
A THEOREM OF RENEWAL TYPE

BY TATSUO KAWATA

1. Introduction.

Let

(1.1) X19 X2, X*, - -

be a sequence of independent random variables with an identical distribution. Set

(1.2) Sn = ΣXic

Moreover if Xk, k = 1, 2, , are non-negative, N(t) is defined to be the biggest
n for which Sn^tf and H(t)=EN(t), then one obtains

(1.3) #(£ + ft) -#W->~ as £->oo,

where h>Q is a constant and μ=EXl>0 to be supposed. The fact (1.3) is
now a classical renewal theorem due to Black well [1, 2] and was proved also
by Doob [4], Kesten and Runnenburg [6]. Also see Smith [8].

(1.3) is also true even if Xn is not non-negative provided that μ, h > 0 and
Xn is non-lattice. This was first proved by Chung and Pollard [3] under some
restrictions and later generally proved by Maruyama [7].

Since

H(t + h) -H(t) = ΣP(ί < Sn ̂  t + h),
n-l

(1.3) is equivalent to

(1.4) lim f j P(t < Sn ̂  t + h) = — .
t^.oon—1 IΛ,

Now in the present paper we shall consider the relation

(1.5) lim Σ anP(t <Sn£t + K) = —.
ί^oon=ι μ

It is easily seen that if

(1.6) \{man = a
n-><χ>

then (1.5) is valid. We want to generalize this relation assuming instead of
(1.6) that

(l Ό lim — Σ dfc — α.
n-><χ> Ύl k—l

In this connection we have to mention Smith's results [8] in which he
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considered the density of Sn in place of P(t < Sn ̂  t + h) and showed under
some conditions on the distributions of Xn that

(1.8) limΣαnftn(ί) = A
i-+oo n=l f*

assuming that
1 n+P

(1.9) — Σα*-> »
P A=w

as p->oo, uniformly with respect to n, where Xn is not necessarily non-
negative.

We would like to notify that when we deal with (1.5), under (1.7) instead
of (1.9) we shall find that the situation will be quite different. For instance if
(1.7) is assumed, (1.5) does not necessarily hold.

2. The theorem and a lemma.

We shall state the theorem. Let {Xn} be a sequence of independent
random variables with identical distributions which are not necessarily non-
negative.

THEOREM. Suppose that a sequence of real numbers {an} satisfies

1 n I 1

Xk has a probability density with the finite third moment and the probabi-
lity density of the sum Sn = ̂ ιXk belongs for some n to Lr for some Kr
<^ 2. Then the following relation should be valid:

CO T) (Ί

(2.2) Km Σ anP(t <Sn^

provided that

If (2.1) is replaced by

1 »(2.3) -g^α

then (2.2) does not necessarily hold.

We shall show the last result in §5 below after we shall have completed
the proof of theorem.

To prove the theorem we shall require the following lemmas which we
shall prove in the later sections.

LEMMA 1. Under the conditions of the theorem, each of

(2.4) Σ Jn\ P(t<Sn^t + h) -P(t < Sn-ι ̂  ί + A) I,
nμ>t+V ί

(2.5) Σ Jn\P(t <Sn^t + h-) -P(t < Sn-ι ̂
nμ<t->J t
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and

(2.6) _ Σ Jn\P(t <Sn^t + h) -P(t < Sn-i ^t + K)
t-Jt <nμ<t+\? t

are bounded over 0 < t < oo.

If this lemma is supposed to be proved, the theorem easily follows making
use of the theorem of Chung, Pollard and Maruyama quoted in §1. In fact,
setting

(2.7) ^ijα*=An >

we have

= Σ (nAn ~(n- ϊ)An-ι)P(t <Sn^t + h) (A0 = 0)

Sn^t+h) ~P(t < Sn + 1 ̂  t
n=l

because nAn P(t <Sn^t + h) converges to zero as n ̂  oo (since P(t
diminishes exponentially).

