ON THE SYSTEM OF INTEGRAL EQUATIONS OF VOLTERRA
TYPE WITH INFINITELY MANY UNKNOWN FUNCTIONS

By TAKAO SUZUKI

The purpose of this paper is to consider the continuous solutions of an
enumerably infinite system of integral equations of Volterra type with singu-
larity; that is, the equations

xUj(x) = r; a(x, ) Ui®)dt + bi(x), or equivalently,
(A) 0
=§ Fia, t, Ui®), Us(t), - )dt +b,®) (G=1,2, -+, o).
0
Here we shall define, whenever
e U@) = § “Fl, ¢, U®)dt,
0
that
U©) = 1imlrF(x, t, Ut))ds.
250 & 0

In this paper we shall discuss the existence of continuous solutions of the
above system by an argument similar to that used by Pogorzelski in [2], and
apply the result to differential and integral equations.
In the first place, we shall state the following Property-N of normal-

determinant and the theorem on which we base our argument.
Normal-determinant (N-determinant) [3]. An infinite determinant

(A)=1G0m+aml (4, k=12, ---),

where d;; is the Kronecker symbol, is called an normal- or an N-determinant
if S=31 +la;| converges. The fundamental theorem on the solution of an
infinite system of linear equations reads as follows:

Property-N: In the infinite system of linear equations

;(3jk+ aprr=b; (j=1,2...),

suppose that the determinant [(A)| is normal and distinet from zero, and that
0;1<b (0<b<oo; j=1,2, ---). Then among all bounded sequences of numbers
(21, @2, ---) there exists one and only one solution given by

w;=§bkl(ij)l/l(A)l (1=1,2--),
where [(Dy;)| is the co-factor of dx, + ax, in |(A)| for every k.
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Schauder-Theorem [5]. If, in a Banach space, a continuous operation
transforms a bounded, closed and convex set of points into its compact subset,
then there exists at least one point invariant by this operation.

§1. The main theorem.

THEOREM 1. Let the system (A) be given.

Hypotheses. (i) a(x, t) (4, k=1,2,+-+) are given by power series ex-
Pansions a (%, t) =S, pz00ifat? convergent for |x|<r, |t|<r. 1) Shlau(z, t)|
<I (I': a finite constant). (@) F(x, t, Ui, Us, +++) are continuous in a region
le|=r, |t|1=7, |[m|S R, [u2|< R, -, t.e., given any >0, we can find a natural
number N(e) and a positive number y(c) both depending on & but not on x, t,
Uy, Uz, + -+ Such that

|F; (2, £, U1, Uy + =) — Fj (0, to, ui, u3, -++)|< e
for all F,, if |x—ao|<n, [t—to|<y, |Us—ul<y (v=1,2, -+, N); and b;(x)
are given by power series expansions > b a™ convergent for x| <r. (iii)
There exist finite positive constants K™ and C™ such that >Y%>la.p-nladf]
<K™, [b|<C™. (iv) [0 —aP)| is normal and |0 —af/n)| (n=1,2,--.),
are distinct from zero.

Conclusion. There exists one and only one continuous solution U(x)
= (Uy(x), Us(x), ---) of the system (A) and each element of U(x) is given by
a power series

() Uj(w)=§p§"’w" (1=12,---)
convergent for |x|<r*, where r* is a certain positive constant.

Proof. The existence proof proceeds as follows: Firstly, we show by an
actual construction that there exists a uniquely determined formal power series
satisfying (A). Then, we prove that this formal solution is convergent for
|lz] < r*. We shall search for such a power series (*). Now the formal series
for U(x) substituted into the system (A) yields

pgo)x _.I_ pgl)xz + “es + p§"') (U"+1 4.
= SaBp0n + 31 @RpP/2+ apP+ a2t + - -

(E)

+ (; afpgP/(n+1) x™t + p§(agh; peo)attt + -

A+ bPm 4 bPrE A - bR A,

where p™ is a polynomial with respect to a3f (0 =a+F<n) and pg” (0=v<n).
For (E) to hold formally, we must have
(E0) 30— af) pf> = b§>
and
(En) 10— afh/(n -+ V)P = paghs pE) + by,
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These linear equations with respect to p{» form a recursive system which can
be solved uniquely for p{®, p§, --- by the Property-N and the hypothesis (iv);
and an easy induction proves, by (iii), (iv) and Property-N, that there exist
constants K™ such that

PPI<E™ (§=1,2--+;0=0,1,2 ).

