ON THE SYSTEM OF NON-LINEAR DIFFERENTIAL
EQUATIONS WITH PERIODIC COEFFICIENTS

By Tosiya Sarro

§ 1. Recently the author has investigated the behaviour of the solution
of the non-linear differential equation

d oo
T = Sy
where f3(x) are uniform and holomorphic in the domain 0 < |x| <7, and
obtained an analytical expression of the solution valid around x = 0.9

The method of proof used there can easily be generalized for the system
of non-linear differential equations

d ) .
(A) ay; _ E J;J,kr"kn(x) y{"l ;‘in, j= 1,--,n,

dx —k1+-u+kn;
with  f; x,#, (%) uniform and holomorphic in 0<|x| <7, or, what is the
same thing, for the system

dxj

br; k .

di = aj,kr-'k:n(t) PARIRED x’,ﬁ”, j= 1, .-, n,
Eyteetkyz1 ¢

(B)

with @k, (f) periodic in £.
In the present paper, we consider the system (B), and establish the
analytical expression of its solutions.

§ 2. Let the system of differential equations

dx o
(1) G =2ap®) e+ 3 e, a8 xkn, g=1m,
k=1 ki tetkyZ2

be given, where ki, -+, k, are non-negative integers, a;x(f) and @jx,.x, (f) are
periodic functions of # with period 1 holomorphic for — oo < # < oo, and the
power series in the right-hand members are convergent for

—o<Lt< oo, |x5]<p, p>0, i=1-n

Without loss of generality, we may suppose that the matrix ||a;(¢)] is of
the following form:
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7, TOWS

where A\,

#n, columns

We denote by

x5(8) = x5(¢, to, %, -

Az
PO

0 "1,

the solutions of (1) such that

x5 = Xjo,

j=1, e

P

75 columns

#y TOWS

-+, Ap are complex constants.

5 N,

e p——
7y columns

) xnﬂ) ’

Np TOWS

In what follows, we always consider these solutions in the fixed interval

(2)

where N is any (arbitrarily large) positive number.

h—N=t=th+N

however small, we can find & > 0 such that
fx5(t) <€,

in the interval (2), if

morphic in x,
their initial values =,

]x;0|<8,

Therefore, if | x5, -+, | #no| are chosen sufficiently small, x;(t) are holo-

power series expression in the interval (2):

Then, for any € >0

7 -—3 1’ ~-;, n,

| = 1’ ey M.

-+, Xno, and, moreover, x;(f) identically vanish whenever
s, Xno all vanish., Hence they admit the following

n
(3) x5(f) =X} Uj,rc(t, to)xxg + X3 Uj,klmkn(t, to) xft o xknm,
k=1 Tyt 22

i=1 -, n
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§ 3. We now investigate the relations between the solutions x;(¢) and
X;(t) = X;(2, to, %10 =5 %mo) = %5t + 1, fo, X105 ***5 Xno) 5 =1 m
Since
X;(t, to, 10 s Xng) = %5 (8 + L, 4, 21 (8), -+, %0 (8)), j=1n,

we can write
X;(8) = kzl Uit + 1, 8) 2 (8)

(4) b S Uppperg 4 LOm @O {aa )}
kit 22
j — 1’ A

where the power series in x;(£), -+, #x(f) in the right-hand members are con-
vergent (in the interval (2)) whenever |xi,), .-+, | %ng| are sufficiently small,

From the uniqueness theorem of the solutions of differential equations and
periodicity of the coefficients a;,x(f), @5, (f), the relation

x;(t + 1,8 + 1, %10, -+, Zno) = % (£, Lo, X105 ***5 Xng)

holds for any %, -+, %ng with sufficiently small absolute values. Thus we
obtain, making use of the expression (3),

(5) Uyt +1 b+ 1) = Uy u(t, te),  Uspyeie, (& + 1,89 + 1) = Us,oyoiy (4, o)«
Therefore, if we put
Ut +1,8) = us(t), Ui ogeten ( + 1, 8) =045 515, (£) 5
it follows directly from (5) that
wip(t + 1) =u; (), U toyoton (B 1) = 1y (£),

and we obtain the following conclusion:
If %19y o+ | Xng| ave chosen sufficiently small, X;(t) can be written as

(6) Xy =Furn(O)mel)h, 33 st (O (32 (07 (i (0) )0
j=1,m,
in the interval
bh—NZt<Zi+ N,

where the coefficients u;(t), 5%, (t) are periodic functions of t with period 1.

