ALTERNATIVE EXPRESSIONS FOR PROBABILITY-GENERATING FUNCTIONS

CONCERNING AN INHERITED CHARACTER AFTER A PAMMIXIA

By Ylsaku KOMATU

1. Introduction.

In a recent paperl) we have dis-
cussed from a stochastic view-point a
problem of estimating the distributions
concerning an inherited character
which consists of m. multiple alleles
at one diploid locus denoted.by

Ai. (L=1,+-,m)
and of which the inheritance is sub-
Jject to lendelian law. In succession,
we have also discussed a related
problem on mqther-cnlld combi-
nations.%/),3) Main tasks of these
papers have been to obtain the ex=-
pressions for respective probability-
generating functions in explieit
manners.

In any case, the generating function
must be, of course, uniquely determined
in a definite manner. However, our
results have concerned not directly
the generating functions themselves
but somewhat indirectly the related
functions from which the generating
functions can be obtained as the
constant terms of respective Laurent
expansions with respect to parameters
involved., Under such circumstances,
it will be possible to find alternative
sources of generating functions. In
the present paper we shall illustrate
the circumstances by deriving some
alternative expressions for probabili-
ty-generating functions.

As in the preceding papers, we
consider a population of size 2N
consisting of N females and N
males. Let the given distributions
of genotypes {A, Ay} in females and
in males be designated by

F={E) <°’w%:g¢vmf)
3ZL = {A4¢L

and

(a{) a_<'b ;
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respectively, so that

52; EZb ::aég'wxd - DJ“

The order of genes in a genotype being
immaterial, any quantity accompanied
by a pair of suffices indicating genes
of a genotype should be supposed to be
understood as symmetric with respect
to the suffices; for instance, we

suppose F,q = . » etc.

2. Mother-child combinations with
mothers of an assigned genotype.

We first consider the mother-child
combinations with mothers of an as-
signed genotype, A,A s say. Intro-
ducing a set of 0ﬂ(m¢4—l)/2 stochastic
variables

*={X) (Mim™)

we designate, in conformity with a
notation used in a previous paper.

b
T @I X )=V EpF S 1)

the probability that, after a panmixia,
the mother-child combinations (A, A,;
l\fA.) ($,3=1,,m; £<3) amount to

respectlvely, Here, and also
in {gé subsequent discussions; each
mating is supposed to produce one
child so that in our present case
there holds

> X, =k,

f 23
Since a mother of any type AP can
produce, in general, merely a child of
a type involving at least a gene in
common with herself, the probability

(o | must vanish out unless

the g&'s are equal to zero for all
the impossible children' types lﬁ,A
i, e, for £, ¢ == o, B . The proba—
bility-generating function is now
defined by



®@Epl3) = 2(plyl S m)

=2wp136>ﬂz i
€3 ?
where ={ Z_{.g,} designates a set of
m{om + 1) /2 indeterminate variables
and the summation in the last member
extends over the whole range of

H}'

In a previous paper3) we have shown
that the generating function now in
consideration can be brought into a

form T
@("(M})-’: n.g;\II:ld:!

E Q' (N-Ep) Yo
T e T Mgl tas
where the use is made of an abbrevi-
ation

L=

and the summation extends over all the
possible sets of m(m+ 1)/2 integers
Y = {"j«mg} (w,‘o:i,"-,’m; azh)

satisfying the relations
a, b=l m;
0 "-<= %o.bé Mm‘a ( as < i, )
@%:L /}&’)—; F;P .

We thus have concluded that the
generating function ®Gply) may
be represented by the constant term,
i, e. the coefficient of T[ egh a‘,

Zoat Za.p + Zpa + Zyp
4

in the Laurent expansion around the
origin of the expression

@(dpl}!i)—s‘@(dpl;}lilﬁﬂlw
' d
” Mub (Z% ‘LL)PZ {’) L

regarded as a rational function of
fm(/m,+ 1)/2 variables I ={t,} (a,b=l,
,m; ash) Or, our generating
function may be given also by the con-
stant term in the Laurent expansion
around the origin of the expression

