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§ 1. Introduction.

It is well known that by means of an extremal method we can con-
struct a mapping function which maps conformally a multiply-connected
planar domain of finite connectivity whose two or more boundary components
are continua, onto an annulus cut along concentric circular slits (cf. [3], [5]).

In this paper we concern ourselves with a conformal mapping of a
multiply-connected planar domain of finite connectivity whose each bound-
ary component is a continuum, onto a covering surface of annular type
cut along concentric circular slits (cf. §2). This mapping may be regarded
as an extension of the above-mentioned one. If a finitely-sheeted covering
surface separating 0 from oo (cf. §2) is conformally equivalent to a covering
surface of annular type cut along concentric circular slits centred at the
origin in such a manner that rotation numbers about the origin of correspond-
ing boundary components remain invariant by the mapping, the logarithmic
area of the former is not smaller than that of the latter, and further they
are equal if and only if the former is obtained from the latter by a dilata-
tion and a rotation about the origin of the basic plane (Theorem 1 in §3).
Based on this fact, we obtain a procedure of constructing the mapping
function by an extremal method: There exists an analytic function which
maps a multiply-connected domain of finite connectivity whose each boundary
component is a continuum, onto a covering surface of annular type cut along
concentric circular slits. If we indicate a rotation number about the origin
of the image of every boundary component of the original domain, the
mapping function is determined uniquely except an entire linear transforma-
tion on the basic plane of the image (Theorem 2 in §3).

It is well known that an ΛΓ-ply-connected domain whose each boundary
component is a continuum can be mapped conformally onto an ΛΓ-sheeted
disk (cf. [1], [2], [4]). However, according to the above reasoning, a 2N-
ply-connected domain whose each boundary component is a continuum, can
not necessarily be mapped onto an ΛΓ-sheeted annulus. In §4 we shall con-
sider a condition for the possibility of such a mapping.
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The argument in this paper may be applied to the case of finite Riemann
surfaces. We will concern ourselves with this case subsequently.

2. Preliminaries.

Let F be a finitely-sheeted covering surface laid on the w-plane whose
boundary Γ consists of N continua Γ 3 (j = 1, , N). We further suppose that

two or more among Γj consist of closed curves separating two points α' and

α" each other on the w-plane and there exist no points of F on a' or a".
Then we call F a finitely -sheeted covering surface separating a/ and a".

Let F be such a covering surface and /! O" = l, •••, N) be simple analy-

tic closed curves on F homotop to ΓJ9 respectively. Then we define the
rotation number of Γ 3 about the point af by

(1) -^-f darg(s-α') = »>, (j= 1, •• , N),

the integration path being always taken in the positive sense with respect
to F. The value on the left-hand side of (1) does not depend on a particular
choice of a path Γj. Namely if Γy is another simple analytic closed curve
homotop Γj, we have

I f I f
-- d arg (z - α7) = -- d arg (z - α') = *,.
*π Jrj *π JΓj

Especially if Γ3 is itself simple and analytic, we have

-— d arg (z — a') - d arg (z — α') = v,.
*π JΓj JΓj

The rotation number about the point af of the sum of some boundary
components is defined by the sum of their rotation numbers of each boundary
component about a'.

Let G be a finitely-sheeted covering surface separating a' and oo whose
each boundary component Λ3 (j = l, ,N) has as the projection onto the
basic plane a concentric circle or a concentric circular slit centred at a'.
Then we call G a covering surface of annular type cut along concentric
circular slits centred at a'.Ό

Let F be a finitely-sheeted covering surface separating 0 and oo, then
we call

I(F) = Dr(]g w(p)) = j [ d Ig I w(p) I d arg w(p) = j [ ̂

the logarithmic area of F, where w(p) = u(p) + iu(p) is a projection map of
F onto the basic w-plane.

1) It is permitted that there is no concentric circular slit.
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§3. Theorems.

We begin with a fundamental inequality that exposes an extremality for
a covering surface of annular type cut along concentric circular slits.

THEOREM 1. Let F be a finitely-sheeted covering surface separating 0
and oo, and G a covering surface of annular type cut along concentric
circular slits centred at the origin. If F is conformally equivalent to G
in such a manner that the rotation numbers about the origin of the cor-
responding boundary components are equal, then there holds an inequality

I(G) £ I(F).

Here the equality sign appears if and only if F is obtained from G by a
dilatation and a rotation about the origin of the basic plane.