Hence writing P(t<Sn^t + h) = rn(ί), we have

= Σ n(An - a)(τn(t) - Tn + l(t)) + d Σ tt(rn(t) - ΓM + ι(ί))
n=l n=l

= Σ n(An - a){τn(t) - τn+1(t)} + a Σ τn(ί),
w=l n^l

the last member of which converges to ah/μ. So it suffices to show that the
first term converges to zero. We divide that into three parts as

Σ _+ _ Σ _+ Σ _-L 1 + L2 + L3.
nμ<t—Vt i—Vt<nμ<t+Vt nμ>t+\/i

Lemma shows that

L2 = _ Σ θf-r= V I rn(ί) - rn+ι(ί) I - 0(1),
t—V* <nμ<i+ \'~t \ V^ /

n\ τn(t) - τn+1(t) I= Σ

= o( Σ^V»|r«(ί)-r»+l(ί) =o(l) o(l),
\nμ<t-</t

and
1

= Σ o-~=n

which proves the theorem.
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3. Proof of (2.4), (2.5) of the lemma.

To prove the lemma we use the following elementary facts. Let φ(u) be
a characteristic function of a random variable which has a probability density
with mean 0 and the finite third moment. We then have

(3.1) ψa\u) = o(l), for k = 1, 2, 3,

(3.2) \φ(u)\^l-^^^e-°2uZ^ for \u\<ε

for some small s > 0, σ2 being the variance of the variable,

(3.3) I φ(u) \<e~c for \u\>ε and some c> 0,

(3.4) φ(u) = o(ΐ) as |%|-»oo,

and

(3.5) ψ'(u) = — σ2u + o(u) for small u.

Moreover if the density of Sn = Σϊ ^» ί̂ } being a sequence of inde-
pendent random variables with identical distributions, for some n belongs to
Lr (l<r^2) for some r, then

\φ(u)\ndu<oo[" l?<«)lBί
J -oo

for large n, <f(u) being the characteristic function of Xk. See for instance
Gnedenko and Kolmogorov [5].

Now we proceed to prove the lemma. Applying the well known inversion
formula, we can express (2.4) as

K(t) = ~ Σ Jΰ (X+ dyΓ fn(u)e-luydu-(X dyΓ fn+1(u)e~ιuydu
2jt nμ>t+<Jt Jx J -oo Ja; J -oo

(3.7) =A- Σ V
nμ>t+

where f(^) is the characteristic function of Xk — μ.

We now apply the integration by parts three times in the inner integral
which gives

J
o° 1 poo

?»(w)(l -/(«)) β-»»dtt = ̂ ^ e-'»»
-00 ί y J -CO

where we have written

£3.9) l-fW=

The integrated terms are of the form

i[(-
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which vanish because of (3.1) and (3.4). Also we used

(3.10) g™(u) = o(ΐ) fc = 0, 1, 2, 3,

(3.8) then turns out to

= — ̂ 8 n(n - ΐ)(n - 2) Γ e-tvuφn

v y j -co
3 Γ°°

+ ~^-jn(n-l) e-τyuφn-z(u)φ'(u)φ"(u}g(u)du
ι y J -co

e-τyuφn-\u}φ'"(u)g(u)du

O f co

-^-τn e-iyu<pn-l(u)(prr(u) gf(u) du
ι y j —oo

(u) du
ι> y

*=•!

say. We shall estimate each of Jk. First we shall consider JΊ. Let ε be a
positive number so small that (3.2) is true.

(3.11) Jι=

say. By (3.1), (3.2) and

g(u) = o(u) for small \ u \ ,

where <τ2 is the variance of Xk and C is a constant independent of n. Here-
after we shall use the generic notation C to express a constant independent of
n, y, t which may differ on each occurrence.

The above expression comes to

(3.13) | e / ι ι l == w , _ |S 1 c, , Λ, i u,* ==5 g .

