
ON THE SYSTEM OF INTEGRAL EQUATIONS OF VOLTERRA

TYPE WITH INFINITELY MANY UNKNOWN FUNCTIONS

BY TAKAO SUZUKI

The purpose of this paper is to consider the continuous solutions of an
enumerably infinite system of integral equations of Volterra type with singu-
larity; that is, the equations

J x
Σ fykfa, t)Uk(t)dt + bj(x), or equivalently,

o
Here we shall define, whenever

xU(x) = (*F(x, t, U(t))dt,
J o

that

», ί, !7(ί))ίZί.

In this paper we shall discuss the existence of continuous solutions of the
above system by an argument similar to that used by Pogorzelski in [2], and
apply the result to differential and integral equations.

In the first place, we shall state the following Property-N of normal-
determinant and the theorem on which we base our argument.

Normal-determinant (N-determinant) [3]. An infinite determinant

where djk is the Kronecker symbol, is called an normal- or an N-determinant
if S = l>}j,k\ajk\ converges. The fundamental theorem on the solution of an
infinite system of linear equations reads as follows:

Property-N: In the infinite system of linear equations

Σ(̂  + ajk)xk = bj ( j = 1, 2, ),

suppose that the determinant |(A)| is normal and distinct from zero, and that
\bj\< b (0 < 6 < oo j = 1, 2, •)• Then among all bounded sequences of numbers
(#ι, x2, •••) there exists one and only one solution given by

(j = l, 2, •••),

where \(DkJ)\ is the co-factor of dkj + akj in |(A)| for every k.
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Schauder-Theorem [5]. If, in a Banach space, a continuous operation
transforms a bounded, closed and convex set of points into its compact subset,
then there exists at least one point invariant by this operation.

§ 1. The main theorem.

THEOREM 1. Let the system (A) be given.
Hypotheses, (i) ajk(x, t) (j, k = l, 2, •••) are given by power series ex-

pansions ajk(x, t) = ̂ a,β^Qa^xatβ convergent for \x\<r, \t\<r. (ϊ) Σ*lfy*(&, ί)l
(Γ: a finite constant), (ii) Fj(x, t, Ui, uz, ) are continuous in a region

\^rf \t\^r, \Uι\^R, \u2\^R, " ,i.e., given any £>0, we can find a natural
number N(ε) and a positive number η(ε) both depending on ε but not on x, t,
uίt u2, such that

\Fj(x, t, Uί, u2, •• ) — Fj(xθ9 t0) ui, u°2, • • • ) ! < €

for all Fj, if \x — Xo\<η, \t — t*\<q, \uv — ul\<η (u = 1, 2, , N); and bj(x)
are given by power series expansions Σ£=o^w)αjn convergent for \x\<r. (iii)
There exist finite positive constants K^ and C(w) such that Σ*Σα+j8=nIα3*|
<K™, \bf*>\<C™. (iv) \(dj}c-a%)\ is normal and \(djk-a$/ri)\ (w=l,2, - ),
are distinct from zero.

Conclusion. There exists one and only one continuous solution U(x)
= (Uι(x), Uz(x), •••) of the system (A) and each element of U(x) is given by
a power series

convergent for [αj|<r*, where r* is a certain positive constant.

Proof. The existence proof proceeds as follows: Firstly, we show by an
actual construction that there exists a uniquely determined formal power series
satisfying (A). Then, we prove that this formal solution is convergent for
\x\<r*. We shall search for such a power series (*). Now the formal series
for U(x) substituted into the system (A) yields

P$»x + pVx2 + + pf } χn+1 +

= Σ
(E)

' + b^x + 6J2V + + b$»xn + ,

where J3$w) is a polynomial with respect to a$ (0 ̂  a + β < n) and p^ (0 ̂  v<ri).
For (E) to hold formally, we must have