<I>(a{313|4;4)5@(4[3(3[4;il:f-”; a)

E,J(N-E,
R kARG

regarded as a rational function of
1+4+m(m~+ 1)/2 variables 4 and

i el { ta,t }.
We now enter into a main discourse

of the present paper. The generating
function written above can be brought

into the form
(Mab) Yab
B ash ‘

"k (N E )'
P@Eply)=t—=--
In view of Zag‘b Yot =
the last expression implies that it
is representable as the constant term

in the Laurent expansion around the
origin of the expression

Plplyit)= Eplzlt) F5 )

(N— oq! ﬂ.(f o,L

ash

FJ_P’

AJ:

'm—i m

(t +1)Mm,—l ,m EP—N +M..,,\_1)m_
ths

ﬂ(t ﬁZ 4, ) et

regarded as a rational function of a
variable T , where the asterisk above
the product symbol indicates that the
factor corresponding to (a,b)=(m-1,m)
must be omitted,

_ Ep!(N‘EE)!

Nt

m=~1,m

Consequently, by introducing, with
a set of further m(m-+1)/2 variables
£ ={4a} (@ b=t~ m; ash),

an expression defmed by
PEplyles ) =@ Epl3I tIFm)
_ B N(N-Fp)! T Mas! Zr:;,;N

N !z t F,:(P ast, /3‘:;10.‘9 m—L,m

. {Z Aa.!» (t Z ﬂ—b-‘—zm—i ,'m)} ;N




our generating function is then also
given by the constant term in the
Laurent expansion around the origin of
the last expression regarded as a
rational function of m(m+1)/2+1
variables ¢”°= {44} and t.

In case where A A, is homozygous,

AR, say, we have
7 Ziat 20 (“l’ =4, ’"")
ab” 2
while in case where A;A; 1is hetero-
zygous, A;A; (v#4) say, we have
Z _ Zia* Zp+ Zjat % ¢,L=i,---,m;)
ab 4 pst

Hence, by distinguishing the cases
according to whether A A, is homo-
zygous or heterozygous, the final
expression derived above for

©(@plz 147 t) can be brought into
more precise forms, namely

cb(m}l(; t)
'(N—F )’ Ma};' (ZL,M-i* Z;_,‘,)EJ:N
NPt E; @<t /3447 2
A nf"zl: Z m—1+z~
(T (s B
(L}’l}lf t)
_ B v-F)!
N5 JJ; AN Mg

(Z-m_1+z o+ Lyt * T )E}N

:otZ, L+Z +2Z )

1

a

<t t(t
s Zz,m—f*zm""z;,n—ff zjm)}N
Y .

It would be noted, by the way, that
the generating function &(ap|3)
itself is expressible, for instance,
by means of a contour integral., 1In
fact, if we consider for a while the
indeterminate quantities t and 4,4
(a,b=1,--,m; a<?}) as complex
variables N we may write

Plply)= ———J @(d[slyt)

or t=1
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DEply) =

| J]

Itl=1 14 }=
et
where the integration is taken around
the unit circumference on respective
complex planes in the positive sense,

1
(2%H)h(u+i)/z+i

DlEplyly )% ﬂ w

a.<1.

Here we restrict ourselves to this
brief account, since such integral
representations will not be availed
in the subsequent discussions. How=
ever, analogous remarks apply, of
course, also to the generating func-
tions which will appear later, though
they will not be repeated explicitly,

The generating function having been
thus established in an explicit manner,
it is now ready to compute the means
or variances and other statistics for
the stochastic variables,

For instance, logarithmic differ-
entiation of the expression

E -'(N’EJ.’ (f+1)M~~1.M

P ichylty=== NT o

Fr NeMo g %
v

Mas
. -]T(tzmt:+ Zm—l,"")

ash

with respect to Z,.
2
za—z—alt’g@(i‘[}'t)

+ZML

tzi"+Zu-L,m b+i

yields

t
R S—
z~.+z b
f Zm—l,ow

whence follows, after putting
= ={1} 1i.e.2,4=1 (a,b=1,
trm; a < L ))

a%u@(ulfvlt)