Hence the formal solution of (A) exists and is unique.
We are now to prove the continuity of the formal power series. Put for
n=v ((I'l + 1= integer v > I,

(1) Pyu(@) = p® + pPx + - - - + p*Pa"t (j=1, 2, --),
so that
(2) Uim)=Pu@)+2, (1=1,2 ).
Changing the variables U;(x) to z,, we have the system of equations
(3) zz;(x) =S 2@, Dat)dt + bynl@) (G=1,2, ),
0
where

bn(@) = 50; 030, 8)Pun(t) dt + by(x) — TP, a(@);

and b,,(x) is clearly continuous for |2|<r and b,,(0)=0. By the above as-
sumption, the equation (8) possesses a formal solution

zj(x)~p§")x" + p§n+1)wn+1 I +p§’")xm 4.0 (=12, -- .

When we substitute z;(x) in (3), each term of (3), except b;.(x), has no term
whose order is lower than 7+ 1. Hence b,,(x) itself also enjoys the same
property. Therefore there exists a constant B, such that [b,,(x)|< B,|z|"*!
for |z|=7.

Now we shall consider an infinite system of integral equations of infinitely
many unknown functions

(4) 1), @), -+, @al®), +--
of Volterra type as follows:
@) = | Slaste, et dt -+ bute)
(3) ;
=[Pt e, ), -t o) (=120,

0
By hypothesis (ii), the functions F(x, t, ui, 4z, ---) are continuous at every
point (x, ¢, w1, Us, ---) of the region
(5) 2: lw|=r, [t=r, lwlSR, |w|<R, ---.

And, moreover, by (i’), the functions F', are uniformly bounded, i.e., there
exists a positive number M such that all the functions F', satisfy the inequalities

]FJ'[éM (j=ly 2’ "')
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on 2. Let a space IT be composed of points A(x, ¢, u;, us, ---) where (, £, U,
Ug, +++) is an arbitrary point of 2, and define the distance p(A4, A’) between
the points
(6) A(wy t’ Uty Uz, ')y Al(w/, tla u{v ugy o ')
of the space IT by

P(Ar Al) = ]x - w,l +It"‘t,l +28vluv - u:l
where {¢,} is a- sequence of positive numbers such that >3,&, converges; this
sequence will be fixed once for all. It is clear that the set (5) is bounded in
the space II. Then, under these assumptions, the results of the Pogorzelski’s
paper [2] read as follows:

P-1°. The set (5) is compact in the space II.

P-2°. Each function F, is uniformly continuous in £2; that is, given &>0,
every pair of elements, A and A’ in 2, satisfies the inequality |F;(A)—F;(47)|<e
if p(A, A’)<7, where 7 is dependent only on j and e.

In the study of the system (8’), we shall consider the function-space E*
whose points are all the sequences (¢i(x), ¢2(%), @s(x), -+ +), in symbols U(g,) or
V(¢,), where ¢;(x) is defined and continuous for |x|<r and |¢;(x)|=R’y. Now
define the distance d(U, V) between two points, U(e,) and V{(g,), of the space
E*> by a formula
(7) oU, V)= 2% & suple,(@) — g,(x)].

The norm of the point U(y,) is defined by the distance between U(g,) and the
origin ©(0, 0, 0, ---):

(8) 1U=6(T, @)=§8v sup|¢y(®)|.

The definition (7) clearly satisfies all the metric-properties.