(EO) 5(^*-

and
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These linear equations with respect to pf* form a recursive system which can
be solved uniquely for ^0), pf>, by the Property-N and the hypothesis (iv);
and an easy induction proves, by (iii), (iv) and Property-N, that there exist
constants jK"cn) such that

lί>y°|< K™ (j = 1, 2, n = 0, 1, 2, •)•

Hence the formal solution of (A) exists and is unique.
We are now to prove the continuity of the formal power -series. Put for

n ̂  v ([Γ] + 1 ̂  integer ι> > Γ),

(1) Pjn(x) = pf^ + pf^x H h i)5*I~%n~1 (j" = 1, 2, ),

so that
( o ^ 77 //yΛ p //y,\ \ ~ (A — 1 9 . . . ^
\ ώ ) U j\ιb) — IΓjn\ k) ~Γ 63 \J — J-, 6, ' )•

Changing the variables Uj(x) to z]9 we have the system of equations

(3) xzj(x) = ΓΣαjfc(α?, t)zk(t)dt + 6/n(a?) 0' = 1, 2, ),

where

», t)Pkn(t)dt + ft/a) - »P,n(ί»);

and δ^TϊCa?) is clearly continuous for |a?|^r and bjn(0) = Q. By the above as-
sumption, the equation (3) possesses a formal solution

Zj(x)~pY>xn + p$»+%n+1 -f +pζm)α;w + 0' = 1, 2, )•

When we substitute Zj(x) in (3), each term of (3), except bjn(x), has no term
whose order is lower than n + 1. Hence bjn(x) itself also enjoys the same
property. Therefore there exists a constant Bn such that \bjn(x)\^Bn\^\n^
for \x\^r .

Now we shall consider an infinite system of integral equations of infinitely
many unknown functions

(4) <pι(x), φ2(x), •

of Volterra type as follows:

(x, t)φk(t)dtJ »
*

°
= Fj(x, t, φβ), φ*(t), - - ) dt + bjn(x) ( j = 1, 2, - ).

Jo

By hypothesis (ii), the functions F/α?, ί, MI, w2, •••) are continuous at every
point (x, t, Uι, uz, ) of the region

(5) Ω: \x\^

And, moreover, by (i7), the functions F3 are uniformly bounded, i.e., there
exists a positive number M such that all the functions F3 satisfy the inequalities



28 TAKAO SUZUKI

on Ω. Let a space Π be composed of points A(x, t, ulf u2, •) where (#, t, ulf

uz, ) is an arbitrary point of Ω, and define the distance p(A, A') between
the points

( 6 ) A(x, t, uίy ^2, . . - ), A'(a/, V, < < )

of the space 77 by

where {εv} is a sequence of positive numbers such that Σy£y converges; this
sequence will be fixed once for all. It is clear that the set (5) is bounded in
the space 77. Then, under these assumptions, the results of the Pogorzelski's
paper [2] read as follows:

P~l°. The set (5) is compact in the space 77.

P-2°. Each function F3 is uniformly continuous in Ω-, that is, given ε>0,
every pair of elements, A and Af in Ω, satisfies the inequality \Fj(A)—Fj(A')\<e
if ρ(A, A')<η, where η is dependent only on j and ε.

In the study of the system (3'), we shall consider the function-space E°°
whose points are all the sequences (</>i(x), <f>2(x), ψ&(x), •••)> m symbols U(φv) or
V(φv), where ψj(x) is defined and continuous for \x\^r and \φj(x)\^R'u. Now
define the distance δ(U, V) between two points, U(φv) and V(gv), of the space
E°° by a formula

(7) δ(U, V) = -Σεvsup\φv(x)-gv(x)\.

The norm of the point U(φv) is defined by the distance between U(φv) and the
origin 0(0, 0, 0, •••):

(8) \\U\\ = δ(U, β) = Σ^supW«)|.

The definition (7) clearly satisfies all the metric-properties.

P-3°. The space E°° is complete, and linear if we define addition and scalar
multiplication in E°° as follows: When U(φv) and V(gv) belong to E°°, respectively

Sum: U+ V= {φv+gv}> Product: AU={λφv}, (λ being a real number).

P-4°. If S, in E°°, is a closed set of points U(φv) with \φv(x)\^A\x\n^,R,
then S is convex. (Here assume (n + ϊ)Bn/(n + 1 — Γ) ^ A).

