THE TOPOLOGY OF SUBHARMONIC FUNCTIONS

By Mitsuru OZAWA

1. Introduction.

Let G be a v-ply connected planar
Jordan region whose boundary is denoted
by B, 7 being assumed to be a finite
positive integer. Let U=U(x.4)
be a single-valued function pseudo-
harmonic in G and continuous on B ,
If U%, %) has a finite number of
points of relative extremum on B ,
then a relation

m-mn

2-v

holds, where m is the number of
boundary points affording relative
minima to U and » is the sum of the
orders of the saddle points of U on

G .

This theorem is a starting point of
the theory introduced by M.Morse-M.H.
Heins [1], in which the more general
results under general assumptions has
stated, but their methods highly de-
pend upon the group-theoretic ones.,
Soon after Morse [1] has proved this
relation by the most elementary method
being able to consider as an extension
of a previous paper of iMorse-~Van
Schaack [1], in which they have con-
cerned the so-called non-degenerate
case only.,

The object of the present paper is
to extend the above mentioned relation
to the subharmonic functions. We shall
principally be interested to obtain
the result. Therefore we shall begin
with somewhat stronger assumptions
than we need actually. ' In our case
the so-called critical sets are not
always the isolated ones (of course,
not always the non-degenerate ones),
and moreover they may consist of a
critical line "en bloc",., Difficulties
will occur in this aspect. Thus we
shall assume the stronger assumptions,
some of which involve the essential
parts of Morse's paper.

2. The basic assumptions,
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Let G and B be the same as in the
Morse's paper. Let u = u(x. %) be a
function defined on G , single-valued
and subharmonic in G , and continuous
on F , and not reducing to a constant
in any compact subregion of &G , where
=G +B , where the subharmonicity
of w means that the mean values of w
in any small disc are always not less
than the value at the center.

For the sake of simplicity, we shall
confine ourselves to the case where w
does not reduce to a constant on any
subinterval of the boundary B unless
the contrary is explicitly mentioned.

Definition 1. If a point ( =. ¥ )
satisfies u(s,y)=c¢ , then we call
(x. $ ) lies on the level ¢ , ¥
means the region below ¢ , that is,
the collection of all the points on
G satisfying u(uy)< ¢ o Simi-
larly, Uter , Ycor, Ute) mean the
region above ¢ , the set below ¢ ,
the set above € , respectively, which
are defined by the collection of all
the points satisfying wixy) >e¢
utxyy s ¢ , uwy 3¢ on G,
respectively.

Definition 2. Branching order of
level at P with respect to a neighbor-
hood N(P) , Let P be an arbitrary
point of G and N,(P) be a connected
component of the set common to a fixed
€ —neighborhood of P and to & . Let
Aye(P) be a set of the points each
of which can be arcwisely connected to
P along a continuous arc lying on
the level u(P) in N¢(P) , That the
level w(P) at P has the finite branch-
ing order by, (P) with respect to the
neighborhood Ng(P) means that the
point-set A, (P)- P has a finite number
of connected components. If it is not
the case, we put LN' (P)=oo

Theorem 1. At each point P of &,
lim b“ (P) exists and is either a
€0 3
finite non-negative integer or an infi-
nite number,



Proof. A component of AN.,(p) - P
is also arcwisely connectible in Nf(P)
as a member of A,‘(P)- P for €>¢
>0. Thus the monotoneity holds, i.e.,
by (D) S by, (P for &>
t,' >0 and hence the desired result,

Definition 3. M by (P) = b(P)
is called the relating branching order
of level at P .

Corollary 1. If b(P)# o s
then. there is a small positive number
¢ such that ”N:‘P“ bep)

Each connected component of Ny (P)
(\Qic) or of NE(P),\ U‘()C) for a
sufficiently small positive number ¢
is called the sector below u(p) or
above WtP) relating to ¢ -neighborhood
at P , where ¢ =u(P) .

Definition 4. Canonical neighbor-
hood of an interior point P ., If
there is a neighborhood N(P) of P ,
satisfying the following conditions,
then N(P) is called the canonical
neighborhood of P :

_ 1) Let T map homeomorphically
N(P) to the unit disc TN(P)
(z1s1, 2= x+iy=1¢®) such that
TYp) = © and the boundary curve
(N~ N(P) of N(P) , the closure of
NP , corresponds to the peripherie
(=z1=1) .

i1) If b(P)+ 0o , then each con-
nected component of A (P)~ P  corres-
ponds to a radius

ﬂﬁ
4 co.l, -~ bip) =
Chl v PR S bt

11i) There is no point lying on the
same level at P except the set A (P)
on N(p) o

iv) There are a finite number of
extremum points of w on the boundary
of N(P) , where we consider W as the
function defined on that boundary.

. Canonical neighborhood of a bounda-
ry point P .

If there is a neighborhood N(P) of
P , satisfying the following condi-
tions, then N(P) is also called the
canonical neighborhood of P :

_ 1) Let T map homeomorphically
N(P) to the right half of the unit
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disc TNIP) such that TP)= 0 and

B~ N(PY corresponds to the di-
ameter (x=0, 13 % 1) and

(NP -N(p) - Ba NP  corresponds to the
peripherie Jz| =1, z>0 ,

ii1) Ir b(P) # 0 , then each con-
nected component of Ay(P) — P corres—
ponds to a radius

‘~_1E U3 .4 L = ,2,"‘0 l’().
0 zf———v—L(P)*it,l | P

iii) and iv) are the same as in the
previous case of inner point, respec-
tively.

We are now in a position to explain
our fundamental assumptions,

F.A.I. There is no point on G
such that b(P)= e

F.A.II. There always exists a ca-
nonical neighborhood N(P)
of eachPe @ . For every
Pe &, T lzicr, 0<r<t)
x>0) is alsv a canonical
neighborhood of P , ,and
for every PeB T Yzi<r,
0<r<l, x>0) is also a ca-
ngnical neighborhood of

F.A.III, For any point PeG, P
cannot be a cluster point
of the sequence {P,},
such that Pee G and
b(R,) % 2 .