P-8°. The space E~ is complete, and linear if we define addition and scalar
multiplication in E~ as follows: When U(yp,) and V(g,) belong to E*, respectively

Sum: U+ V={¢,+9.}, Product: AU={lp,}, (4 being a real number).

P-4°. If S, in E>, is a closed set of points U(p,) with |¢.(x)|<Alx|"<R,
then S is convex. (Here assume (n+ 1)B,/(n+1—1I)= A).

Now we shall consider the solution of the system (8):

wzj(w) ZSij(w: t’ zl(t)! zZ(t)r . ')dt + bj’n(x) (j = 17 2}' ) 00).
0
We define a correspondence U(g,) € S—U’(¢,) by the formula
(9) w¢j(w)=er(x, t, @u(t), @at), - )dt +b,u(@) (1=1,2, .-+, oo).
0

Then the point U'(¢,) satisfies
;@) < (FA/(n+1) + By)|z|" < Alz|”

by (i’) and the assumption in P-4°. To prove, by Schauder-Theorem, the
existence of a fixed point of the transformation (9) we must show that (9) is
a continuous transformation of S into S’ and that the transformed set S’ is
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compact. Now suppose that a sequence of points U,(¢?, ¢3,--+) of S converges
in S to a point U(g;, ¢z -++). Then we have

(10) U, U)=>¢e,sup |¢2 —¢n|—0 when p—oo.

If {U(¢2, ¢3, -+)} is the sequence of points corresponding to the points {U,}
by (9) and if U’(¢y, ¢, ---) corresponds to its limit point U, we obtain, for all
positive integer (7, v),

GO—9,@) =5 [ Fia t, ¢i), -+ = Fiw, t, ¢ut), - -)at.

By the assumption (10), all the differences ¢’ — ¢, tend uniformly to zero in
£ when v— oo; on the other hand, since every function F', is uniformly con-
tinuous, we can assign to a given >0 an index N;(¢) such that |F(x, t, ¢i(t),
co0)—Fyx, t, ¢u(t), -+ +)|<e if v> Ny(e), where N,(¢) may depend on j. Hence
we have

(11) [¢3(x) — ¢i(@)| <e if v>Ny(e).

Here notice that, for every j and v, l¢j(®)|< A|x|”<R. For the moment, we
assume that ¢%(«) and ¢,(x) are continuous in x, that is, U, ={¢%(x)} and
U ={¢,(x)} belong to S; then we can choose an index m((¢) which depends on
¢ only and is sufficiently large such that

o

12) ~ Z(})H &, 8up [¢r — gLl < ¢ for every ».
If we fix the index 7.(¢), then we have, by (11),

no(s) )
(13) St e, suplgs — gl < As, A= Sle,

for v> N(e), where N(¢) = maxi<jcniy Nj(s). Therefore it follows, by (12) and
(13), that

DU, U =31 & suplgs — ¢l < (1+ AJe

if v>N(e); consequently 6(U’, U’)—0 when v—oco, and the functional-trans-
formation defined by (9), is continuous in the set S.

It now remains to prove that U’ and U’ both .S and that the transformed
set S/ is compact. For this purpose, it suffices to verify that the components
¢;(x) of the points {¢,} of S’ are, for fixed j, equicontinuous; namely, that
for each positive number & there exists a positive number »=7x(j) such that
| — 20| < 7 implies
(14) [@ (@) — ¢s(x0)| < ¢ uniformly on S'.