_ EJO-E) (t+1)N___@,1 Z M ;
- N! tFA‘A t+1 L
Further, by separating the constant
term in the Laurent expansion of the
last expression, we obtain

;’TJPGL' ln)= 1%‘ (MJr ;%’9

=M.;

s



Thus, the mean of the varlable_X:
in caoe of mothers of the genotype
is given by the formula

jz(LL;L;):=:E; hm?

in conformity with a result previcusly
derived, where f)”u) is defined by

(M) (M“ + Z\: ML;,

In quite a similar manner, we can

again derive the corresponding formulas
for remaining mother-child combinations,
They are set out as follows:

X(i;:0=F, P
X(LL, Lﬁ.) = E‘_u F ™
7 M
X(L}) L) :F‘Lj '12 f’; :

X(;,‘; i) -—E, 7 (p™% (M))

Y

X(b}) Lﬁ) &) 7 r(M)

Here the different letters 4 ,' 4 and
are supposed to indicate different
genes,

The same result can also be obtained
in a similar manner by means of the
expression for @(dpl}l{' t) .
In fact we get

g[@(cbl}l{‘ t) .
FLIN-E! ﬂ a! Z N
qut ash i,

whence follows

N-E O M,y
@(u o H/\ ) N 'l‘fj F. Q'ZAM;;

N { 2, It )

Consequently, separatlon of the con-
stant term in the Laurent expansion of
the last expression leads to

X (;00= 2 BGln)
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( ZM) (M)

Similarly for the remaining types of
mother-child combination.

The variances of the stochastic
variables as well as the covariances
between them can also be derived in a
similar manner by means of either ex~
pression obtained above. However,
since actual procedure of computation
based on the present formulas is,
compared with that explained in a
previous paper3 s rather troublesome
and hence not preferable, it will
here be passed over,

3. Mother-child combination with
both members of assigned genotypes,

We now observe a mother-child
combination in which both constituants
are of ass1gned genotypes, ( Jﬁdlip H
}k A, ), i. e. a mother of A A,

het child of f\gf&,‘, say. “Intro-
duclng a single stochastic variable

extending over all integers con-
tained in an interval 0= X = E ,
we now designate by e

Y (@p; g | X)="F@p; e XIF20)

the probability that after a panm1x1a
the mother-child combination { A A,
f& A. ) amounts to , in conforml—
ty w11h a notation availed in a
previous paper2 . The probability-
generating function is then defined by

O (p; £mlz)= P 6p; &9z F 7IT)
Fy
=) s X)=K,
=0

Z designating an indeterminat.
variable.

Before entering into the main
discourse, we make here previously
an agreement. Similarly as in the
previous section, we shall concern in
the following lines, instead of the
generating functions themselves,
related functions from which the
formers are obtained as the constant
terms in the Laurent expansions.

Our agreement now states that every
Laurent expansion of o related func-
tion under consideratic- which is

rational with respect to respective



varameters is supposed to concern ex—
clusively the origin of the set of
parameters, as the centre of expansion
vhere the function possesses eventu-
ally a pole.

Now, the possible mother-child
combination may be class:.flec(! jeis-A
sentially into five types:

A A ):(AAL:AA,%) (A

'A;, )) ( A .A. A /1
(A Ay A Ai) "hers the sufflces

Ay and £ indicating different
genes. For these types of coambination,
possible genotypes of a male who can
be the spouse of mother i. e. the
father of child are restricted to
those involving at least one gene
A, Ags AL, A or A}: and
Aﬁ’ respectively. Further, in every
type of combination, since the dis-
tinction among the genes other than
those respectively. enumerated above
is a matter of indifference, they may
be gathered to a single aggregate
which plays a role of an ideal imagi-
nary gene, A, say.

In the following, we shall deal
with the flrst ty'pe of combmatlon,
( A;A; A:A), especially in
detail. Smce the remaining types
are treatable almost similarly, we
shall later write down only their
final results.