F.A.IV, For any point Pe B , P
cannot be a cluster point
of the sequence |P,},
such that P,¢ B and
b(p,) # 1 .

From F.A.II. and the Heine-Borel's
covering theorem we have

Corollary 2. There are a finite
number of relative extremum points of
u on B, when u is considered as a
continuous function defined on B ,
and

Corollary 3. There are a finite
number of subintervals of each proper
boundary of each sector in N(P), on
which ®(P) is monotone and continu-
ous, where the proper boundary of a
sector means the set common to the
boundary of N(P) and to the sector.

3. Critical points.



We shall now define many sorts of
critical points.

Definition 5. Saddle point.

If the number ON,(P) of the
sectors below u(P) relating to
Ne(P) at P is not less than 2, then
(P - 1 is called the order of
the saddle point P relating to
Ne(P).

As a remark with respect to the
definition of the sector below u(P),
we shall only concern that it is always
arcwisely connectible to the vertex P
along a continuous arc belonging to
that sector below w(P),

In general we have the following
theorem with regard to the quantity
O ¢ P

Theorem 2, At each point P of &,
L. onP exists and is either
a finite non-negative integer or an
infinite number,

Proof can be done in a similar
manner as in Theorem 1. But under
our F.A., there does not occur that
2 N, (P) = o . (See. Lemma 2,
E>o0 ¢

No. 5)

n . 6’
Corollary 4. If 22_;; v, (P) # oo,

then there is a small positive number

€ such that oy (P =Le o (P)

Definition 6. {:; a'Nt(P)-1= (P

-1 1is called the order of the saddle
point P , if o(pr22 ,

Definition 7, If w(P)<u(@)
{or wP)>u(@)) holds for any point
Q belonging to Ne(P) and being
different from P , then P is called
a strictly relative minimum point (or
maximum point). If w(P)s w(Q) ( or
wiP) 2 u(Q)) holds for any point Q
belonging to Ng(P) and being differ-
ent from P , and there is a point Q
for each € such that w(P)= w(Q) ,
then P is called a non-strictly rela-
tive minimum (or maximum) point.
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Definition 8, If any point of a
one-dimensional connected continuum
¥ is a non-strictly relative minimum
point, then ¥ is called a minimum
locus,

Definition 9., If there is at least
one point P, , named a connecting
point relating ¥, , satisfying the
following conditions, then the minimum
locus ¥, 1is called an open minimum
locus.

(i) P ° € y" ’

(i1) P, is arcwisely connectible
to every point of ¥, by a subarc of

0 °

If there is no connecting point on
a given minimum locus, then this locus
is called a closed minimum locus,

Theorem 3. On a minimum locus e
(and relating connecting point P, ),
u(P) remains constant.

Proof. If P is an inner point of

% , then w(Q) = u(P) , where
Q¢ Y, and belongs to a canonieal
neighborhood of P . Thus by Heine-
Borel's covering theorem «(Q)=m
constant at any point of VYo .
Since P, is a cluster point of a
sequence { P,} , Pa€ ¥ , the re-
lation wep,) - L. u(p,) =

Nn-) 80

constant remains true.

Definition 10, If there is at
least one critical point, that is,
either a relative extremum point
(strictly or non-strictly) or an
interior point having b(P)#% 2 or
a boundary point having b(P) #1 ,
on the level lying on ¢ , then ¢ is
called a critical value, If it is not
the case, that is, there are only the
ordinary points on the level lying on
C , then ¢ 1is called an ordinary
value,

4. Considerations in the small,
Next we shall determine the local
aspects of the level line around a

point P .
A) Case of an inner point P,



Since the sectors at P are finite
in number by F.A.I, it is sufficient
to eéxamine the local aspects of the
level line in each sector. Moreover
we shall be able to choose a canonical
neighborhood N(P) satisfying the
following condition by F.A.II and III:

In N(P)> there is no point @
with b(Q)# 2  except at most at P .

Let us denote the sector in question
by S(P) and its proper boundary by
PB(P) and other boundary by B(P) .

i) If b(P) = , then P is a
strictly relative minimum point in
view of the subharmonicity of w
thus o(P)= 0 , and B(P) is an
empty set. S(P) is a sector above
wepP)y .

Let Rg (P) be a domain such that
w@)-uw(P’< & and £ wWTI-ul(P)
Te PBP) | a.nd P and @ are mutual-
ly arewisely connectible on Re (P) .
Let the boundary of Rg (P) Be de-
noted by [¢, . Then [, is a simple
closed curve and [ PB(P) is
empty. And, on L_‘go , wilQ)=ulP) +¢,,
Let ¢ vary from O to €, , then
R¢€¢P) monotonically expands from a
point P to a domain Rg (P) , and
¢ consists always of a simple
closed curve. Strictly speaking, we
must prove the following fact:

By Lemma 10 which will be explained
in the sequel, there is only a finite
number of critical values., Hence we
may choose such a canonical neighbor-
hood N(P) that there is no critical
value except at P If there are two
disjoint connected components on which
u@ < up) + &, , then there is
at. least one critical point other than
P , which leads to a contradiction,
Thus there is only one connected com-
ponent, satisfying w(Q) < u(®
+& , in N(P) .

ii) If P)=1 | then P is a
non-strictly relative minimum point
in view of the subharmonicity of w« ;
thus O(P) = 0, and B(P) is only
one simple arc starting from P to a
boundary point R, of N(P) , S(P) is
a sector above u(P) .

Let Rg (P) be a domain such that
W(@)-wP) < Eu  and Eo < mim(W@)

- w(p)) , where Q,(+ R,) is the
relative minimum point on PB(P) ,
and P and @ are mutually arcwisely
connectible on R¢,{(P), Let the
boundary of R o) belonging to S(P)
be denoted by ["g¢, , being also a
simple arc and ending at two boundary
points T, , Ty on which w(Ty)

= uP)+rg, and uw is monotone and con-
tinuous on R T, =

iii) If bP) Z 2 , then S(P) is
either a sector below u(P) or above
w(P) , and B(P) consists of two
simple arcs PR, , PR, 5 R,,R,

W .