Now decompose the difference (14) into three parts such that

Gi0—9 =g [ Fw, b, 0, ) = Fiao, 1, out), -+ Nt
(15) o ([t o, - dt— [ 1, 00, - )at

+ b,a(®)/% — b;ya(20)/ %o
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By the continuity property of the function F',, we have
IFj(xy ty §01(t), o ’) - Fj(xo’ t’ ng(t), o ')l < 8/3

if | — x| <71=7%:(¢). Hence we have easily

—ﬂ]_;-j:(FJ(xy ty Sol(t)’ .. 0) - Fj(xO, t, (Pl(t), .o .))dtl < 8/3

if |& — 2o} <71; here we shall remark that
L Fon t, i), -yt — =" Fytao, 1, utt), -yt
X 0 Lo 0

= TA(l2]" + |@ol™)/(n + 1)

1°)

and
1= 1 (%
RO R CA OB
0 GJo

@) =| 2" Fiwo b, @ut), -yt (2 = 2N Fy@o, b, eut), - )dt
X P x Lo/ Jo

<2M|x — xo|/]2| if 0.

Let 7.(e)=7%, be defined by I'A|27.|"/(n+1)=¢/6 and let x, stay within the
interval (—7s, 72). Then, by (1°),

FA(lz|" + |2o|™)/(n+1) < &/3 if |2 — o] < 7.

On the other hand, in case =, lies outside of (—7, 7,), we can choose, by
(2°), a positive number s =7;(¢) = min(yz/2, ¢9./12M) satisfying the condition
2M|x — x]/|2| < &/83 when [x— x| <%s. Accordingly we can assign to any
positive number & a positive number »; such that

t%Sij(xo, t, ¢1(b), ..-)dt_wig "Fi@o, t, @u(d), -+ ) di| < /3
0 0Jo

if |x — x| <7%s. And, furthermore, since b,,(x)/« is continuous, there exists a
positive number 7, = 7(J, €) such that

[050()/2 — bjn(®0)/ 20| < &/8 if |2 — 0| < 74

Consequently we obtain a conclusion: Let 7 =7(j)=min(}, 75, 7). Then |¢;(x)
— ()| < & if |®— 20| <7, for every pair of point (x, a,) in the interval |z| <7.
Hence, for fixed j, the function ¢;(x) is equicontinuous. To every point U’(¢,,
¢n,--+) of the transformed set S’ we shall assign a point U”(¢1, &3, -+, ¢w,, O,
0,--+) such that

(16) U, Uy = _%Hen sup|¢n| < &

where ¢ is a positive number chosen arbitrarily. The set of all the points U”
is compact by the property (14) and Arzela-Theorem. Hence we conclude, by
Fréchet-Theorem [17, that the transformed set S’ is compact. Therefore all
the condition of Schauder-Theorm are varified, and so there exists at least one
invariant point associated with (9).
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Finally, we must prove that U,(x)= P,,(x)+ ¢;(x), where ¢;(x) is an in-
variant function of (9), coincides with the formal solution. For the purpose,
it suffices to prove that the system (3) has one and only one solution ¢;(z) such
that (1*) ¢,(«) is continuous in the neighborhood of the origin and (2*) ¢,(x)
=O(x*). Suppose that there exist two solutions ¢;(z) and ¢;(x). Then putting
&(t) = sup;{|e;t) — ¢;(®)|}, #(¢) is continuous for ¢ >0 and satisfies an inequality

an th(t)guStq&(t)dt, £>0, v>0.

Since (17) has one and only one solution ¢(t) =0 such that ¢(¢) is continuous
and 0= ¢(t)=o(t*"1); (Cf. [4]). We must have
pimy=g@) (1=1,2,---).

Therefore we conclude that the system (3) has one and only one solution ¢;(x)
which is continuous in « in the neighborhood of the origin and ¢;(x)= O(z");
thus Uj;(x) = P,.(x) + ¢;(x) is clearly continuous in z (|z|<7*). Since n (=v) is
arbitrary, the expansion of Uj,(x) coincides with the formal solution.

Thus the existence of continuous solution of the system (A) is completely
proved.

§2. Applications to differential and integral equations.

We shall show how this result can be applied to an infinite system of
differential and integral equations with an isolated singularity.