Now, as shown in a previous paperz),
we first have

N ' w'. Muw!
DG, ;L|z)=M§'_.__

5B (N~ E)
7 4l e! ML) Mg )M, 0!
2t (B )

where M;, and M, designate the
frequencies of ideal genotypes A AL
and A_A,, respectively, in the
male~-population, namely they are
defined by

Mm=z‘ M‘LL; wm—'z‘ M“—"
b#i a4, b

and the summation affixed below by 3
extends over all the partitions of
Fi. into three integers 4. , ¥,
and Y,, , satisfying

by Yiwy Yoo 0; it it o~ E..
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Introducing a parameter 4 , the
generating function & (ii;iilz) 1is
given by the constant term in the
Laurent expansion of an expression

IM. ) 2
CFO(LL} LLIZ’“') =IVL_‘,_M_WM"W,E~'(N E.)f
NT o M
LT dew
(Z+1)~£ ("”7"" 21)

tow dua! (B~ 4,

N—FRL—Muu+ wu
(w+ 1) ¢

o
(Muni Jud (N-F. M 5.0
Introducing a further parameter - ,
the latter is given by the constant
term in the Laurent expansion of an
expression
w0 /
i wilzlu,v) = M IMon Mo
N!uMLL ,U.Mum

F, ~
. (u2+ %1 + q;) “(u,+1+ru)N

By putting u=t. /¢, and v=1{/t.
in the last expression, it is brought
into the form

? §
@(u. Lb‘thUtu)__M_%
N't “'thw

'(§z+t 2 1Jri) “lrorta )

Consequently, our generating func-
tion is thus represented by the con-
stant term in the Laurent expansion
around the origin of the last ex-
pression regarded as a rational func-
tion of two arguments t; and T,.
The final result just concluded is
nothing but the one availed in a
previous paper2 « As remarked there
and indeed as readily shown, the
generating function is also expressible
by the constant term in the Laurent
expansion of an expression

@(@b;ulz M tutu)) EL‘(N’ E»)'M.,»'Mw' M.«,wi

N' t u,_thw
(ol st )

regarded as a rational function of
three arguments 4 , t, and Ty

We shall now proceed to construct
an alternative expression for de=-
termining the generating function.



A glance at its own expression shows
that our generating function

®(ii; it12) is given by the constant
term in the Laurent expansion, besides
of @(u, |z [w) s, also of an ex-

pression
LL!MLN! me!E ' (N— E,()'
P, (i, tzhy=Ht N uMuL

N- F; LL_Mww+ ‘é‘ww

w+l)

FiYuw
(u4+ Zti > (
.Z ‘éww ' (Mww_?ww)! ( E‘.L~ }ww)! (N— F.;a _Ntwné*y’m).'

regarded as a rational function of an
argument %W ., Introducing a further

parameter 4 , the latter is given by
the constant term in the Laurent ex-

pansion of an expression

MMM Fu! (N-E)!
DJ!

(i 251 B M (wz+ 2552 +1r)

B, (ih; éilzlu, v)=

By putting again w = t,/t, and v
==1{/t,, it is brought into the form

)__ ‘,L'M;,w'F I(N—F )’

i itz T,
P, (id; ailal N

(¢ z+z€,‘,'“ij7 (t 241, Z*1+1) (tgtt,;rl)m‘ﬂw

Consequently, our generating func-
tion is represented by the constant
term in the Laurent expansion around
the origin of the last expression
regarded as a rational function of two
arguments t, and T,

On the other hand, we can derive,
besides the one just obtained, another
form of an alternative expression pro-
ducing the generating function, In
fact, we can define, instead of
42“i;“41‘“)’ another function

o Moot B T N- B!
<EQ(¢L;L0|Z|10)== N1

M., M
2Z w A0
. (“”’Mz-ki +1> (w+1)

FL'_ tww
Z %‘Ei+‘}ww (g—}L) L
}ww! (Mwm'_ %wm )‘
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@k+1+1ﬁbe4““
Mww! (N"M«uw)’

which offers also the generating
function as the constant term in its
Laurent expansion. Without intro-
ducing a further parameter, the
present expression can be brought
into a closed form

e F,'(N'E;)’ i
Bulis )= 5 (”ZZ_

IV, My + WMo
(SR REES

EoNeMy,

By putting 24 =t (x+1), it is further
brought into the form

@ (vt wlth)___FNENth )’