If Sj(P) is a sector above u(p),
then R%(P) and r‘e"‘ are similarly
def:med.

If S (P) is a sector below w(P),
then K" (P) and rs" are defined in
the followmg manners:

RE(P) is a domain on which w(@
<uW(P) ~¢ and any point @€ R¥(P)
is arcwisely connectible to P along
a curve belonging to RF(P) , where
~t >U(@n) - u(P) , @n being
any relative maximum point on PB(P) .
r‘* is a boundary arc belonging to

S&(p) .

In each case R (P) is a smply
connected domain bounded by 1 e , by
two radii_PR, , PRz and by two
subarcs R,T, ’?; on which

@ is monotone. R4 (P) increases
:ronotonlca and coﬁ'xtmuously from

AytP) A S"‘&" , that is, two
radii PK. , PR, , when & in-
creases monotonically and continuously
from 0 . [* is a simple arc on
which uw(Q)= w(P)+ ¢ or w(@)
=uP) -¢&¢ and b(RR)=2 for each
€ .

B) Case of a boundary point P .

i) If b(P)=0 , then P is a
strictly relative maximum or minimum
point.

i1) If b(P) 21 , it is sufficient
to consider the circumstances at a
boundary sector.,

Ye shall be able to choose a ca-
nonical neighborhood N(P) satisfying
the following condition by F.A,II, III
and IV:
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m NP~ Ba N(P)

there is
no point @ with b(Q)+ 2 , and on
B~ NCP) there is no point @ with
b(@Q)#1 . Since the definitions
of RE(P) and M are similar as in

A), so we may omit off the discussions.

Defmition 11. (o} N(P)e

-Z R‘.‘P) r AN(P) is called = cy-
lindrical € -neighborhood of P ,
b(P) 2 1 . If bPY=o0

R¢ (P> is called so.

Lemma 1, For any point of & ,
CN(P) ¢ is a simply connected do-
main increasing fram A,(P) with ¢ ,
if & is a sufficiently small positive
number. The same conclusion holds for
RICP)  of j ~th sector S; , and
[""' is a simple arc and bQ)=2
for every points Qe l for each
sufficiently small positive number & ,

then

.We shall often make use of these
R”'( P)  and [ ¥ each denoting #-th
sectorial £ -neighborhood of P and
its proper boundary, respectively.
Moreover we denote PR, and PR,
which w(@)= wtP) by the equally
level boundaries of R (P) , and
R T, and Ry Ty by the monotonic
boundaries of R"(P) , where S; is
not a boundary sector. If S; is a
boundary sector, then there is one
equally level boundary PR, and two
monotonic boundaries R,T, and PT,
Let ViPr= RZIP) + r‘* two

on

°

monotonic boundaries , and we call it
& -th adding sectorial ¢ -closure of
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5. Relation between

Lemma 2. Let P be a non extremum
point.
If Pe¢ &G, then
2P S bP

If Pe B , then
2(p—1)y & (P
Proof. We may prove this by choos-
ing a cylindrical ¢ -neighborhood
CN(PY, of P, By the subhar-
monicity of u , two sectors below
wtp) have no common point except
only a common vertex P . If P€ G
then each sector below w(P) has two
distinct boundaries in CN(P). .
Therefore the number of the connected
components of A.y(P) - P  is at
least 20°(P) If Pe B, then
each boundary sector below w(p) has
a boundary in CN(P)¢ and each in-
terior sector below w(P) has two dis-
tinct boundaries in CN(P),
Therefore we have 2(apy=2)+2
s bp)

Since w is subharmonic, there is
no strictly relative maximum point in
G and no non-strictly relative maxi-
mum point on @ .

Lemma 3, If b(P) =1 , then P is
either an ordinary boundary point or a
boundary non-strictly relative minimum
point or an inner non-strictly rela-
tive minimum point.

Proof. If P is not a relative
minimum point, then there is a point
Q such that w(p) F u(Q) in
CN(P) e . Thus there is at least
one sector below #(P) , that is,
o(P) 21

If PeG@ , then 25 20(P)
< b(P) =1 , which is absurd.

If PeB , then 20(P & b(P)*2
3 , that is, o) = | Then
there is at least one sector above
wipy , for, if it is not the case, we
have two possibilities; that is, P
is a strictly maximum point, or a
subarc of B ending P lies on the
level uw(P) in CN(P), These are
both contradictory.

°

.



Lemma 4. If P is an ordinary
inner point, then b(P)=2 and (P
=1 , and, if P is an ordinary
boundary point, then b(p)= 1
op=1 and vice versa,

and

Proof of the above Lemma is easy.

6'

Lemma 5. Xach closed minimum locus
can be divided into a finite number of
simple arcs.

Considerations in the large.

Proof. If a closed minimum locus
camnot be divided into a finite number
of simple arcs, then there is an infi-
nite number of points with b(P,) z 8 .
These points cluster at a point on @,
which is impossible by F.A.III and IV,

Definition 12, Euler number of a
closed minimum locus.

A closed minimum locus can be re-
garded as a one-dimensional closed
complex in the sense of the combi-
natorial topology. We shall now de-
fine the Euler number of this locus
by a number a,- a, , where a;
(t=0,1) are the numbers of the
dimensional simplices,

4 -

Lemma 6. The closed minimum loci
are finite in number and each of them
is of finite Euler number,

Proof. Each closed minimum locus
has either at least a point b(P)=1
or at least a point b(P) 23 or
biPr=2 for every point of that
locus. If there is an infinite number
of closed minimum loci, then there are
an infinite number of either points
P. with btRP)=1 or 23 , or
looping arcs, i.e., simple closed
curves in the ordinary sense., If
{Pa} contains an infinite subse-
quence |Pa,| such that b(P,)=1
or 23 and B, €G , then this is
absurd by F.A.III. Moreover if |P.,}
contains an infinite subsequence

w] such that b(P.,) 28 and
Pa, € B, this is absurd by F.A.IV,
If {P.} contains an infinite subse-
quence | Pn,} such that b(P,) =1
and P, € B , then this is absurd by
Corollary 3, since each P,, is a
relative minimum point on B .
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Each looping arc ¥, can correspond
to a boundary coniponent of B , and
the different looping arcs can corres—
pond to the different boundary com-
ponents of B by a suitable choice,
since u is a subharmonic continuous
function. The finiteness of the loop-
ing arcs is concluded by the finite-~
ness of the connectivity of G .