APPLICATION 1. Firstly we shall apply this result to the system
(a) xy; = ;a’ﬂc(x)yk + b](x) (j = ly 27 Sty OO), (/ = d/dx)y

with given initial conditions ¥,(0) =0; here b,(0) = 0.
It is clear that the system (a) together with y,(0)=0 is equivalent to the
system of integral equations

(A°) xy () = f; (@) + 0)ya®)dt + 0¥ (@) (7=1,2 «--, o),
with y;(0) =0, where
b¥(z) =S’bj(t) dt =S1bF™ g,
0 n=32

It is clear that the form of (A°) is a special form of (A). Hence we can apply
the above result to the system (a). Formulating precisely, our theorem reads
as follows:

THEOREM D. We assume, for the system (a), that (i) a;x(x) are given by
power series expansions 15, aipx™ convergent for |x|<r; (i) b;(x) (§=1,2,--+)
are given by power series expansions bi(x) =7 b{Mx" convergent for |x|<r;
(iii) there exist positive constants I', K™ and C such that >Yla(x)| <,
Eklag]:)l <K™ (’I?/ =0,1,2, .- ')! |b§")l <C<n); (IV) Ek(ajk(x) + 6.71:)“76 (.7 = 19 2, . ')
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are continuous in a closed region 2: |x|<7r, [t|=7, |Wi|SR,--; (v) |@p—alP)|
i8 mormal and |0 —a§P/n)|#0 (n=1,2, ---). Then, there exists ome and
only one solution (Y1, Ys, --+) of the system (a), and each element y, is given
by a power series

(%) v, = S1pfa”
convergent for |x|<r*, where r* is a certain positive constant.

Proof. The argument is essentially similar to that in the proof of the main
theorem. First of all, we observe that, by these assumptions, a;i(x)+ d;; and
bf(x) are given by certain power series expansions convergent for |#|<7, and

hence are continuous in z (Jz|=7), and that there exist positive finite constants
I'*, K™ and C™ gsuch that

kzlaﬂc(m) + 0| <I%, Zk”a%) + 0] <K(n)’ and lb;(-(n)|< o™,
Next, we shall remark that the above conditions imply the uniqueness of

the formal solution as follows: The formal power series (xx) for y, substituted
into the system (A°) yields

p§1)x2 + p§2)x3 44 pgﬂ)wn+1+ tee

=310 +0,:0p /2" + (@ + 3,)pP /3 + aP o /3 4 -
+ @R + 8w/ (n + 1)+ paf); pe)amt 4o
+ (60/2)a? + (bP/3)at + - - - + (B/(n + D)™+ - -+,

where p{™ is a polynominal with respect to af> (0=v<n) and pg’ 0=v<mn).
For (E) to hold formally, we must have

(ED) 310 — @R +0;0/2)pP =b/2, or equivalently, 31(3;— asP)pP=b5

(E)

and
(En) 3105 — (af + )/ (0 + 1) pf? =p(af); p°) + 07/ (n+1),
or equivalently,

10— af/myp> = (n+ Dpas; pE)/n+b/n.
These linear equations with respect to p{™ form a recursive system, which can
be solved uniquely for p$», p{, --- by the Property-N and the hypothesis (v);
moreover, there exist constants K*™ >0 such as [p{”|<K*™. All the con-

ditions which assure the existence of a unique solution of (A°) are verified,
and so the proof may be obtained by an argument similar to that of THEOREM 1.

REMARK. This result includes, as a special case, that of a finite system
of the same form; thus, let, in the system

(D_f) xy; =I§laﬂc(x)yk + bj(w) (j = 17 2’ ct n);

a;(x) and b;(x) be regular at the origin and let there exist at least one formal
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solution y(x) whose elements are given by power series expansions
y].ngl)x_l_pg?)xz_,_. ..+p§”)x”+. e (4=1,2, -+, n).

Then, these y, (=1, 2, ---, n) are the solutions of (D-f), convergent for ||
< r* where r* is a certain positive constant.