(tz+1) ‘“ +1) “"(t+1)

Consequently, our generating func-
tion is represented by the constant
term in the Laurent expansion around
the origin of the last expression
regarded as a rational function of a
single argument T, As readily seen,
it is also expressible by the constant
term in the Laurent expansion of an
expression

EIN-EOM.!M:.I M. !
B (ii; iilz]4;,4,, )= (Nl 2 )IM:! Mw-F M.
N' “’A "’“’t ik

'{65;+%)(zt+1)+(4w+5 (t+1)]

regarded as a rational function of
three arguments 4, , 4, and t,

We have thus derived, for a type of
mother—child combination (A A ;
A, A.), several analytlcal ex-
pre351ons, of which everyone yields
the generating function as the con-
stant term of its Laurent expansion
around the origin with respect to a
set of respective relevant parameters,
For every remaining type of mother-
child combination, a similar procedure
will leads to a corresponding result,

We set out in the following lines
the results which are derived in such
a manner, In every expression, the
generating function is obtained as
the constant term of its Laurent ex—
pansion around the origin of the
respective set of parameters.

I. Case of a homozygous mother

A L ®



M;; !M;u! E.,' (N" E.,)!
NYN=M s

@, i 5yt t,)=

(tz+ 2 M“"" 1+t§z+tw—z—?)M“‘“(1+ t;+tw)wM”“’;

- . L'»' (N" E.t)"
sl =GP

W

(14t z)M“(ut&ﬂ)MS“’( 1+ t)M“’“

B, ks 2l 4, )= Bl (-EMIM, M
N'AM§§AMww tF

(oo o)

(1) (ALAA;; A;,AL); §") = i
S=4, Miwi% MLL, M““":a%,; LM,J,,

“sh
@ (AAGAA) &=k,
=k, M, ‘Z:Mu M... ”Z,{Maa.

a.§lu

II. Case of a heterozygous mother

A A Mo F HIN-E!
___Mu-M‘“‘ L& N1y
@l(q,gﬂ‘fl't;,'tw)—\ '(N~M¢.,w)'tm“tmw

t Zﬂ. s &3 Z+3)M'ww(1+t *t)

’ I (N-E;)!
@2(&3, ;""Z!t) —ﬁ———-——

,(1+tg%)M;;(1+t&t§ )M‘“‘(Ht)M“’“’

Bt 4,56)= -»_(_@Mﬂlﬁ_
N, /J 95,3 Mwwt 5

(B, () (lw Yaro}"
Gif) (AA; AAL),

(t 2, 1213 E} M“’“’

S:' 4y Mf»w :62: MLE:; M‘,,w:" Z‘ .Ma.ﬁ.
- A

i) (A,;A;; ALAJ-),- EN=ij:
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‘)} ﬁ‘f‘«

M‘A.w 24 Mt“ M *Z M, 1, vaw'_ZA M‘A(x
a‘ia
M‘QS M M, +M”, M;w: M, .+ 1\4&:‘)

W) (AA AN, §n =ik
§=%, M, —LM“ M= 2 M.y,

Wiy L#ﬂ

By means of the formulas just ob-
tained, several statistics for the
stochastic variables are readily com-
puted, For instance, logarithmic
differentiation of the expression

EJ (N" E‘_)'
Nt e

. M Mww
-(1+tz)M“(1+t—Z—Z—1> “W+t)

@(LL;LHZ”):

with respect to 2 yields
2
57088, (i dilzlt)

x
2

- t
MLL1+tZ+MLw 1+t7*;'1 >

whence follows, after putting z=1,

? e
a—fi@zo"“? wlllt)
_ EL'(N_FL‘)’ (1+t)N

N! th
o (M )

By separating the constait te m in the
Laurent expansion, we agai.. obtain the
mean of X in the form

X)) = 5%@ (id; celt)

F.(m.+ ), 1)

Similarly for the remairu.ng types of
cambination,

4. Distributions of genotypes.,



In a previous paperl), the problem
of estimating the distributions of
genotypes after a panmixia has been
dealt with in full detail for general
case of any number of alleles., As
remarked there, the problem can be
reduced to one in which there concern
a fewer number of alleles, though the
argument has concerned there with the
general case for the sake of complete-
ness.