Now we shall consider the solution of the system (3):

xzj(x) = ( V/α, t, «ι(ί), «2(ί), ) dt + bjn(x) (3 = 1, 2, . , oo).
Jo

We define a correspondence U(φv) e S-> C/^^v) by the formula

( 9 ) xψj(x) = Fj(x, t, Ψί(t)f φz(t), . ) dt + bjn(x) (j = 1, 2, - , oo).
J o

Then the point U'(ψv) satisfies

\ψj(x)\£ (ΓA/(n+ΐ) + Bn)\x\n ^ A\x\n

by (iO and the assumption in P-4°. To prove, by Schauder-Theorem, the
existence of a fixed point of the transformation (9) we must show that (9) is
a continuous transformation of S into S' and that the transformed set S' is
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compact. Now suppose that a sequence of points Uv(φv

ltφl, ) of S converges
in S to a point U(φίt φz, •)• Then we have

(10) d(UVί U) = Σkn sup |#; -?>n|-»0 when V-+QO.
71

If {U'v(ψv

v Φij •••)} is the sequence of points corresponding to the points {Uv}
by (9) and if U'(ψι, ψ2, •••) corresponds to its limit point Z7, we obtain, for all
positive integer (j, v),

o

By the assumption (10), all the differences φv

n — φn tend uniformly to zero in
£ when v->oo; on the other hand, since every function F3 is uniformly con-
tinuous, we can assign to a given ε>0 an index JV/ε) such that \Fj(x, t, φ\(t),
• •) — Fj(x, t, φι(t), •••)!<£ if v > Nj(ε), where Nj(ε) may depend on j. Hence
we have

(11) \Φv

ό(x) - ψj(x)\ <ε if v
Here notice that, for every j and u, \φ^(x)\^A\x\n^R. For the moment, we
assume that φv

ό(x) and Φj(x) are continuous in x, that is, Uf

v = {Ψ}(x}} and
Uf = {Ψj(x)} belong to S; then we can choose an index n0(ε) which depends on
ε only and is sufficiently large such that

00

(12) Σ εn sup \Ψv

n — ψn\^=ε for every v.
W=w0(e) + l

If we fix the index n0(ε)f then we have, by (11),

(13) "Σ *n sup|^ - φn\ ̂  As, A=*Σ f»,

for v>N(ε), where ^(ε)^maxι^^»0(θ^(e) Therefore it follows, by (12) and
(13), that

if v>N(ε); consequently d(U'v, t/Ό-^0 when v->oo, and the functional-trans-
formation defined by (9), is continuous in the set S.

It now remains to prove that Uf

v and U' both e S and that the transformed
set S' is compact. For this purpose, it suffices to verify that the components
ψj(x) of the points {φ3} of Sf are, for fixed j, equicontinuous; namely, that
for each positive number ε there exists a positive number η = η(j) such that
\x — Xo\<η implies

(14) \Ψj(ώ) — ψj(%d)\<€ uniformly on S7.

Now decompose the difference (14) into three parts such that

= -J- [*(Fj(x, t, Ψl(t), - •) - Fj(xΰ9 t,
x Jo

(15) + -J- Γ>/α0, ί, ?ι(ί), - )efc -
x Jo
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By the continuity property of the function F3, we have

\Fj(x9 t, φ,(t\

if \x — xQ\ <J?ι = J?ι(£). Hence we have easily

Ό> it

if \x — Xo\<yjι', here we shall remark that

(1°)

and

(2°) ^ )dt
1 1 \ Cχo

J- - ̂
x χo/Jo

^2M\x-x0\/\x\ if α^O.

Let Y]2(e) = η2 be defined by ΓA\2η2\
n/(n + ϊ) = ε/6 and let α?0 stay within the

interval (- 2̂, jy2). Then, by (1°),

ΓA(\x\n + \Xo\n)/(n + 1)<ε/3 if \x-x0\<fy.

On the other hand, in case XQ lies outside of (—η2, ^2), we can choose, by
(2°), a positive number ^3 — 9s(e) = min(^2/2, e^2/12M) satisfying the condition
2M\x — x0\/\x\<€/3 when |« — x0 \ < η%. Accordingly we can assign to any
positive number ε a positive number ^3 such that

if |» — XQ\ <r^. And, furthermore, since bjn(x)/x is continuous, there exists a
positive number 374 = fyU, f) such that

bjn(xo)/xo |< ε/3 if I a? - α?0 1< ^4.