APPLICATION 2. We shall discuss the non-linear system
(B) xUj(x) =S fj(wy ty Ul(t)y U2 (t)y . ')dt + b,(ac) (j = 17 27 ] Oo)
0

by an entirely similar argument as in THEOREM 1.

THEOREM 2. Concerning the system (B) we make the following hypo-
theses. (i) The function fi(x, t, ui, us,--+) and b;(x) are defined and continuous
in a closed region 2: |x|<r, |t|<7r, lM|=R,---. () f, (4=1,2--) are of
analytic type, i.e., f,=a® +fP+fP+---, where f* is the totality of the
homogeneous terms in x, t, ui, --- of degree k; and let f¥=ax -+ ait
+>afug. (ii) There ewists a constant I'>0 such that |fy(,t, u, -++)
— fi(@s &y Uy - ) | < Tsup ((ur—ui]) in 2. (iv) There exist finite positive constants
K, K™ and C™ such that

|a§0)| <K’ E 2 ”Iaglg...rl <K(n>’ [bg”)l <C(n).

% atptotr
(V) 10— al)| is mormal and |0 —a%t/n)| (n=1, 2, ---), are distinct from
zero.

Then, there exists a unique solution U(x) of (B) in |x| =r*, where r*
18 a positive constant, and each element of U(x) is given by a power series

(+) U@ =31pa" (1=1,2 )
convergent for |x|<r*.

The proof of this theorem can be carried out by an argument similar to
that of THEOREM 1. Here we shall only check the essential parts. Firstly,
by a similar calculation as in THEOREM 1, we conclude that the formal solution
of (B) exists and is unique; and that there exists a positive constant K™ such
as [p{|< K™. Next, put, for n=v ((I']+12v> 1),

( 1 ) P]n(x) = p§0) + pgl)w +eee p§"_l)xn_1 (j = 11 2y . ')7
so that
(2) Uj@)=Pu@®)+2, (1=1,2 --+) or Ulx)= Pu(x) + 2.

By changing the variable U;(x) to z,, we have the system of equations
(3) w2,() = f Fi(@, £, Polt) +2(8)) dt + by() — 2 Pyu(@),
0

or equivalently,
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e2(@)= [ (Fla t, Put) + 2(0) ~ (o, t, Pao))dt
+ s:fj(x, t, Pu(t))dt + b,(x) — 2P,u(®)
= S:F](x, t, 21(t), z2(t), -+ ) dt + byn(2),

bya(a) = [[7:ot, Puo)de +be) = 2P,

By our assumptions, b,,(x) is obviously continuous for |¢| <7 and b,,(0)=0.
Since the equation (8), by the assumption, possesses a formal solution
zi(@)~p§a” + p§" Px + piPat +--- (§=1,2, --),
when we substitute 2;(x) into (8), each term of (3), except b,.(x), has no term
whose order is lower than »+1. Hence b,,(x) itself also enjoys the same
property. By taking into account the inequalities of the assumptions (i) and
(iv), there exists a constant B, (>0) such that
[bjn(@)| < Balw|™** for |z| < 7.

As in the proof of THEOREM 1, we shall consider an infinite system of integral
equations of infinitely many unknown functions

(4) Sol(w)r 902((”), 903(50)7 M) ¢"(w)’ et
of Volterra type as follows:

(3% " wey(@)= g:F 1@, ¢, @), @e(d), -+ )dt +bm(x) (=12 --+),

where F,(z, t, ui, us, -++) are the functions of infinitely many variables defined
in a closed region

£2: lwlér’ |tl§7', lu1|§R9""

By the hypothesis (i), if P.(-)+u, P,(-) and % belong to 2 the functions F;(x,
t, wi, Us, --+) are continuous at every point of £2; and, in view of the hypothesis
(iv), the functions F(x, t, w, us,---) are bounded in £. Moreover, if we define
the space I, E~, S, S’ and the metric in I, E~ as are defined in THEOREM 1,
it is clear that the Pogorzelski’s results P-1°, P-2°, P-3° and P-4° are true
as well. To each point U(p,) €S we shall assign a point U’(¢,) € E* whose
components are determined by the formula

(5) w¢j(w)=§:Fj(x’ ¢ @it), ¢a(t), - )dt +bia(®) (4=1,2, ---).