We shall now explain a possibility
of obtaining an alternative expression
from which the generating function also
follows, However, since the result
previously established is considerably
satisfactory, the present rather
primitive procedure will look to dis-
advantage compared with the previous
one,

For the sake of brevity, we illus-
trate here the simplest case m=—=2
somewhat minutely. Let accordingly
two alleles be denoted by

A B

and the given distributions of three

genotypes AA, AB, BB in females
and in males be denoted by

F,E, F ed M M, M,
respectively, so that

F; * Et t Fa ='M1+ M, * MszN,'

N bveing fixed, F, and M, are
dependent .

and

Introducing a set of three sto-

chastic variables X, and 7 of
which the range is given by

J'{;.. X,Y,Z.ZO,‘ X"'Y*Z':"N’

we designate by

VX, Z)=YXZ|E M, M,)

the probability that.the distribution
of AA, AB and BB in the next
generation after a panmixia becomes
X, Y and [/, respectively;
being dependent. Our present purpose
is then to derive the probability-
generating function defined by
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Blu,w)= gﬂl«y(x, 7)uXu

We first consider a partition of
the whole of males into three classes
according to three genotypes of females
to be married. Namely, let each of
M_' (o=1, 2, 3) individuals be
divided into three classes, empty
classes being admitted, in such a

manner
3 3

Mrz,g;fi Lo s E=°._ZL Lo -
Let the matings take place such that
the x_.'s (c=1, 2, 3) males are
combined with F_ females for T=1,
2, 3. Here, the suffix ¢ indicates
a genotype of a male, while the suffix
T indicates a genotype of a female
concerned; the suffices 1, 2 and 3
correspond to AA, AB and BB,
respectively.,

All the possible permutations of
genotypes of males amount to
N'/M,"M,I M,!, while the permu-
tations of F. genotypes of females
to be married with males of T th

class amount to

' / _
E!'/x et x ! (e=1,2,3)
On the other hand, the matings

AA
xAl, AAXAB, AAxBB, ABxAA,

ABXBB) BBXAA_,.
BBA" AB»> BBxBB produce a child
of

A with probability 1, 1/2, O,
1/2, 1/4, 0, O, O, O, a child of AB
with probability 0, 1/2, 1, 1/2, 1/2,
1/2, 1, 1/2, O, and a child of BB
with probability ¢, 0, O, O, 1/4,
1/2, 0, 1/2, 1, respectively., Con-
sequently, we get

MMM - P
V(X )= TT—% T[I;

E!
!
PIRE .

D s () e (3
D@\ 7. Wy . \2
& S Eovt) z xu!xu)!

@)

(1)
(i )xu.(1 X2 (_1_)7(2)
@ \4 z ) 4

Wy, @
x ot oy

Z,,!

%y (4 )”n_Tx_z_a_!_ (LY
o e\ 2, OIPRETAVS .
x§2!131! 2 x).!!x)-B!



The range J{, of the first sum extends @_ @ _ (2

over all the possible partitions of a‘zs'“ 1;;-9!13+ xaz—z MRSV P

N males, while the range of. of the . @ ®

second sum is given by Ly ="M+ 2y + 7 =, t o5
ch)-t xl(f)—: Xy, scl(:_’-& x§2= Xyq, here the duality between the suffices

1 and 3 is again noted,

w @) [€))
X, t QCLL+ K2 = Xaa, . .
QZ, In view of a relation
: @, Lo _ @, ,.® W, . ¢
x\”“‘" 132., = xaz, ng + Xy = xz,a} x11+ rL'L+ le,_ + xuf+2xli’+ x32_+ xm
(1), 4 (1) w__ _
X+ xir e g, =X, =M, + E — %y,

(€} @) ) —
WKpp T Xy TG, + X33 ; we thus obtain

MM, M EEE!