Consequently we obtain a conclusion: Let η = η(j) = min^i, jy3, jyO Then \ψj(x)
—ψj(xo) \<ε if I a? — XQ \ < η, for every pair of point (x, x0) in the interval \x\^r.
Hence, for fixed j, the function ψj(x) is equicontinuous. To every point U'(ψι,
ψz, ) of the transformed set S' we shall assign a point Uff(ψι, ψz, , ψπβ, 0,
0, ) such that

(16) = Σw=^Vε+

where ε is a positive number chosen arbitrarily. The set of all the points U'/
is compact by the property (14) and Arzelά-Theorem. Hence we conclude, by
Frechet-Theorem [1], that the transformed set S' is compact. Therefore all
the condition of Schauder-Theorm are varified, and so there exists at least one
invariant point associated with (9).
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Finally, we must prove that Uj(x) = Pjn(x) + <f>j(x), where ψj(x) is an in-
variant function of (9), coincides with the formal solution. For the purpose,
it suffices to prove that the system (3) has one and only one solution ψj(x) such
that (1*) ψj(x) is continuous in the neighborhood of the origin and (2*) ψj(x)
= 0(xv). Suppose that there exist two solutions ψj(x) and <jj>/α?). Then putting
φ(t) = supj{\<f>j(t) — <pj(t)\}, φ(t) is continuous for t > 0 and satisfies an inequality

(17) tφψϊ^u^ φ(t)dt, ί>0, v>0.

Since (17) has one and only one solution φ(t) = 0 such that φ(t) is continuous
and 0^φ(t) = o(tv'1); (Cf. [4]). We must have

Therefore we conclude that the system (3) has one and only one solution ψj(x)
which is continuous in x in the neighborhood of the origin and ψj(x) = 0(xv);
thus Uj(x) = Pjn(x) + ψj(x) is clearly continuous in x (\x\^r*). Since n (^v) is
arbitrary, the expansion of Uj(x) coincides with the formal solution.

Thus the existence of continuous solution of the system (A) is completely
proved.

§2. Applications to differential and integral equations.

We shall show how this result can be applied to an infinite system of
differential and integral equations with an isolated singularity.

APPLICATION 1. Firstly we shall apply this result to the system

(a) xy'j = p ajk(x)yk + bj(x) (j = 1, 2, - - , oo), (' = d/dx),

with given initial conditions 2/χθ) = 0; here 6^(0) = 0.
It is clear that the system (a) together with τ//0) = 0 is equivalent to the

system of integral equations

(A°) xyj(x) = 5 (ajk(t) + djk)yk(t) dt + bf(x) (j = 1, 2, - - -, oo),

with 2/χθ) = 0, where

b*(χ) = (*bj(t)dt = f j 6*<n) xn.
JO w=2

It is clear that the form of (A°) is a special form of (A). Hence we can apply
the above result to the system (a). Formulating precisely, our theorem reads
as follows:

THEOREM D. We assume, for the system (a), that (i) ajk(x) are given by
power series expansions Σ^U &fkχn convergent for \x\<r; (ii) bj(x) (j = 1, 2, •)
are given by power series expansions bj(x) = ̂ ^sslbf)xn convergent for \x\<r;
(iii) there exist positive constants Γ, K^ and CCw) such that

cn); (iv)
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are continuous in a closed region Ω: \x\^r, \t\^r, \uι\^R, ; (v)
is normal and \(δjk — a^/n)\^0 (n = l, 2, •••)• Then, there exists one and
only one solution (yίf y2, •••) of the system (a), and each element y3 is given
by a power series

(**) yj = I]pWχn

w=l

convergent for |#|<r*, where r* is a certain positive constant.

Proof. The argument is essentially similar to that in the proof of the main
theorem. First of all, we observe that, by these assumptions, ajk(x) + djk and
bj*0&) are given by certain power series expansions convergent for \x\<r, and
hence_are continuous in x (|α?|^r), and that there exist positive finite constants
Γ*, K™ and C(n) such that

, and \b?™\<C™.