Then the transformed set S’ is in S. In fact, by hypothesis (iii) and the
assumption of P-4° (i.e., 4+ 1)B,/(n+1—1I")< A), by use of (3)

@S|z ([ i b o, dt+0.09)

IE3
< T:H(j T AltImdt + Bn|x|"“)§ Alzl”,
0



INTEGRAL EQUATIONS OF VOLTERRA TYPE 35

and, moreover, we can easily prove the continuity of ¢;(x); hence we have
U/(p,) € S. The existence of a fixed point of the functional-transformation (5)
will be derived, as in THEOREM 1, by an entirely similar argument. For, the
argument based upon the linearity of F,(z, t, i, -- ) in the proof of THEOREM 1,
will be carried out in this case by the assumption (iii) and the formula (3).
Furthermore, by the same process of methods as used in THEOREM 1, we
conclude that there exists a unique continuous solution U(x) of (B), each element
of which is given by a power series

Uj(x) = p® + p{Px + pPa® + - - -+ pfPa™ +--- (§=1,2,--+)

convergent for |x|<r* (r*>0).
This theorem implies

COROLLARY. Let the system
(b) 2 Uj(x) = r(F](t, Uit), Uat), )+ Use)dt (G=1,2 -+
0

be given. Let the hypothesis, except that pertaining to b;(x), stmilar to those
described im THEOREM 2 be satisfied. Then such a solution Ui(x) as ts defined
im THEOREM 2 exists and is unique.

This corollary is a special case of THEOREM 2; therefore we can easily
prove, with minor changes in the proof of THEOREM 2, the existence and the
uniqueness of continuous solution of (b).

APPLICATION 8. The above corollary can be applied to an infinite system
of differential equations of Briot-Bouquet type; that is, to the equations

(b*) wy;:fj(wy Y1, Yz, ') (j = 17 2; ) OO),
with given initial conditions.

REMARK. In case of a finite system
(D—B) wy‘;:f](wr Y1, Yo, ’!/n) (j: 17 27 ey n)v

if we assume that fi(x, yi, ¥s, ---) are analytic with respect to z, v, ¥, -+ -,
Yn, [50, 0, --+, 0)=0 and that there exists a formal solution %(x) whose elements
y,(x) are given by power series

yi@)= 3 pa",
then the formal solutions are regular at the origin.
In conclusion, the author desires to express his hearty gratitude to Prof.
K. Yoshida and Prof. M. Hukuhara who guided him in the preparation of this

paper by many valuable suggestions and ecriticisms. The author is much
obliged to Prof. T. Saito for his taking care of the publication of this paper.



36

f1]
£z2]
(3]
[4]
(5]
[6]

TAKAO SUZUKI

REFERENCES

FRECHET, M., Quelques propriétés des ensembles abstraits. Fund. Math. 12
(1928), 289-310.

PoGorzELSKI, W., Sur le systéme d’équations intégrales & une infinité de
fonetions inconnues. Ann. Soc. Math. Polon. 2 (1955), 106-117.
Riesz, F., Les systémes d’équations lindaires & une infinité d’inconnues. Paris,
1952, pp. 24-29.
3
SATG, T., Sur ’équation intégrale wu(x):f(x)+j Kz, t, u)dt. Journ. Math.
0
Soe. Japan 5 (1958), 145-153.

SCHAUDER, J., Der Fixpunktsatz in Funktionalrdumen. Studia Math. 2 (1930),
171-180.

TAKESADA, T., On the singular point of integral equations of Volterra type.
Journ. Math. Soc. Japan 7 (1955), 123-136.

DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES,
IBARAKI UNIVERSITY.





