
A NOTE ON THE DIRECT PRODUCT OF

OPERATOR ALGEBRAS

BY MASAMICHI TAKESAKI

In [10], [11] and [2], Turumaru and Misonou have introduced the notion
of the direct product of C*-algebras and that of TF*-algebras, respectively.
They are defined as follows.

Let MI and M2 be C*-algebras on Hubert spaces Hi and H2 respectively.
Then the C*-direct porduct of Ml and M2 is the uniform closures of the al-
gebraical direct product MιQM2 on the direct product Hubert space Hi®H2

and denoted by Mi®aM2 in [9]. If MI and M2 are ΫP*-algebras on Hubert
spaces Hi and Ή2, their TF*-direct product is the weak closure of MιQM2 on
Hί(ξ<)H2 and denoted by Mι®M2 in [2]. These two notions generally do not
coincide each other. Precisely speaking, it can be shown that if M\ and M2

are W*-algebras whose C*-direct product Mι§)αM2 coincides with the W*-
direct product Mί0M2f then either MI or M2 is finite dimensional matrix
algebra^. In the following we shall prove this result under slightly general
conditions.

In the C*-direct product M1®aM2, the cross-norm a of £j-i α*®^ is

given in [10] as follows

where ψ and ψ run over all states of MI and M2 respectively and Σ7=ι
runs over all non-zero elements of MίQM2

2\ On the other hand, Schatten
[4] defined the cross-norm λ of the direct product of Banach spaces E and F
as follows

ι<^

In particular, when E and F are C*-algebras MI and M2, we have generally
λ-^a. The necessary and sufficient condition that #-norm coincides with λ-
norm is that either MI or M2 is commutative (cf. [5]).

Now we state our main theorem.
A

THEOREM. If Mi and M2 are C* -algebras whose C* -direct product M]_®aM2
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1) The author expresses his hearty thanks for Prof. M. Nakamura who has sug-

gested this result to him.

2) In the following, we write always | |Σ)Γ=ι^i ( S)2/il l in stead of α(ΣΓ=ι
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is an AW*-algebra, then both MI and M2 are AW*-algebras and either Ml

or M2 satisfies the finite chain condition, i.e. one of them is finite dimen-
sional matrix algebra over the complex number field.

Proof. For an arbitrary state ψ0 of M2, put the mapping 6ΦQ from M1QM2

to MI such as 0#0(Σ?-ι Xί®yύ = ΣΓ-i <Vi, Ψo>%τ for every Σ?-ι»i® 2/«
Then we have

= sup{|ΣΓ-ι<2/ί,

<»t, ψ><yt,

so that # 0̂ is uniformly continuous on MιQM2. Hence ΘΦQ is extended to the

mapping from Mι®«M2 to MI. Furthermore, if / is the unit of Mι®aM2,
then <ffφQ(I), ψ> = <I, φ®Ψo>=l for every state ψ of Mlf for φ®ψQ is a

state of Mι(x)αM2. Hence the state space of MI is <r(Mι*, Mι)-compact, so that
M! has the unit which coincides with UΦQ(I) by [5; Theorem 1], Similarly M2

has a unit. Thus, identifying MI and M!®/, MI is considered to be a sub-

algebra of Mι®«M2 and ΘΦQ an expectation from Mι®αM2 to M! in the sense
of [3] (projection of norm one in the sense of [8]). Therefore MI is an AW*-
algebra by [8; Theorem 5]. Similarly M2 is also an ATΓ*-algebra. This com-
pletes the first part of our demonstrations.

Next we assume that both MI and M2 do not satisfy the finite chain con-
dition, i.e. there exist infinite families {en} and {fn} of orthogonal projections
in ML and M2 respectively. Let AI and A2 be A T7*-subalgebras of MI and M2

generated by {en} and {fn}, there exist expectations #ι and θz from MI and
M2 onto AI and A2 respectively by [1; Theorem 2] and [8; Theorem 1]. As-
suming the following two lemmas, we shall meet a contradiction.