The second half of this Lemma
follows by the above Lemma 5.

Lemma 7. Strictly relative minimum
or maximum points of W are finite in
number,

Lemma 8, At each connecting point

P, relating to an open minimum locus

Yo , WP, = the level of % and

0(P) 2 | « Moreover b(P,) =z 3

for b e @ and btP) 22 for £ eB
Proof. If O(P) =0 , then P, is

a relative minimum point and arcwisely
connectible to ¥, . Thus P, ¢ ¥, ,
which is absurd., Thus o«(P,) 21 ,
And moreover there are two sectors
above w(P,) in CN(R), by the ex-
istence of Y, . Hence we have bYp,)

23 for FbeG , and b(p) 22
for p, e B
Lemma 9. Each open minimum locus

can be divided into a finite number of
simple arcs and the open minimum loci
are finite in number.

Proof. The first half of the Lemma
is easy.

Each open minimum locus has at

least one relating connecting point

P. . Thus there are an infinite
number of connecting points [P.} ,

if the open minimum loci are infinite
in number., If {P.} has an infinite
subsequence {P,, | all points of
which coincide with a point P, ,
then b(P,)= e , which contradicts
F.A.I., Therefore there is an infinite
subsequence { F.,,} all points of
which are different, On the other
hand, P., satisfies either b(P,)
23 or 22 , according.to P, ¢ &
or B ., Each case contains a contra-
diction by F.A.III or IV, respectively.

Definition 13. Let [, , called a
relating curve to a given open minimum
locus ¥, , be a curve obtained by



adding all the relating connecting
points to a given open minimum locus

Obviously [, is a one~dimensional
closed camplex.

Definition 14. Euler number E(¥,)
of an open minimum locus Yo .

E(¥)) = (Buler number of the re-
lating curve [,
- (the number of the re-
lating connecting points
to % ).

Lemma 10. There are a finite
number of connected components of the
critical points on @ .

Lemma 11. There are a finite
number of critical values of uw .,

These Lemmas are evident by F.A.II,
III and IV and Lemmas 6, 7 and 9 and
the theorem 3.

7. Maximal continuations of
a level curve,

By the finiteness of the critical
values of « we may put that there is
no critical value on the closed inter-
val [c-¢, c+t] except only at a
value ¢ which is either a critical
value or an ordinary value.

A connected component [.(¢) can be
covered by a finite number of canoni-
cal neighborhoods N(P;) ,{=1,

«ees M, where the sequence | P;} con-
tains all the critical points such
that bP) 23  if PeG , b(P 22
if P€B and the points being b(P) =1,
and P; € L(e) . P, may be not all
different.

If M) satisfies the following
conditions, then we call it/a maximal
arrivable level component of [,(c) or
a maximal continuation.

i) Mto ¢ L) and M) is a
closed set on L () ,

i1) Let | B,} be a subset of { R}
belonging to M(¢) . And {P;,} can
be ordered such that | P} and
{P.,.}] are mutually connectible
along a simple continuous arc Z ,
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belonging to a set common to a con-
nected component D of U() and to
the sum set N(R,) ~ N(P;,.,) ,
and on that arc Z u(R)< ¢ +e° ,
where D is independent of the choice
of the index and t° is an arbitrary
small positive number and £°< €
iii) The subare P;, P.,., of M
is simple and conrected, and it be-

longs to N(P,,) Y N(P:,..) -

iv) Any subarc of L containing
M) does not satisfy these three
conditions.

We may conventionally suppose .
Pl:y¢ N(Ptvﬂ) and Pf-m¢N(P‘-v"

Let L(¢) be a maximal continu-
ation, and {N(P)} be a finite
'‘number of canonical neighborhoods
covering L.(c) and satisfying the
above mentioned conditions ii) and
iii), We denote further by N{P.1
the part of N{P;) belonging to D ,
that is, DA N (P;) . Corresponding
to each WN(P;7 we construct the
sectorial ¢, -neighborhood R, (F:)
satisfying the condition that the two
monotonic boundaries of Rg (P;)
are contained in the former and latter
sectorial ¢, -closures, respectively.
We put [ (P:) = T)Tiesd and

T e [ (Ra), T,we T, (Bw)

and two monotonic boundaries T;(iRi)
and T () R ),

F'u‘s, 2.

let RDw, = 2o R, (Po)

and we call it a rectangular-like or
ring-like domain, On D(),, we can
introduce a triangulation: The arcs
T, -0 P; s Rti~) B s Tt

ey ET,(‘!‘-N) » R *n



TGy » P R‘H’ﬂ_—%_'&({ﬂ) T,
’f( (i+1) Ryay, (¢en "I
t and ﬁ_(:-)-%lmﬂ‘ * (1\." 1 [ XX
m) constitute all the edges of RD(o, ,
Here we have to remark that the no-
tations of the above listed ones are
sultably changed for i=1 and n,
The set RDtJe, — Litery _is denoted by
¢ -fleldof L(or :+ QK (L) .

When RDt),, is triangulated, we
must consider all the vertices and
edges belonging to L.(c) with their
" orders, or, more precisely, with their
incidence relations (in the sense of
the combinatorial topology) to the
other edges and triangles, and, if an
edge occurs two times in the different
orders, then we shall consider that
these ordered edges are different and
are separated mutually into two differ-
ent edges having the same incidence
relations for the edges and triangles
belonging to RDt(c), — L(e) as that
of tife original edge, respectively.
And we call this triangulated L.(co)
and RD(Y¢, the ordered L) and the
ordered 'ﬁ"ﬁ(c')—g, , respectively,

Then g, -field OF, (L) itself is
considered as an ordered triangulated
e. -t ieldo

An“example of the ordered L.(¢) and
the ordered TRO(e,, .

e shows a level curve lying on c .,
—~+«— shows an ordered maximal continu-
ation.
Ul shows an ¢, -field %,.(Lm) .
v Shows a level curve lying on
C+ 8, °

The Euler number -f «8’,,(Ltc)) is
equal to zero. In fact, the Euler
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number of CF, (L(o) 1is equal to (the
Euler number of ordered R Dcclg, )—
(the Euler number of ordered |,y ),
and we can easily calculate this by

the above triangulation, Thus we have

Lemma A1. Any £, -field 5y, (Le)
of a maximal continuation L,(¢) is of
Euler number zero.