As to J12 we see, by (3.1), (3.3) and (3.10),

\y\
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enό

taking n large enough and letting a be such that (3.6) holds with a for n. We
then obtain

. y>3

(3.14) |J

(3.13) and (3.14) give

(3.15) l / j
cnό

\y 3 M3 e-Ht- =
ew/ύ ewe

\y
I

\y\3 '
Similar estimates will be obtained for other J's except /3. As to J3 a

better estimate will be valid:

After all we have

(3.16)

(* CΎI

~ ~j ιΊΓ H i Γ 5 " 6

ewe

\y
Inserting this into (3.7) we obtain

1 Λ2+A—nμ f J n i
Ύf(ι\ ^ fΊ ^ —i / i c —nc\ I wyκ(ι) ij c Σ _\n + n e ) i \ —-

IJ ί-w/i T
^ 1~

- + C Ύ
nμ>t+Jt(nμ — (t + \

x

*cτΓt' JrJ't-

We hence complete the proof of (2.4).
We may prove (2.5) quite similarly. In fact,

= Σ

<Γ V-̂ = O / i

»(ί)-rn+ι(ί)|

ί + Λ—w/^ poo

t— nμ J —oo

i t+h

i—yij

rt+h—nμ , ewe
-dy

We here used the estimate (3.16) again. Hence

- - ._
nμ<t-*Jt

nh
-+C

ί
i-Vt
. i

nμ<t— Vt
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1 Γt-\/^/t v

= -i -
t Jo (1-

4. Proof of (2.6) of the lemma.

(2.6) can be written as in the proof of (2.4) or (2.5) as

M(t) Σ
J x—nμ — oo

<pn(u)(l-f(u))e~ιuydu

gcVί Σ Γ I ί»(«)IΊl -
i~Vt<nμ<i+Jt J ~°°

/(«)!<*«
(4 Γ\

say. The same argument as in the estimate of «7i2 in the proof of (2.4), leads
us to, with same notations,

°°
I φ(u) \adu

= ct

We further divide the integral in Λfι(ί) as

ι«κι//

the former of which is

(4.3) I φ(u) Γ 1 1 -f(u)
J \u\<ι/t

The second integral does not exceed

du = o
|«j<ι/ί

Jβ>[«(>v* JL

which in turn, by (3.2) and the fact that

is not greater than

(4.4)

i
u\

(4.3) and (4.4) give M2(t) = o(l) which with (4.2) proves (2.6) of the lemma.
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5. A negative result.

We shall show that if the condition (1.5) is replaced by the weaker one

(5-1) An = a + o

then the theorem ceases to be true.

Let Xl depend on the normal law with mean 1 and variance 1. We con-
sider the sequence

(5.2) αn = (-iyw.

If p<l, then

1 n

lim — Σ^A; = 0,
w->oo n #=ι

so that α = 0 in the theorem. We also have

anP(x <Sn^

We verify that the sequence

is non-decreasing if n<Jy2 + β2 — β and is non-increasing if n > «Jy2 + β2 — /3,
where β = p — 1/2.

Take h so small that

and to be x and N so that

(5.3) N<Jx*~+

and N is even.
Putting

we can write

x+7ι

(5.4) = {(— Uί 4- u2) -\ (- UN-\ + UN)} - uN+1 4- {(^^+2 - uN+s H

= Si — UN+I + 82.

Obviously Si > 0, S2> 0.
Now

(5.5) uN

while for n<N
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- 1)%

where n^ni^n — l. Hence

un - ttn-i ̂  - +*e-cy-n)i/2W5/2((2i} - l)(w - 1) + (y2 - n2))dy

- n) dy,

if w > # — AV5. Hence

n-l)^ Σ

1 Cx

— 1 α;p-3/2

27Γ J Λ J

Σ 6-(^-w)2/2% - n)dy
aj 2V^w>a;-^V2

x+h

.—
2V27

+ ^ ' e-(2/-z)2/2Λ;(7/ - z)dz

Hence we have

where

We similarly have omitting details, that for some small είt s2 and εs and for
an arbitrary B,

CB

e
o

h
v-

o

-ι/2 rs
^

Δπ J£ 3

Taking A, ̂  and es appropriately and also such that

}se-s2/2ds>I + c, c>0,
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we finally obtain
oo

Σa, nP(x < Sn ̂ ' ' V2*

which proves our assertion.
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