from the results by Kendall [7] or Wishart
[11] that the relation E(L*)=AE(W) does not hold.

REMARK 4. A sufficient condition for the second inequality of (6.1) is that
for all =
x
< v
(6.10) H@x) < Xy
It is evident that the inequality will deduced from (6.10). Under the con-

dition (6.10), if the distribution of service time is strictly increasing, a converse
assertion of Theorem 1 will be proved as follows. In fact, since the distribu-

3) This fact has been suggested by Dr. H. Hatori in his communication to the author.
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tion of Y, is strictly increasing function, we can easily see that the function
F™(x) are strictly increasing for all =, so that the function G(x) is also
strictly increasing.

Now, we assume (4.5) to hold, i.e.,

6.11) r’mx —H@)]dG@) =0 for all z>0.
0
Thus, from the relations (6.10) and (6.11), we can say

Ax =H () for all z>0.

Furthermore, H(x) must be the solution of the integral equation (renewal
equation):

6.12) H(z) =F(x) + S:H(x — ) dF ().
Substituting Az for H(x) in (6.12), we have
Jo =F () + 2 rF(y) dy.
0

Since F'(x) is the continuous distribution function, it is integrable in any
finite interval (0, #). Then we can put as

(6.13) K@) = rF(y) dy, «>0.

0
Using this notation, we can rewrite the equation (4.15) as follows:
(6.14) dﬁx) +AK (z) = I

(6.14) is a simple linear differential equation, and we have directly
(6.15) Kx)=2x— %(l—e‘“), x>0,

noting K(0)=0. Hence we have
(6.16) F(r)=1—e2", x>0,

which asserts that if the relation holds, then the input is Poissonian. Though
in the case which was shown in Remark 1, (6.10) does not hold for x =2k,
at least. It is also valid that (6.10) holds in many cases. It seems that the
question ‘“Under what condition does (6.10) hold?’’ is relevant to study an
extension of Wald’s equation.

In conclusion, the author expresses his sincerest thanks to Prof. T. Kawata,
Prof. K. Kunisawa, Prof. T. Homma, Prof. T. Kawamura and Dr. H. Hatori
who have given valuable advices to him.
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Addendum in the proof. Recently, J. D. C. Little gave an excellent proof for the

relation E(L)= AE(W) under a quite loose condition (Oper. Res. 9 (1961), 383-387). A

part

of our Corollary 1 in §4 is included in his result.