We shall next prove that the maximal
continuations lying on the level ¢
are finite in number for any value ¢

Let ¢ be an ordinary value, then
each connected component is a simple
arc, And there are only two possi-
bilities, that is, one 1is the case of
a looping simple arc (simple closed
curve) and the other is that of a
simple curve ending at two different
boundary points., Moreover o(p)=1
and b(P)=2 hold for any point
PeG , and o(P)=1 and b(P)=1
hold for boundary points P . Thus
each connected component lying on ¢
is a maximal continuation.

a) If ¥ is a looping simple arc,
then Y bounds a domain D, belonging

to G .

If wQ)>c , where @ ¢ Py and
Q 1is a neighboring point of ? , then
there is a boundary component of B in
D, « If w@)<c , where Q€ Dy
and Q 1is a neighboring point of ¥ ,
then there is either a minimum point
of u or a boundary component of B in
o Y . These facts due to the
subharmonicity of u .

Thus a looping simple arc ¥ , ly-
ing on an ordinary value, corresponds
to either a minimum point or a bounda-
ry component of B . Therefore the
looping simple arcs lying on the same
ordinary value are finite in number.

b) If there are an infinite number
of non-looping simple arcs lying on
the level ¢ , then there is a bounda-
ry component of B on which there ex-
ist an infinite number of points ly-
ingon ¢ . Then | E,} has an infi-
nite subsequence |P.,} lying on B;

such that the subarc 7P, P.,, of
®; has no point lying on ¢ . On
Po, Pave, there is at least either

a maximum point or a minimum point,
which leads to a contradiction. For



there are only a finite number of
extremum points on B ,

Next let ¢ be a critical value of
LN

Let [L(¢) be an ordered maximal
continuation lying on ¢ , If we con-
sider the level lines lying on c+t, ,
that is, the proper boundaries of

¢, —-field of all L (¢) , then there
are a finite number of the level lines
lying on ¢+ ¢, . The number of the
maximal continuations lying on ¢ is
less than or equal to the number of
the level lines lying on ¢+ €&,
And each of the isolated points lying
on ¢ is also considered as a maximal
continuation, but tnis case is evident.
Thus we have

Lemma A2. There are a finite

number of maximal continuations lying
on any value of u on G .

8, Lemmas concerning the vari-
ations of the Euler numbers,

Let ES(S) be the Euler number of a

closed set 5 , de put E,(0)=&(Uw@),

EI(«)-E((UM))
-YmE (c-t).

If ¢ is an ordinary value of u ,
then Uta= (Yc) o

and E,(¢)

Proof. Each connected component of
the levels lying on ¢ is a simple
curve and two possibilities can occur,
one is the case of a simple closed
curve and the other is that of a curve
ending to two different boundary
pointso

Moreover O(P)=1{ for any point P
with w(P)=c¢ , Thus for any point
P with u(P)=c  there is only cae
sector below ¢ ., ‘Therefore P is a
cluster point of P. , u(P)<c
Thus (o) & (&) . On the other
hand U () 2 %—(c‘% is evident for
every ¢ , either ordinary or criti-~
gal. Thus we have

Lemma B. If ¢ is an ordinary
value of w , then [ (0)=E,(0) .

Lemma C., If ¢ is an ordinary
value of w and ¢ is a sufficiently
small positive number, then & (o
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= E“c): E.(c—e).—. B, (ere)

Corollary 5. If there is no criti-
cal value on a closed interval [a,b] ,
then EC;(¢) =ra constant for as ¢

__By the definition of U(e¢) and
(Uy » Y- () consists of
some number of open minimum loci, of
closed minimum loci and of the :Lso-
lated minimum points lying on the
level ¢ . These are finite in number,

Let C;(e&) and O0-;(¢) be the
numbers of the closed minimum loci and
the open minimum loci whose Euler
number equal to -i , respectively, and
both lie on the level ¢ ., Let C(o)
be the sum of the number of the closed
minimum loci whose Euler number are
equal to 1 and the number of the iso-
lated minimum point lying on the level
C [

Then we have

Lemma D,
E o - E,© -
Z‘ (-'.)C (c)+ (- O (c) + C(c)

1=0

If we construet a closed covermg
domain C( (g ) of U@ by
separating the o (P) sectors below
u(pP) at each saddle point P , then
the every level lying on ¢ is simple
in C((g(g)) ) . Here we remark that
the method of the separation is the
following manner: Two different
sectors below u(P), P being a
saddle point of w , are not mutually
connectible in a canonical neighbor-
hood N(P) of P .

Thus we have the following lemma in
the similar manner as in Lemma Aj.

Lemma E. E(C({U@))= E,(c-©)
for a sufficiently small positive & ,

Let S(¢) be the sum of the orders
of all saddle points lying on ¢ ,

Lemma F.
E(C(@@)-E,t = Sto,

Proof. For each saddle point the
Ruler number decreases with the order
of that saddle point. For a point
P with either b(P)=0 , o(P)=1
(boundary maximum point) or b(P)=2 ,

0(Py=1 , no change occurs, For



minimum loci and minimum points and
such a connecting point that o«(p)=1,
we need not pay our attentions.

Lemma G, For a sufficiently small
positive number ¢ and for any ¢ ,

Eilerr- B (o,

Proof, By the finiteness of the
maximal continuations lying on the
level ¢ and their relating & -fields
and the Lemma Ay, this is evident,

9. The first main theorem,

Jheorem A, Let W satisfy F,A.I,
IL, IIT and IV and be subharmonic,
then we have a relation

2—\) = Cl +Cz' + 6 "IS,
where (=3 Ceer , (o S50

¢ 420
(—‘") Cf—-{(c) ’ e':ZZ ("1\-) O_Q(t)

¢ {20

and S=ZS(C) .