§ 4. Next we determine explicitly the coefficients u;x(t), j, k= 1,---n. For
that purpose, it suffices to determine the coefficients Ujx(Z, ;) in the expres-
sin (3). Substituting (3) into (1) and equating the terms of the same degree
in g, .-, 2ng on both sides of the equations, we obtain the following system
of linear differential equations:
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oUj, +1,%

) = 7&,Uj,+1,k,
oU. ;
—{Z‘ﬂ = U]T+l,7‘7 + XTUjr+2’ky
ot
(7).
oUs 40
‘{’{M = Ujr+”r‘1’k + )\'T Uj1+nr,lc,
ot
j1:0’ jr+l:jr+nr, v = 1""’17’ k=1,"‘,1’l.

As we have supposed that
%35(t0) = x50, j=1mn
U, (¢, t;) must satisfy the initial condition
Uy, x(to, to) = Sx, Jik=1,m.
Solving the linear system (7) under this condition, we have

—_— 2
Uspteye () = {83,000 + 8yptscnot — 1) + Bypecage- 5l

— )51
R o 31r+1,k%}6A7(’_’0),

s = 1, ey Wy, 7 = 1’ ...,p_

Consequently

u],-+s,k(t) =Uj,us,6(t+1, 1)

81,45 8
_ {SMM b Sppren b IR (sffll),k! }eM

s = 17"'1”1’: r = 1:"’1.?:

and the matrix ||u;x(¢) | is of the form

4]

A (

[l o5,6(2) || =

where
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1
1 1.0
r 1 ...
Ar=e| o 1
i i - .
nr — DT, —2)1 L1

§ 5. From what we have hitherto shown, the relation between Xj(¢)
= x;(f + 1) and x;(¢) can be written as follows:

Xjpts (t + 1)

= o oA + G gy @+ DO

ulr+s,k1~~kn (t) {xl (t) }kl' ° '{xn (t) }k”,

TyttlnZzs
71=0, jenn=Jr+n, s=L-n, r=1-p.
Our final step is to solve this system of functional equations and to deter-

mine the explicit forms of x;(f).
For that purpose, we add an assumption that

(9) lerr|>1 (i.e. ®n, >0), r =1, p.
Moreover we may suppose, without loss of generality, that A, -+, A, are so
arranged that
(10) D<A =ZFN < --- < Ry,

It is known that,® under the condition (9), we can find an analytic trans-
formation

(8)

x%5(8) > 35(t) = @i (x:(2), -+, xa(8); 1)
defined by the power series, convergent for sufficiently small values of | x,(#)},
-+, 2 (£)| (i. e. for sufficiently small values of |xyl, =+, | %no))» '

Yi(8) = Ps(x1(8), =+, %a(t); 1)
(11) = k%}l D (t) + . +§@2 Wi, kyewtey, (£) {01 () Foro-{n (2) }om,
j — 1, e n,

where pj are constants with det|pu|# 0, and wj .4, (f) are polynomials of
5,56, (t) (hence periodic in #) such that the system (8) is transformed into

Prpts (1 (E + 1), oy xa(t + 1)5 )
= N Pj,ts (%1(8), 5 Xa(8); 1) + 8Psprs1 (X1 (8), -+, 2 (t); 1)
(12) + k1+“§m§2 Vs pts Jooion () {P1 (21 (B) 5 -+, 2a (2); 2) Foro--
APn (22(8), -+, 20 (D) 5 8) }om,

J1=0, jenn=J,+n, s=1-un, 7=1-p,

where vj, . p,p-#,(f) are periodic functions of ¢ with period 1, and

Uj,,.-i-s,kl..-kn (t) =0 if e)\r :!:; ekl)‘1+"'+k”>\ﬁ’
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0, s=1,
5, = {
1; S:21""”r.
From the periodicity of wjx,.x,(f), we have

Py (E+ 1), o, 20t 4+ 1); 8) = 3;(¢ + 1).

So the system (12) can be rewritten as

yh'l's (t + 1) = el\ry.ir+s (t) + Ssyjr+s—1(t>
a |

+ Y Vjpts,topeto (£) {31 () o1 { n (£) }om.