Proof. Let z-plane and w-plane be basic planes of F and G, respectively,
and z = z(p) and w = w(q) the projection maps of F and G onto z-plane and
w-plane, respectively. Further let q — ¥(p) be any conformal mapping of F
onto G satisfying the condition stated in the theorem. Let

Z = Z(p) = Ig z(p), W = W(q) = Ig w(q),

X= X(p) = ftZ(p)9 U = U(q) =

Since G is a covering surface of annular type cut along concentric circular
slits centred at the origin, U takes a constant value c3 (j = l, ,N) on
each boundary component Λ3 (j = 1, , N) of G as the boundary value. Let
&j Jf=ι be constructed from the set {^}f=ι by taking the members without
repetition and {sm}m=ι a monotone decreasing sequence consisting of positive
numbers which converges to zero. Let €ι be chosen sufficiently small such
that

Let G™ be a subset of G which is obtained by rejecting all portions of G
lying on

Cjv-em^\w\£cJv + εm (v = 1, , Nf),

and ~AT (or +Λ™) the whole of boundary components of the set Gm lying on

\w\=cJv — €m (resp. | w = cJv + εm) (v = 1, - , AΓ0.2)

Gm (m = l, 2, •••) consists of a finite number of subdomains of G and each
±ΛT (y = l, •••, N') consists of a finite number of closed curves in G whose
projections onto the w-plane lie on the circle | w \ = cJv ± em. It is obvious
that

2) Here either ~Λf or +Λ™ may be vacuous for some v.
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and
lim /(Gm) = /(G).
n->oo

Next, let Fm be the image-set of Gm by the inverse mapping Ψ'1 and
±Γ? the image-curves of *Λ™ (ι> = 1, , A/7). Then we have

and

lim
»-> 00

Further */"? consists of a finite number of analytic closed curves and its
rotation number about the origin is equal to that of *A™. This is verified
as follows. The boundary of portions ~GΓ of G on | w \ < cjv — εm consists
of ~Λ™ and the boundary components Λkί, •••, Λkv of G on \w\<cjv — εm.
Obviously the rotation number of Λkl H ----- \-Akv + ~A™ about the origin is
equal to zero. Thus the rotation number about the origin of the image-curve
Γ f c l H ----- I-/X+-/7 of Akl + >Λkv + -AT by Ψ"1 is equal to zero too, since

the function Ψ'1 attains neither 0 nor oo on ~GΓ. On the other hand, by
the assumption of the theorem, the rotation number of Ak^-\ ----- \- Akv about
the origin is equal to that of /\ H ----- \-Γkv. Therefore the rotation number
of ~Λ™ about the origin is equal to that of ~/7. We can also verify the
same fact for +Λ™ and +/T by considering the portions +G? of G on \w\>cJv

+ εm. Thus let

then we have

Γ 9 λ , f dXoψ-i C QU
1 ds= \ -as— I

(2) Γ ΘX Γ 9Z7 ,

J±r?9% J*Λ™dn

(y = l, •••, AT'; ra=a, 2, •••),

where d/δ^ expresses the differentiation along inner normal and ds the line
element. Now we have

I(Fm) = DFm(X) = DGm(Xoψ~ί) = D

= DGm(U) + 2DGm(U, h] + DGm(h)

- J(Gm) + 2DGm(U, h) + i>Gm(A)

(m = l, 2,

By means of Green's formula we have, by (2),

DGm(U, h) = - ( U®hds
/ JΛ™> on

N' Γ C
= -ΣJ(cΛ-e«)

— H J-Λ™
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where

Λm = 2(M?4-~Λ™).
y = l

Then by (3) and (4) we have

I(Fm) - I(Gm) = DGm(h)

and hence

I(F) - (G) = lim I(Fm) - lim I(Gm)
m->oo m->oo

= lim DGm(h) = DG(h) ̂  0.
Wϊ->00

The equality in the last inequality appears if and only if

h = a (a being a real constant).

We then have successively

Ig z °Ψ~l ~ lg w + (α + ib) (b being a real constant),

z °Ψ ~l ΞΞCW (c = exp (α + ib)).

The last equation shows that F is obtained from G by a dilatation and a

rotation about the origin on the basic plane.

Next we state a fundamental theorem showing that there exists an
analytic function mapping a multiply-connected domain of finite connectivity
onto a covering surface of annular type cut along concentric circular slits.

THEOREM 2. Let B be a multiply-connected domain of finite connec-
tivity on the z-plane. We suppose that each components C3 (.7 = 1, •••, N) of
its boundary C is a continuum. Then B can be conformally mapped onto
a covering surface of annular type G cut along concentric circular slits
centred at the origin. Further we can indicate the rotation number about
the origin of the image of each boundary component arbitrarily under the
condition that the sum of the rotation numbers is equal to zero (except the
case where the rotation number of each boundary component is equal to
zero). If we indicate the rotation number about the origin of the image of
each boundary component, the mapping function

w = Φ(z) 3)

3) Though Φ is a mapping of B onto G, we regard that Φ assumes values pro-
jected onto the w-plane from G so far as a confusion does not arise. For details we
should denote it as w = w o Φ(z) where w = w(q) is the projection map of G onto the
w-plane.
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is uniquely determined under an additive condition Φ(z0) = 1 where ZQ is
an arbitrarily indicated point on B.