Next, we shall remark that the above conditions imply the uniqueness of
the formal solution as follows: The formal power series (**) for y3 substituted
into the system (A°) yields

+ pWχn+1+

=Σ ((<$> + 3y*)PJ?V2)&2 + Σ ((<$>
(E) k k

+ φ (̂  + dώpp/(n + 1)

+ (δf

where ^w) is a polynominal with respect to aj£ (Q^v<n) and p^ (Q^v< n).
For (E) to hold formally, we must have

(El) ^(δjt-(a$ + δώ/2)pp = bp/2, or equivalently,

and

(En) ξ] (̂ 4 - (αgί + ίy*)/(w + 1)) P^ = ί Jw)(α Jί5;

or equivalently,

These linear equations with respect to pf> form a recursive system, which can
be solved uniquely for pΦ, p£°, * by tne Proper ty-N and the hypothesis (v);
moreover, there exist constants ίΓ*(n)>0 such as \pf')\<K*^n\ All the con-
ditions which assure the existence of a unique solution of (A°) are verified,
and so the proof may be obtained by an argument similar to that of THEOREM 1.

REMARK. This result includes, as a special case, that of a finite system
of the same form; thus, let, in the system

(D-f ) xy$ = ajk(x)yk + bj(x) (j = 1, 2, - - , ri),

ajk(x) and &/#) be regular at the origin and let there exist at least one formal
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solution y(x) whose elements are given by power series expansions

y, = p?>x + pf>x2 + -- + p^xn + (j = 1, 2, - , ri).

Then, these y3 O' = l, 2, •••, ri) are the solutions of (D-f), convergent for \x\
<r*, where r* is a certain positive constant.

APPLICATION 2. We shall discuss the non-linear system

(B) xUj(x) = Γfj(x, t, Uι(f), Ut(t), •• )dt + bj(x) (j = l,2, - . . , oo)
Jo

by an entirely similar argument as in THEOREM 1.

THEOREM 2. Concerning the system (B) we make the following hypo-

theses. (i) The function //#, t, MI, %2» •) αwd δ/#) α^e defined and continuous
in a closed region Ω: \x\^r, \t\^r, |uι|^β, •••. (ii) /, O" = l, 2, •••) are of
analytic type, i.e., fJ = aΦ+f(1')+f&-{ ---- , where f& is the totality of the
homogeneous terms in x, t, Ui, of degree k; and let /Φ = af°x + af°t

-\-*Σιkafkuκ (Hi) There exists a constant Γ>0 such that \fj(x, t, Ui, •••)
—fj(x, t,ΰι, ) I ̂  Γ sup (\Ufc- ΰk\) in Ω. (iv) There exist finite positive constants
K, K™ and Ccw) such that

Σ
k

Σ

(v) K^ fc — a^1)! is normal and \(djk — af£/ri)\ (n = l, 2, •••)» «^β distinct from
zero.

Then, there exists a unique solution U(x) of (B) in \x\^.r*, where r*
is a positive constant, and each element of U(x) is given by a power series

(*) Uj(x) = f}pWχn (j = I, 2, . . - )
n=Q

convergent for \x\<r*.

The proof of this theorem can be carried out by an argument similar to
that of THEOREM 1. Here we shall only check the essential parts. Firstly,
by a similar calculation as in THEOREM 1, we conclude that the formal solution
of (B) exists and is unique; and that there exists a positive constant K™ such
as \pW\<K™ Next, put, for n^v ([Γ] -f 1 ̂  > Γ),

( 1 ) Pjn(x) = Pf + pVx + + pf-Vx*-1 (j = 1, 2, ),

so that

( 2 ) Uj(x) = Pjn(x) + z3 (j = 1, 2, - - •) or U(x) = Pn(x) + z.

By changing the variable Uj(x) to zJ9 we have the system of equations

( 3 ) xzj(x) = (*fj(χ, t, Pn(t) + z(t)) dt + bj(x) - xP,n(x),
Jo

or equivalently,
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ί
x

(fj(X, t, Pn(t) + Z(t))-fj(X, t, Pn(t)))dt

v, t, Pn(t))dt + bj(x) - xP3n(x)

1C, t,

{ x

0

) = fj(x, t, Pn(t))dt + 6/0?) - xPjn(x).
J O

By our assumptions, bjn(x) is obviously continuous for \x\^r and bjn(Q) = 0.
Since the equation (3), by the assumption, possesses a formal solution

Zj(x)~pγ>xn + pjn+Vχn+1 + pγθχm + (j = 1, 2, - •),

when we substitute Zj(x) into (3), each term of (3), except bjn(x), has no term
whose order is lower than n + l. Hence bjn(x) itself also enjoys the same
property. By taking into account the inequalities of the assumptions (i) and
(iv), there exists a constant Bn (>0) such that

\bjn(x)\1* Bn\x\n+ί for \x\^r.