Tyt ThnZ2

As we have supposed that R\, are all positive, the relation
(14) et = gEiAptetEnAn

can be realized for only a finite number of combinations of non-negative
integers ky, .-+, by, with k; +---4 k, = 2. Hence the right-hand members of the
equations (13) are all polynomials in y;(¢#). Furthermore, owing to the sup-
plementary condition (10), Zjy.1, -+, ks must all vanish for the relation (14)
to hold. Consequently, in the expressions
Vjpts,kyoeion (t) {yl (t) }kl"'{yn (t) }kn
Tyt thknz2

in the right-hand members of the equations (13), the functions yj,.1(£), -+,
Yx(f) can never appear, Thus we can rewrite the system (13) in the follow-
ing form:

Vipbs(t + 1) = e 9;,45(8) + &5 ¥s,45-1(8)
(15) + p3 Vj s kpoek 00 &) {n (t)}kl"'{yh (&) }eor,

Kbty =2
j1=0, j'r+1=jr+”r; s:l,"',n,, 7:19"', b.
§ 6. The system of functional equations (15) are divided into p groups
according to the value of 7.

For » =1, these equations will be written as follows:

(16-1) y1(t+1)=ery (),
(16-2) ya(t + 1) = er1y2 () + 91(),
(16-n4) Iy (t + 1) = er1yn, (£) + Yu;-1(F).

From (16-1), we can immediately see that y,;(f) must be of the form
$1(2) = eM*0,(2)
where @, (¢) is a periodic function of ¢ with period 1. Next we put
¥a(t) = eM{e 110, (¢) + P(2) }.
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Then
ot + 1) = eMerM{e M0, () + P(t + 1)} + eM'04(8).
Comparing this with (16-2)
Yo (t + 1) = e*1eM{e 110, (t) + P(2) } + M0 (¢),
we obtain
P(t+1)=P().

Therefore the function P(#) must be periodic in ¢.
In the same way, the equations (16-3), ---, (16-#,) can be solved successively,
and ,(f), -, ¥, (#) must be of the form

9;(8) = eM*0; (), j=1,m,

where 0;(t) are polynomials of ¢ whose coefficients are all periodic functions
of ¢t with period 1,
We will then show that all y;(#) can be written in the form

17) Yipss(£) = €' 05,45 (2)

where 0;,.:(f) are polynomials of ¢ whose coefficients are periodic functions
of ¢ with period 1. The proof can be carried out by induction with respect
to 7 in the following way.

Suppose that y,(#), -+, ¥;, (f) have been expressed in the form (17). The
next group of functional equations (corresponding to » = m -+ 1) will be

Yim+1 (t + 1) = e'\"'lyjm+1 (t)
1&n + 31 Vigankpens, o0 ({1 (&) For {5, () }*5
k1+...+kjng mt+1rkykj,, m ms
Yim+2 (t+ 1) = e)\myfm-kﬂ (t) + Vim+1 (t)
18-2
( ) k1+...+EJmzzvj?n"'g’kl"'kfmo"'ﬂ (t) {yl (t) }kl' ”{yjm (t) }kjmy

yfm'l'”m (t + 1) = e,\myjm*'”m (t) + yjm"‘”m"l (t)
Virnmskiog, 00 (0) {91 (8) Yore-{ 9, () }* s m.

(18-7m) l
kptefly 22
Since Vg tskyeg, 00 (#) =0 for
Am Z A 4+ BjpAm—  (mod 277),
and y.(¢),k =1, -, jm, are supposed to be of the form (17), we can write
S Dbmessteres 00 O{Ly1 @) 1A Y5 () Yosm= eV, 15(8),

s = ly **ts By

s
kl kjm

where Vj,.s(f) are polynomials of ¢ whose coefficients are all periodic func-
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tions of ¢ with period 1. Then the epuations (18-1), ---, (18-%,) are rewritten
as

(19-1) Yimrr(+ 1) = ermy;, 1 (8) + e* Vs, 00 (2),
(19—2) yjm+2 (t + 1) = el\myjm*‘2 (t) + Yim+1 (t) + e)\mtme‘FZ (t) ’
(19—nm) yjm+nm (t + 1) = e)\myfm"'”m (t) + yfm+”m—1 (t) + el\mtvjm“’mn (t) .