Proof. There are a finite number
of the critical values of w , de-
noted by ¢, , c.es0, C, according to
their orders, and we suppose that
there is no other critical value. Let
m<u 2 M nold on @ , then E,(m
=0 and E,(M)=2-» ., By the
Lemmas mentioned above we can calcu-
late all the jumps of the Euler numbers
E,(c¢) at all the critical values ¢; .
Therefore we have the Theorem A.

Theorem B, Under the same assump-
tions as in Theorem A, then we have
an inequality

-C,+C s v-1,

where C, =22 Co.
< iZo

Proof. The theorem is deduced by
the subharmonicity of w . One may
refer to the proofs of Lemma 6 and
Lemma Ap. More precisely, if ¥ has
the Euler number -m(mzo) and is
a closed minimum locus, then there
correspond to at least m+1 different
boundary components. And the differ-
ent closed minimum loci correspond to
the different collections of the
corresponding boundary components.
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10. Supplementary note.

1. In the case where W can reduce
to a constant on any subinterval of
the boundary curve , we modify our
assumptions as follows:

F.A.I, II, III are unaltered.

F.A.IV', On B , there are a finite
number of maximal intervals on
which w is constant, where the
word "maximal" means that there
is no interval containing the
interval and satisfying the
constancy of u . These intervals
are denoted by I, , «..uu,
For an; int Pep-~s 1.

Yy po PeB a_zl I}
P cannot be a cluster point of
a sequence | Pn}, such that P,
¢BP and b(POY %1 . For any
end point P of I; , P cannot
be a cluster point of a sequence
{P.} , such that P, eB ¢ I
and b(P)#1 . For any point
Pe 13 , P cannot be a cluster
point of a_sequence | P,} , such
that P,€Ij and b(P)#2 .

me

’

Under these fundamental assump-
tions, we have the same results,
formally, and we can proceed to our
discussions with some unessential
modifications. The concept of the
"level index" due to Morse-Heins [1]
or Morse [27 is contained in our
definition of the Euler number of the
open minimum locus.

11, Another application
and examples,

Corollary 6. C, -3 2 2-v

Proof. Since C,20 and O €0 ,
we have the desired result.

Corollary 7. If v=1 and (=1,
then S=0 .

1) Let u=Ilf(m|*, where (2 is
a regular analytic function of z on
G . In this case there is no non-
isolated differentlal critical point
on @, and moreover we can transfer
the Morse-Heins'! theory by introducing
the poles of u suitably and taking
the logarithm of « . The introducing
method of the poles of W will be ex-



plained in No. 14.

ii) The case where Au=Pu and

either P2 0 or €0 , definitely,
on G .

iii) The case where Au = const.
on G .

There are many examples other than
those listed above.

12, Topology of superharmoriic

functions,

Let —v be subharmonic and continu-
ous and satisfy the F.A.I, II, III and
IV, We shall now directly examine the
topology of superharmonic function v
without passing through that of sub-
harmonic function -V, Here we
should explain some needed modifi-
cations of several definitions.,

i) Saddle points: Let N(P) be a
canonical neighborhood of P ., Let
v@QIC v(P) , Q€ N(P), P,
then we construct a component, called
an extended sector below vV(P) , each
point of which is arcwisely con-
nectible with @ by a continuous arec
belonging to N(PY- P , and on which
v(R)s v(P) . If the number
Tw(P) of the extended sectors below
v(P) is not infinite, then there
exists a limit of T,(P) when N de~
creases to a point P ., If T(P)
= &’"P Tw(P) 22 , then we say that

TP -1 is the order of saddle point
of v or P is a saddle point of order
™ -1 .,

ii) Maximum locus of V : The
maximum locus of vV is the minimum
locus of -+

iii) Open or closed maximum locus.
If a maximum locus Y, of v has
either a connecting point P, when
Y, is considered as a minimum locus
of -v or a boundary point, then 7V,
is called an open maximum locus of .
If it is not the case, then 7, is
called a closed maximum locus of v ,

The definitions of the critical
points, critical values, ordinary
points and ordinary values are the

same as in the subharmonic case. We
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have already proved the finiteness of
the critical values of -+, and hence
we have simultaneously the finiteness
of the critical values of v ,

iv) The Euler number of a closed
maximum locus V¥ .

We shall now define that the Euler

number E(?) of a closed maximum locus

is equal to the number of a closed
minimum locus ¥ of -v .

v) The Euler number of an open
maximun locus Y, .

Let l—; be a relating curve of
¥, obtained by adding all the re-
lating connecting points and the re-
lating boundary points of Y, . We
then define the Euler number £ (7,)
of ¥, in the following manner:

E(¥) = E([7) - (the number of all
the relating connecting
points and the relating
boundary points of ¥, ).

Then we have the second main
theorem:

Theorem F, Let v be superharmonic
and continuous on G , continuous on
B , and satisfy the F.A.I, II, III
and IV. Then we have a relation

Cm "Cm*czm"on‘sm;

where C,,‘ is the number of the iso-
lated boundary minimum points, C,,,
is the number of the closed maximum
loci having the Euler number 1, C,,
is the sum of the Euler numbers of the
closed maximum loci having the Euler
number <0 , Opn is the sum of the
Euler numbers of the open maximum loci
and Sy is the sum of the orders of
the extended saddle points.

2=V

Let £ (¥($) be the number of Y of
the function f . Let M and m be
the maximum locus and minimum locus,
respectively, where the word "locus"
contain the isolated point. Let C-
and 0 denote the closed and open
locus, respectively. Let indices 1
and 2 indicate the first and the
second kinds, respectively, there the
first kind or the second kind means
the locus whose Euler number is 1 or
is less than or equal to O, respective-
1ly.