Proof. Let the rotation number about the origin of the image of
Cj (y=l, ••-, N) be equal to

Let .B* be a subdomain of B whose boundary C* consists of components
Cf U = l, •••, N) such that Cf is a simple analytic closed curve homotop to
Cj. Let w=f(z) be an analytic function regular on B which satisfies the
conditions

-t Λ

da.

and maps -B onto a finitely-sheeted covering surface ^(/) with finite logari-
thmic area on the w-plane separating 0 and °o.5) Let $={f(z)} be the
family consisting of such mapping functions. Then § ̂  0. In fact, it is
readily shown that there exist surely rational functions on the 2-plane be-
longing to ££, by carrying out, if necessary, a mapping of B onto a domain
whose each boundary component separates exterior points. Now let

Jo = inf J(F(/)) - inf DB(lg /),

then we select a sequence of functions {Λ }?=ι such that

Λ e gf, lim ̂ (IgΛ) = J0.

Since each member of {/*}?-! has a bounded logarithmic area and is norma-
lized by f ( z 0 ) = 1, it forms a normal family. Then it contains a subsequence
which converges on B uniformly in the wider sense. Without loss of gene-

rality, we may suppose that {/*}?- 1 does so and let Φ be the limiting func-
tion. We have obviously

4) The value on the left-hand side does not depend on a particular choice of B*,
i.e. if B*' is another admitted subdomain of B and C*' O'=l, •—, N) its boundary com-
ponents, we have

tf=1 - ̂
It is sufficient that we verify it for the case 5* C5*7. Since f(z)/f(z) is regular on a
ring domain surrounded by Cf and C*7, we get

o O'=l, -,*

5) Here we admit the case where there exist boundary points of F(f) on 0 or
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and, since Λ converges to Φ uniformly on Cf 0* = 1, •••, N),

\ daγgΦ=lim \ daΐgfk=2πvj (j = 1, , N).
J σ J *-><*> J t f J

Further let {Bm}m^ι be an exhaustion of B. Then we have

DBm(\g Φ) = lim DBm(lg Λ) ̂  lim DB(lg /*) = /0,
&->oo &-> oo

since {/&}?= i converges uniformly on Bm for any fixed m. Thus we have

/(F(Φ)) - DB(lg Φ) = lim DBm(lg Φ) ̂  70.

Since the opposite inequality is obvious, we have consequently

By the above reasoning, we see that

Next we show that the function Φ thus obtained is a desired mapping
function. If the projection onto the w-plane of the image Λκ by Φ of certain
boundary component Cκ of B would not lie on a circle centred at the origin,
then

(5) U=lg\Φ

would not remain constant on Cκ and were moreover not to be constant
almost everywhere.

Now a family ξ> = {u} of harmonic functions u on B with DB(u) < + oo
forms a Hubert space by the norm \\u\\ = J~DB(ΰ). Let €>ι be a subclass of
C> consisting of functions which take constant value on each boundary
component of B and ξ)2 a subclass of €> consisting of functions which have
one-valued conjugate harmonic functions. Then €>ι forms an orthogonal
complement of €>2 in €>. This fact may be shown as follows. The whole of
harmonic measures ω3 of boundary components C, (j = I, ,N) with re-
spect to B forms a basis of §ι Now let

(6) DB(ωJth) = Q (j = l, ,N)

for h^ξ). Then if we select a sufficiently small positive number d for any
given positive number e, we see that

is a simple analytic closed curve homotop to Cj (j = l, •••, N) and by (6)

I DBj(a)j, h)\ = \ DB_Bj(ωJf h)\<e

where

Therefore, by using of Green's formula, we get

\DBj(<o,K) =0
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Hence, for all simple analytic closed curves Cj* on B homotop to C,, we
have

ε being any positive number, we must have

( ®kds = 0 tf = l, •••,#).
Jo} On

That is to say, h^&2 and therefore €>ι forms an orthogonal complement of
§2 in €>. By the above reasoning there exists a harmonic function h having
a one-valued conjugate harmonic function such that

for U in (5). Especially there exists an h such that h(z0) — 0. Next we take
a one-valued conjugate harmonic function h of h such that h(zQ) = 0. Then
we can easily see that for any real number ε the function defined by

g(z) = φ(z) exp (ε(h(z) 4- ih(z)Ί)

belongs to ££. Since

KF(g» - I(F(Φ)) = DB(U + εh) - DB(U)

= 2εDB(U,

we have

by selecting ε which has a sufficiently small absolute value and has the
opposite sign for DS(U, h). This contradicts the minimality of Φ. Hence we
conclude that the projection onto the w-plane of the image Λ3 of each
boundary component C3 of B by Φ lies on a circle centred at the origin
(j = l, •••, N). Further since the image Λ* of C* by Φ is a simple analytic
closed curve homotop to Λ3 and

f
J c*j

the rotation number of A3 about the origin is exactly equal to \>3 (j = l, •••,
N). According to the above argument, Φ is surely a desired function. The
uniqueness is obvious by Theorem 1.