Vim+1(t) can be written in the following form:

Vims1 () = Qo () + 1Q1 (£) +---+ ' Q, (2)
where @y (¢), -+, @, (t) are all periodic in £. Then put
(20) Vims1(£) = e { Ry () + LRy () + -+ t"*1R, 1 (£) }

where R;(f), -, R,.:1(f) are determined from the following system of linear
algebraic equations:

("THRu@ =0,

(V —2l- 1) R, (8) + (’{)RV () =e™mQ, (1),

G2E ) Ra®+(, 2 ) Re@ +t (F T Rent) =eQu(t),
R, (t) + R, () +--+ Ry (2) = e *mQy(2).

As the determinant constructed from the coefficients of the left-hand mem-
bers of the above equations is obviously different from zero, R; (), ---, Ry 41 (£)
are uniquely determined as the linear combinations of @, (¢), ---, @, (¢). Hence
they are all periodic functions of ¢ with period 1.

Then

Vims1 (E+ 1) = ermerm (Ro(t + 1)+ (t + DRy () +++ (¢ + 1) 'R,,, (8)}
= et {Ry(t + 1) + tRy (£) +-+ 'R, ., () }
1 oAmghmt [{Rl(t) + Ry (t) ++++ Rya ()}
+t{(2) R+ ()R +-+ ("7 1) R (d) } oo
+ (T D) R+ (P ET D R ®) 4

+e("TH)Ru® ]
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= ermermi{Ry(t + 1) + tR () +---+ t" 'R, .1 () }
+e*H{Qy(t) + tQi(t) +-+ 17Q, (1) }.
Comparing this with (19-1), we obtain
Ry(t+ 1) = Ry(2).

Therefore yj,,.:(f) must be of the form (17).
Substituting the expression of yj,,.1(¢) just obtained into (19-2), we have

(21) Vims2(E + 1) = e*my;,,.2(8) + e** Wi, 12(2)

where Wj, ..(f) is a polynomial of ¢ with periodic coefficients. It is then
evident that the equation (21) can be solved by the same method as we have
adopted for the equation (19-1), and yj,,.2(¢f) must also be of the form (17).

Proceeding in this way, we can successively show that y;,,.s(¢), s=1,-,
nn must be of the form (17). Thus we have completed the proof,

§ 7. Substituting (17) into (11), and solving it with respect to x; (£), -+, % ()
we arrive at the desired analytical expression of x;(¢) which can be written
as follows:

x;(t) =, % zlpj,kl...kn(t) (kiAo tlnAp)t j=1-m,
-

where P,x,..x,(t) are polynomials of ¢ whose coefficients are periodic functions
of ¢ with period 1.
The same conclusion can be obtained if we replace the condition (9) by

) ferr | <1 (i.e. ®n, <0), =1 p.

Thus we have established the following

THEOREM. If the veal parts of the characteristic exponents A1, Na, -+, Aoy 0f
the linear part of the system (1) are all positive or all negative, the solutions
x;(t),j =1, -, m, of the system with the intial condition

X5 = Xjo» J=1,-,m, for t=1,
can be expressed in the domain
to—N=t<t + N, [%50| < Ew, j=1, -,

in the following form:

*) O R S e et

where N is an arbitrary positive number, Ex is a positive number depending
upon N, and P,x,.x,(t) are polynomials of t whose coefficients are all periodic
Sunctions of t with period 1.5
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In praticular, if Ay, -+, A, are all distinct and the relation A, = kA 4+
+ koAn (mod 277) can never be realized for any combination of non-negative
integers ki, -+, kn with kj+---+ k, =2 and m =1, ---, n, the functions 0;(¢) in
(17) are all periodic functions of {. Hence Pj,..x, (f) in (¥) must be all peri-
odic in . Whence follows the

COROLLARY. If, besides the condition stated in the Theorem, Ay, -+, An ave all

distinct and the relation )

Ao = ki + -+ Byh  (mod 277)

can never be realized for any set of non-negative integers ky, -+, kn with k-
+ k=2 and m =1, -+, n,x;(t) can be expressed in the domain

};e)\lt:<M T Iel\nt§<M ;xj01<8ﬁlv j=1""7n’

in the form (*), where M 1s an arbitrary tositive number, €y is a positive
nnmber depending upon M, and P,x,..x,(t) are periodic functions of t with
period 1.
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