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1. In the present note the author
proves the following theorem which is
an answer of the problem raised by
M.T.Cheng L2J.

Let γ(t) be even, periodic, inte-
gral and

(1) fit) *- jΓ a^

If we denote by £ (t) the d -th mean
of fit) , then we have the following
theorem.

Theorem 1. If %(t) is bounded
variation in ( o, 7L. ), then { h
(&*) ) "°*

c
V>o;

a r θ thβ
 (C.4

summability factors of the Fourier
series of fit) at X^o .

Cheng proved this theorem for
o £ pc ̂ / , and said that the case
oC >/ remains open. But this theorem
is a easy consequence of

Theorem 2. Denote by cc* the
C tf )-mean of the series Y GL^

If

then { Λ*(/n + Op f '* t ; are / J
suiamability factors of the series y 4^ .

Denote by cr,f (o) the ( C << )-mean
of the Fourier series of (1) at t^o
Then from Bosanque!s theorem f13, if
fa CT) i s bounded variation in ( o, ΊL ),

From this fact if Theorem 2 iα proved,
Theorem 1 is evident,

2. Concerning Theorem 2, we shall
raise the problem :

and

0/ C J -summable 1'or some order, then
whether { Ay (-«*+ O j ~' arethe/C.cί/-
summability factors or not. In the
ordinary Cesaro suπunability case, this
problem has been answered affiriϊiative-
ly by A.Zygmund 15 J, (cf. G.Sunouchi
£4j and L Jesmanowicz f3]) But in
the/c .«c I case, we cannot drop S C >o)m

For aί = σ , there is a function of
bounded variation where

3. Vve proceed the proof of Theorem
2 . P u t i Λ m * ι

From Ko φetliantz's formula-, : ve

(2) <rj- (fJt,

gay. Further put

C 3Λ τJ = -

^ LΛL
Ί^.A<"*. ι/=o

then

The last term
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<U

where

putting K c W + 7 , and applying
Abel's transformation,

where

(7)

-times

V-0

For / 6 ̂  ^ -/β - / , we get

/*•

Subatitutinc the formula (1) and (2),
this is smaller than

V=υ

-L
~ I

_
v
_

= L-L
say. Since

» (5

* (9 -i
(j
.

From (4) and (6), we get

(10)
 I Jc-
Σ

Concerning J
m
 ^ *

6 C ?

This terms are analogous to

(12)

(13)

tX3

Σ raj
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From the second term of the rijht
side of (7), we have

(14)

say On the other hand, from the mean
value theorem

Analogously proceeding to (13),
we get

CX7

Σ

On the other hand, from (3),

(17)
of

Aw ^Λ O -^-. (/*--/*—)

ΛJk^

/UΛ

Thus '

(15) ft

- 0 - <r

Concerning to [^^ , v/e have

Since
!/+£ <oo

we have

and
»i N) ,

<

- 61 -



Summing up these results and from the
formula (3) and (7), we can conclude
that

and

is equivalent to

where

*''

-I>Λ,VΛ

Therefore

'JΓ j <•
and the theorem is proved. If o/< / ,
then

(21)

say. Similarly to the case ^ έ. / ,

07z

by applying Abel's transformation.
Thus we can prove the theorem com-
pletely.
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