the letters indicating exclusively P, w) =
non-negative integers, Nt 2 Mt K
1

Among nine quantities X, ( a0, T Z uXwZ Z pogy Py PR P
=1, 2, 3), only four are independent. i g TR
We may take, for instance, =x, , X,, yes
x,, and X, as independent variables. 27
The remaining five are then determined Z ¢ P )
uniquely, i, e. there hoid the identi- z x,fi’,'xfi!xii’! x11’!xﬁ’mi’fxz‘i’!xii’?xs‘i’?xii’-' !
ties

X, =M-x Xy X =F-x =M%, the independent variables in J’ﬂ H
I A ! ’ ;s < being, as stated above,
o Em,

X s Zs Xy Xy Xaps Xy
Xyy= M.+ % %,.=M —% spectivel
13‘{‘;—2“— N wat Xy, Was— M=%,y 1, Jeo

x(z) x 1) 3) (2)
By making use of multinomial

12 ? 220 Xazo  Xaas TE-

the duality concerning interchange of identities

suffices 1 and 3 being here noted, wX WZ

On the other hand, among eleven quanti- Z ) p

ties indicating the numbers of children X7 bR E vl Sed syl
produced, again only four are inde- ’

pendent for a fixed pair of X and 7. — 1  Mex,+x- x‘%)ﬁ X,
We may take, for instance, x(®, Q}I, w +w)

(3)

) (2) (2)
X2 5 9, and L, as inde-

(&)
. ;:-j;' w‘Ma'\xSl*xzzf X3z (i"'W)xl%,
pendent variables, The remaining =
seven are then determined uniquely, Z w
i, e. there hold the identities 951m, XN o Dp 5
2. 12 32+ 32 .

e @
Xz w Xz

2),.2)
w_ Y- CUMPCD Xp2) Xz
xu = "Mﬁ‘ xﬂ"‘ Xt X2,

—_ 1 (1+u’—1)x11_1_'(1+w—~1)7(32.'
X3z

_ T _ - 1) (2) x,,!
xu = Fi Xyt Xy, X+ Xy~ Xy, 12
W @
(1) x 2 x x 3
Xy =%, — X3 Ll Al e
@ <3) w @) 3
@ ) 3) B2 % Xaz ! £ ! X,z !
= E."xu"xaz" X =%, L
—_— x
® = (w2 +a) "2z
X =x, —x® X, ! ) 4

32 32 32,
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the generating function can be brought

into the form
Beu,wy=u! M MBI ETE]
N' 2.M2-+Fz,

( W2+ w)

g w00

fac 0
Kxii-xzi- x%i! xiz- xzz! X3, 7(13! xzs!xﬂ-

Next, we get a relation
x. x,
w3 (L) aw) B
% xulx“! 2yt %y !
M-

32.(1+w) xu(ﬁw) 3 M. ~ Xyt X3z

(M -z, (M, + 24t 230!

Ry (Ma—xaz)( b/11—1331+xu_+9c31 )
y %y Fa'—Mz— LORE ot

Xyt

__‘w'

L+w
W (L+w)

in which the sum of the right-hand
member is equal to the constant term
in the Laurent expansion around the
origin of an expression

@ )M:fxsz )M ~E 42+ X, MS E+xyg X

1+A,
regarded as a rational function of A .
On the other hand, we have

ZW

x1_3 xil ’ xl?»

{+wr _i_
Wt A

M-

)

Hence, ®P(u,w) is given by the con-
stant term in the Laurent expansion
around the origin of an expression

X

= G (00 o

_ MM IMJEIE!E!
Plu, wir)="-t N1 2Morf |
©w M, i 3
(1+u. 1+w> <i+w FJM

F, -
-(4+ u)F‘ (”i’;\’u"r) (14 A)M‘ E (s zean) B

u+2+ws A u{ U+24+W (W/\ 1

(LA w\irw ru

)’(3 1
Ve

el

'Z {m(iﬁ*w)}

Xll."‘u.