Let B (vi= ), E (mn),
E‘ ()= B(C M), E:zlv)=z E(CM, (),

0,(v1= 3 E (0 Mw),, Cml-v)),

0.(v)= 3 B(0,MWACm (-v),

Os ()= 37 E(0, M) 0,m(-0)),

E )< 3 B(Cmi-n), E‘z(~v)=ZE(C,m(-v)).

Let "M¢p, be the total number of the
relating boundary points of such a
locus.that belongs to the set of

O, MVMIVO M (y)n Cm(-v) , and
m,, be the total number of the re-
lating boundary points of such a locus
that belongs to the set of 0, M(w)
~0,m(-v) and does not belong to a set
of relating connecting points of the
given maximum locus of v .

Then. we have the following four
relations: B
D 2-v= E_(v)+ £, () +0, (v) + O, (v

* 0 r B, v~ Si(v) - Syev),

2) -V = El(- v+ E:z“"') + 0, (-»
=Sitvy = S, -v,
3) E-‘,(v)* E:,(v) + 0, W)+ Or(v) + ney
= E,('V) + Ez(-v),

03(") g

L
) = 0,t-v) = ) E( 0ytn(-v1)
where S;(f) and Sy are the sum of
orders of the inner saddle points and
that of the boundary saddle points of

§ , respectively. Then it follows
that

5) S;(-v)= S, (w).

Therefore we have a curious boundary
relation, that is,

Em(v) - (g rmgy) = Sb(v) =S,

eorem G. Under the same hy-
potheses as in Theorem A, we have a
relation

Mb("‘) -my(u) = S,b(—u) - &(M) ,
where M,(u) and m,w) denote the

numbers of the maximum and minimum
boundary points of 4 , respectively.
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13. Proof of the Theorem F,

Let V@, V© , Vo and Vo
be the sets of points satisfying the
conditions v<c , vac , v>c
and v 2c¢c , respectively.

The set V() - (V)  consists of
a finite number of the isolated minimum
boundary points. Thus we have

Lemma A', B (V@) -E ({¥©))=Cue),
where C,.(¢) is the number of the
isolated minimum boundary points lying
on the level ¢ ,

Let CD(c) be the compact covering
domain of (Y (©) which is constructed
by separating the respective extended
saddle points with their orders. Here
we remark that the method of the sepa-
ration is the following manner:

Two different extended sectors
below v(P) , P being a saddle point
of v , are not mutually connectible
in a canonical neighborhood N(P) of

°

Then we have

Lemma B!,
E(CD) - E((,\é(c))) = S

where S(C) is the sum of orders of
the extended saddle points lying on
c -

Covering domain of the second kind
KD(c) is defined in the following
manner:

In the first place we construct all
the relating maximal continuations of
the proper boundaries of CD(¢c) , by
considering the function —v . More-
over we separate all the components of
V() CDtc) along the relating
maximal continuations. The union of
all the components mentioned above is
called the covering domain of the
second kind and is denoted by KD() .

Evidently we have
Lemma C'. B (KD(a)= E:‘(y(c-s))‘

Next we shall calculate the Fuler
numbers of the closed or open maximum
loci of V.



i) In case of the closed maximum
locus ¥. , all the relating maximal
continuations of Yc are the looping
simple closed curves. The Euler
number of the sum sets of all the
relating maximal continuations is then
equal to zero. Let P (i=1 , (u0s,
mn) and pF ( j=1, ....,ms be
all the vertices and the edges belong-
ing to V. according to the triangu-
lation already mentioned, respective-
ly. Then we have

E(Y ): m - WL
e (Em k-0 ),

since
" .
Z:L(hl)—zmso.

=
This shows that B (Y.) is equal to the
following number:

-[i S (the multiplicities of the

i=1 .
vertices ' — I )}

- i%: (the multi.plicities of
the edges ]vlj(=2) -1 )}]

in all the relating maximal continu-
ations of Y. .

ii) In case of the open maximum
locus Y, , each relating maximal con-
tinuation of ¥, is either a looping
simple closed curve or a non-looping
simple curve ending at two boundary
points.

All the open subarcs of the re-
lating maximal continuations, at any
point P of which there is no other
maximal continuation in the sufficient-
ly small canonical neighborhood N (P)
of P , are not our present problems.
Thus our attentions may be paid to the
maximal connected simple subar¢s of
the maximal continuations, at any
point P of which there is another
maximal continuation in N(P),

Then we have
B, =BE(0) ~n -m,
=m-m - (n, -Q-M.‘)’

where [, is a relating curve of ¥,
and M ,m are the numbers of the
vertices and edges of [, , respective-
ly, and . , », are the numbers of
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the relating connecting points and the
relating boundary points of ¥, , re-
spectively. On the other hand we have

MN=-Ne=N,

Z ‘9(1’.&) “2""*'\/c+'\/|. =0

1=1

b4

where %,* 1is any vertex belonging to
the inner part of ¥, , N¢ and N,
the sums of the branchLing orders of
the relating connecting points and the
relating boundary points of ¥, with
respect to ¥, , respectively. The
saltus of the Euler numbers caused by
a ¥ is equal to

- it“"( bpY-1) —m + N, + ij .
-

However, by the above arguments,
this saltus is equal to the following:

m-om-m, -m = E,‘Wo).

Therefore we have the following
Lemma:

Lemma D',
E(CDe) = E(kDr) + Cu )
* OM (v s
where Cyy {¢) and Qp(c) are the sums
of the Euler numbers of all the closed

and all the open maximum loci of v
lying on the level ¢ .

For any ordinary value ¢ of v ,
we have

Lemma E!.
E(Vi-0)= E(VwW@)
= E(\_/(c*e)).

Ne are now able to obtain the
Theorem F by the above Lemmas A' -
E', immediately.

Each closed minimum locus of -v is
either a closed maximum locus of V ,
or an open maximum locus of v con=
taining no connecting point but having
at least one boundary point. Thus we
have the relation (3):

Ey )+ B, (v + 0, (v) ¢ O,(v) + %ey
= E(-n+E, (-».



A relation (4) can be similarly
obtained.

14. Polar linear submanifolds,

We shall now introduce the poles
of u .