§4. Supplement.

Let B be a multiply-connected domain of finite connectivity laid on the
2-plane and each component C3 (j — 1, •••, ΛΓ) of its boundary C be a conti-
nuum.6) Let \>3 (j = l, , N) be an arbitrarily given integer such that at

6) In this section we assume for simplicity that all C3 (j~l, •••, N) are simple
analytic closed curves.
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least two among them do not vanish and

Σ^ — o.
J-l

Then, as seen in §3, there exists an analytic function mapping B onto a
covering surface G of annular type cut along concentric circular slits centred
at the origin under the condition

(7) 2*

and Φ is uniquely determined except a dilatation and a rotation about the
origin on the basic plane of G.

Here we shall require an explicit expression of the mapping function
Φ(z). Now, Ig I Φ(z) I is a harmonic function on B and attains a constant

value GJ on each boundary component C3 (j — 1, , AT). Therefore, we
obtain an expression of the form

(8) lg|Φ(z) _I
.7=1

Further by the condition (7) the relations

i.e.

(9) Σc*f ~-k~ds=-2πvJ (j = I, ••-,#)
*-ι Jθj ®n

must be satisfied, where ώ& denotes a harmonic function conjugate to
<ok (k = l, , N). (9) is a system of linear equations for variables clf , CA ,
which has surely a solution and whose general solution is of the form
/-f f\\ 0 i 0 i(10) Ci + c, , c#υ + c,

where Cι°, , CΛΓO denotes a particular solution and c is an arbitrary real
constant. Conversely, for a solution Ci, •• ,c Λ r of (9) an analytic function
expressed by

(11) Φ(z) = exp /Σ e, (ω^ +

is surely a desired mapping function. By observing that a general solution
of (9) is given by (10) and that 5^(^ = 1, , N) is uniquely determined
except an arbitrary additive constant, we can again conclude that the map-
ping function (11) is uniquely determined except a dilatation and a rotation
about the origin on the basic plane of G.

Let now the boundary C of B consist of 2N components C, (j = l, •••,
2N). We consider in what case B can be mapped onto an Λf-sheeted annulus
Go such that Ci, •••, CN correspond to the interior boundary components
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and CΛΓ+I, •••, C2N to the exterior boundary components, respectively.

For the simplicity, let

First, by using Green's formula, we have

(12) τj* = τkj,

and also
2N 2N

(13) Σ τjk = 0, Σ -
3=1 A-l

A condition that B can be mapped onto G0 under the given condition at the
beginning can be described by

2N

(14)

Let

then by (13) and (14) we have

Ar=l

2N

j = l, ,N),

. = ' = CN, GN+l = = C2N

1

(15)

Therefore, by taking (12) into account, we obtain

N-l N

(16)
j = N+l, ,2N- 1).

Conversely, if (16) is satisfied, we see, by considering of (13), that there
exists a negative number μ satisfying (15). Then the function

1 N

w = Φ(z) = exp — Σ (β>fc + i&k)
μ*=ι

maps B onto an ΛΓ-sheeted covering surface lying on

e1^ <\w\<l

such that Ci, •••, Cw correspond to the interior boundary components. Con-
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sequently, (16) is a necessary and sufficient condition in order that B can
be mapped onto an .ΛΓ-sheeted covering surface such that CΊ, •••, CN corres-
pond to the interior boundary components.

By (16) we see that a ring domain can always be mapped onto an an-
nulus (the case N = 1) and that a quatriply-connected domain B can be
mapped onto two-sheeted annulus such that Ci and C2 correspond to the in-
terior boundary components if and only if

(17)

(the case N=2). The latter case may be reasonable by virtue of the follow-
ing fact. Let Wi and w2 be branch-points of the two-sheeted annulus GQ on
the w-plane.7) G0 is mapped by

z =

onto a quatriply-connected domain B0 which is symmetric with respect to
the origin on the 2-plane. Two boundary components of B0 corresponding to
the interior or exterior boundary components become also symmetric each
other with respect to the origin. Conversely, if a quatriply-connected domain
BQ is symmetric with respect to certain interior point of B0, then it can be
mapped conformally onto a two-sheeted annulus. Thus a quatriply-connected
domain B can be conformally mapped onto a two-sheeted annulus if and only
if B is conformally equivalent to a domain such as B0. It may be noticed
that the condition (17) expresses this fact precisely.
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