As in the proof of THEOREM 1, we shall consider an infinite system of integral
equations of infinitely many unknown functions

(4) φάx), φ2(x\ φs(x\ - , φn(x),

of Volterra type as follows:

(3*) * xφj(x) = (°Fj(x, t, φι(t), <f>2(t), - - -) dt + bjn(x) U = 1, 2, - -),
Jo

where Fj(x, t, ulf u2t ) are the functions of infinitely many variables defined
in a closed region

By the hypothesis (i), if Pn( ) + u, Pn( ) and u belong to Ω the functions Fj(x,
t, HI, u2, ) are continuous at every point of J2; and, in view of the hypothesis
(iv), the functions Fj(x, t, ulr u2, ) are bounded in Ω. Moreover, if we define
the space 77, E°°, S, S' and the metric in 77, E°° as are defined in THEOREM 1,
it is clear that the Pogorzelski's results P-l°, P-2°, P-3° and P-4° are true
as well. To each point U(φv) € S we shall assign a point U'(ψv) e E°° whose
components are determined by the formula

(5) xψj(x) = FJ(X, t, φάt), ψ2(t\ ~ )dt +bin(x) (i = 1, 2, - •)•
Jo

Then the transformed set S7 is in S. In fact, by hypothesis (iii) and the
assumption of P-4° (i.e., (n + l)Bn/(n +1 — Γ) ^ A), by use of (3)

'/#, t, <pι(t), " )dt + bjn(x)

^ττ(l ' TA\t\ndt + Bn\x\n+ί}^A\x\Λ

9
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and, moreover, we can easily prove the continuity of φj(x); hence we have
U'(ψv) € S. The existence of a fixed point of the functional-transformation (5)
will be derived, as in THEOREM 1, by an entirely similar argument. For, the
argument based upon the linearity of Fj(xt t, uίt •••) in the proof of THEOREM 1,
will be carried out in this case by the assumption (iii) and the formula (3).
Furthermore, by the same process of methods as used in THEOREM 1, we
conclude that there exists a unique continuous solution U(x) of (B), each element
of which is given by a power series

Uj(x) = pf + p$>x + pf>x2 + + pf±xn + (j = 1, 2, - - - )

convergent for |#|<r* (r*>0).
This theorem implies

COROLLARY. Let the system

( b ) x Uj(x) = (\Fj(tί UM, U2(t), - - ) + ϋj(t)) dt (j = 1, 2, - - - )
Jo

be given. Let the hypothesis, except that pertaining to bj(x), similar to those
described in THEOREM 2 be satisfied. Then such a solution Uj(x) as is defined
in THEOREM 2 exists and is unique.

This corollary is a special case of THEOREM 2; therefore we can easily
prove, with minor changes in the proof of THEOREM 2, the existence and the
uniqueness of continuous solution of (b).

APPLICATION 3. The above corollary can be applied to an infinite system
of differential equations of Briot-Bouquet type; that is, to the equations

(b*) χy$=fj(χ, yi, y* •) U = 1, 2, - , oo),
with given initial conditions.

REMARK. In case of a finite system

CD-B) χy'j= //*, yi, 2/2, , yn) (j = 1, 2, - , n),
if we assume that //#, ylf y2, •••) are analytic with respect to x, yίf y2, •••,
yn, //O, 0, , 0) = 0 and that there exists a formal solution y(x) whose elements
yj(x) are given by power series

then the formal solutions are regular at the origin.

In conclusion, the author desires to express his hearty gratitude to Prof.
K. Yoshida and Prof. M. Hukuhara who guided him in the preparation of this
paper by many valuable suggestions and criticisms. The author is much
obliged to Prof. T. Saito for his taking care of the publication of this paper.
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