LEMMA 1. There exists an expectation θ from Mι(g)αM2 onto Aι@aA2

such that θ(x ®y) = #1(0?) ® θz(y).

LEMMA 2. Aι@aA2 is not AW*-algebra.

By Lemma 1 and [8; Theorem 5] ^.ι®«^l2 is an ATF*-algebra, but this is
impossible by Lemma 2. Therefore either MI or M2 satisfies finite chain con-
dition. This finishes the proof of the theorem.

Now we shall prove the lemmas.

Proof of Lemma 1. Put 0(Σ?-ι »i ® Ifc) = Σ?-ι Λ(»<) ® 02(yt) for Σ<-ι *< ® yt
A.

^MiQMz. By [7; Proposition 2] the cross-norm a on ^4ι®«^42 coincides with
-ί-norm. Hence we get

II - II Σ?-χ WaΌ ® Wtf 0 II =
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for every Σ?-ι ^<® #* e M±QM2. That is, 0 is uniformly continuous and of norm
one. Therefore β is extended to the projection of norm one from M±®aM2

onto Aί®aA2 such as Θ(x®y) = θ(x)®θ2(y}. By [8; Theorem 1] θ is an expec-
tation from Mι®aM2 onto Aι®aA2. This completes the proof.

REMARK. If either AI or Az is commutative, then general bounded linear
mappings θi from Mt to A-, (ΐ = l, 2) have common extension # from Mι®αM2

to A1@aA2 such as Θ(x®y) = θl(x)®θ2(y) with the bound || #ι || II #2 I I by the
above arguments. Moreover in the case of Mi and Aτ to be W*-algebras
(i — 1, 2) and 0$ to be a- weakly continuous, considering their conjugate spaces
and transposed mappings, the above mapping 6 becomes <τ-weakly continuous
mapping from TF*-product M^®M2 to

Recently, J. Tomiyama has proved Lemma 2 without the assumption of
commutativity for AI or A2.

Proof of Lemma 2. The spectrum space of AI is the Cech's compactifica-

tion of the set of all integers and by Ω. By the argument in [7; Proposition
2] Aί@aA2 is the algebra of all A2- valued continuous functions on Ω, i.e.

Aι®aA2 = CAt(Ω). Put 2>w = Σ?=ιβi®Λ» then {pn} is a family of monotone
increasing sequence of projections in Aι®aA2. If Aι®aA2 is an A T7*-algebra,

then {pn} has the least upper bound projection p in A^®aA2. Considering
the function-representations of pn and p in CAZ(Ω) as

P» = {/ι,/2, •••,/», 0,0, -..}

and

p = {alf a2, •• , αn, •••},

the equality p — l.u.b. pTO implies an=fn, n=l, 2, •••. Hence the bounded
function {/i, /2, •• ,/w, •••} on the space of integers is necessarily extended
to the whole space Ω preserving its continuity. That is, for any ε > 0 and
t^Ω, there exists a neighborhood U of t such that || p(tι) — p(t2) \\ < ε for every
pair ti, t2^ U. But this is impossible because, choosing an ideal point of com-
pactification as t and ε = 1/2, every neighborhood U of t contains two distinct
integers n^ and n2, so that || p(nύ — p(n2) || = ||Λι-/n2ll> ε. Therefore {pn}
has not the least upper bound in Aί®aA2, that is, Aι®aA2 is not an AW*-
algebra. This completes the proof.

Our theorem, in particular, induces the following Wada's Theorem [13] as

COROLLARY. // the cartesian product space of two locally compact
spaces Ω± and Ω2 is a stonian space, then Ω± and Ω2 are both stonian spaces
and either ΩI or Ωz is a finite set.
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Proof. Assuming MI and M2 in our theorem to be commutative, one can

easily see that the conclusion of this Corollary is nothing but the change

of the statement in our theorem by the terminology of those spectrum spaces

of C*-algebras MI and M2.
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