!
xﬂ" Xh.!xh! CMFJCIL)!(M[F +xl1f1'al)' (M Xn)'
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2Hutw
'(i.'fﬂ-) (2(1+A) =+

Further, the last sum is equal to the
constant term in the Laurent expansion
around the origin of an expression

U+2+wW w '—)\- 1
[{(1+A)(1+1L) {+u * 1+w)}. s+l

U2 +w (WA ! )}—lg}g. (§+1+§)N-E,
+[(i+7\)(1+w) tw  1ra gy oMy

regarded as a rational function of

E and c)o

Thus, we finally obtain the desired
result: The probability-generating
function $(u,w) is representable as
the constant term in the Laurent ex-
pansion around the origin of the ex-
pression

|
B (uwwlng )= MMM

N'CN—F ) "
(1—-;(—[, 1+W>M1(1+)\) Lwr L:u,) ’

(1+ u)§ ( 1+ 'uf)§ (1+w)
0

)
2 +u *{tw, 1+w 1*

(1+ 5+ §)N—E'
) gMy g Ms

regarded as a rational function of
three arguments A, § and § .

It would be noted that there holds
a remarkable quasi-symmetry. Namely,
if we replace in @ (u,wlr; 5 8) the
quantities w , w; A by w, «;
A~!, it remains unaltered except the
interchange of % and % and of
suffices 1 and 3.

Now, the generating function having
been established in an explicit manner,
several statistics on stochastic vari-
ables can be obtained merely by differ-
entiation together with separation of
the constant term from Laurent ex-
pansion, though actual procedure of
computation will be considerably
troublesome.

We give here a brief sketch., Loga-
rithmic differentiation of ®(u,wla;¢,3)
with respect to « leads to



%log @(M,W‘A; £,8)

1 —1
— (RIS 2
=M, (L+m)y +M, 1+
M LA wA 4
1+ 1tw T+w A+w
«w 1 _Aew
1 j.w. L+w 1W~ _(rwt
+E£__i_+F A (g * ) ( 1*%)
tu P reaw jen (o LTV
1+A w . A WA N {

0w w frw
‘ .

whence follows
—éﬂb(i 1]2;%,8)

MMM B! @ g e Y

NTG-E) AP 5

i)
2(1+5+7)  (1eA)(A+ £43)

A g

Thus, by separating the constant term
of Laurent expansion, we get, after a
shitable rearrangement of terms, the
mean of X in the form

= ﬂ@(i) 1)
1 I M
_N_( 1 T)(Mfr —f)
In view of symmetry, we have
Z~ = _%} (P(l’i)
1 M,
N (E +%)(M3+T
and kfnce further
Y=N-X-7
i
=yl 2 (B F)M )
= ..‘.[.\.I — (PI“P.; )(ML\MS)
2 2N :

Hence, putting
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® F)
b= (E+R), 4 =2(EE)

™)
12=L(M+ M) <M)1( MM
we obtain
V7 ), (M) (F), M)
X NE‘& AMJ Z NI)

Y N(P(F) (M) (F)P(M) .

Next, in order to derive the
variance of X , we further differ-
entiate dlog®(w,wiA;5,5)/on with
respeet to u . We then get, after
putting «w =w==1, substituting the
expressions derived above for dlog®/ou
and then separating the constant
term of the Laurent expansion,

2 It
2 20 ND
{ )(Fﬁr Hme ) )

N(N~i){(N o) B oy MﬁN& ]

The variance of X is then given by

VarX~~@(1 n+¥- X

Similarly, we obtain

2 1
'bWL@(i’ 1-)"—N(N-___1>

5= (5 B (g2
B g

1
e (v
and the varia.nce of Z is given by

var ] = @(i 1)+Z Z

Finally, we get in a similar manner

3w1

wawd"‘)(1 = N(N ~1)
(BB B Hone o -2



(F) (p)

N(N 1){NIA _’:}{Nzﬂ{w (ML%

et

and the variance of }T is given by
varY var X + var Z

{buaw©“ D= XZ}

in which the last term except the
factor 2 is nothing but the covariance
between ¥ and Z :

cov (X Z)

s@(t n-X7.

Of course, all these results corre-
spond to the lowest particular case,
m==2, of the general ones 31ready
derlved in a previous pape
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