If either [, u(z)
z92,

holds defi-

Definition 15.
=+0 or L. w(z)= -o0
292,

nitely for all the approaching paths
to %, , then we call Z, a pole of

U either of the first kind or of the
second kind, respectively.

Definition 16, Polar linear sub-
manifolds of the first kind o (u=+w)
and of the second kind X (u=-x)

Let .>Z’ (u=+2) be a one-dimensional
connected continuum on which u=+o0
and the F.A.I, II, III and IV hold on
& (U= + ) then we call this
&L (u=+o0) a polar linear submanifold
of the first kind.

We also define a polar linear sub-
manifold of the second kind o (u=--e=)
in a similar manner.

_Now we should postulate a new
fundamental assumption:

F.AV There are only a finite
number of polar linear
submanifolds on & .

Definition 17. BHuler number of a
polar linear submanifold of the second
kind: E("t(“-—oﬂ)) .

o (u=-) plays the same role as
that of the closed minimum locus of
w . So we shall define that E (&
(u=-)) is equal to a, -2, , where
2, and 4, denote the numbers of the
vertices and edges on & (u=-),

Definition 18. Euler number of a
polar linear submanifold of the first
kind: E(ot(u=«roa)) .

L (U =100) plays the same role as
that of the maximum locus of -w in
the Theorem F, If «l(u=+w) has
n,,(& ) relating boundary points,
then we suppose that ES (& (u<))
is equal to 2, -2, - M ,(&L) , where
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a, and 2, denote the numbers of the
vertices and the edges on & (u=+e0)

Then we have the following theorem.

Theorem A',
-y

L+l +C +Cr b -8

where L, (w)=2>_ z E (L (u=+e)
L‘z(“)=§E(°’C(“=—°’)),

and

Similarly we can easily calculate
the variations of the Euler numbers by
considering the superharmonic function
U=-u .« Then we have

Theorem F!,

2-V
= L, (wsl,w +C, +Cy+Cyp
*Op —SM )

where E(x(-u'fw)) is the Euler
number of the polar linear submanifold
&L (-u=+e) of v of the first kind,
which is similarly defined as in the
Definition 18, and & (L(-u=-e)) is
that of the polar linear submanifold
L (-ux-e0) of v of the second kind,
which is similarly defined as in the
Definition 17, and L'u('")

B(OC(‘“ ”"‘)) and L.l (-u)
=§E(z(-a=-oe),

By the definitions, we have
Lg_(u)*L, (‘u) Mo
and
Ln,(u) + Nt = I-':.(""')'
where M-o0 and M+e denote the
numbers of the boundary poles of W of
the second kind and of the first kind,
respectively.

Thus we have

Theorem G!'.



Mo (W + M — Mgl - My,

= Splu) ~ S‘(~u,) .

If we suppose that the number of
the connected components of the closed
polar linear submanifolds of the first
kind is .. , where the word "closed"
means that there is no relating
boundary point on that submanifold,
then we have the following inequality:

Theorem B!,

Ca—cz_ﬁ V"l’*ch_

15, A family of opén minimum
loci.

In Theorem B, we have an estimation
of the numbers of closed minimum loci,
but this is not impartiality for the
treatment of open minimum loci. Three
numbers in the sequel are devoted to
maintain impartiality for both types
of minimum loci,

Definition 19, Arrivability of two
open minimum loci.

Let Y; (i=1.2) be two distinct
open minimum loci. If we can select
at least a relating connecting point
Py of each V¥; satisfying the
following conditions, then we call
that ¥y and ¥, are mutually ar-
rivable and denote this relation by

1H Yz °

1) Both F| and P, 1ie on the
boundary Ré"’_ of the same connected
component J')(e) of U(¢) , where

(}:} is the common level of ¥, and

2 o

2) P, and P, are arcwisely
connectible along a subarc Y (it may
reduce to a point or need not be a
simple curve) of R, and ¥ con-
tains |, and P, as a starting and
final points, respectively.

3) If ¥ is simple, then we put
Y=Y . Otherwise, we construct a
simple curve Y from Y by the sepa-
ration of the double points of Y ,
that is, by considering that some
number of different points eventually
coincide and constitute a multiple
point with some orders of Y .

4) Y can be homotopically defor-
mable to a continuous simple curve
defined by the following condi-
tions:

a) Let N(P,) and N(P,) be two
distinct canonical neighborhoods of
P, ‘and P, , respectively. For each
Yi there is a subarc [, with the
ends P; and Q;, of ¥ balonging to
N(P;) , and moreover satisfying that
R, and Q, are arcwisely connectible
along a simple Jordan curve X belong-
ing to a component %P (c) of Ufe)
except only at two points Q, and Q,.,
Let [T and [, be sensed by the order
lP, s @ and P, , @, , respective-
y.

-1
b) Let Z bve [[X I, , Where
[77' is the same arc, inversely
sensed, as [, .

For an open minimum locus there
holds ¥« ¥1 . In fact, we may only
choose F=F, , @ =Q,and X=Q,,
but this is trivial, N

Definition 20, Self-arrivability
that is, ¥, «+ 73, , (but non-trivial),

~-—- shows a connecting path,
woo- 3hows an X .



If we can select the relating con-
neéting points £, and F, of ¥,
satisfying the conditions of Defi-

nition 19, then we call that ¥, satis-

fies the self-arrivability condition,

‘A curve | defined in Definitions
19 and 20 is called a connecting path
between minimum loci. Some examples
will clarify these Definitions,

Definition 21, Familiarity re-
lation of two open minimum loci Y,
and ¥y . DNotation ¥, &7 .

If there is a finite chain ¥;
(G=1 52, seeey mt ,M ), where
¥; 1is an open minimum locus for each
4 and that there holds successively
the relations Y e ¥y , YV, <> V3 ,
LEXX XY 3’..-; <« Yﬂ. » then we say that
¥, and Y, are familiar.

Lemma 12. At each point P on Y
of two open minimum loci except at two
end points, there hold o<(P) = 1
and b(p) 2 2 » in which the in~
equalities appear only at a finite
number of points on Y .

Proof. If it is not the case, then
6(PY= 0 , Thus P must be a rela-
tive maximum boundary point, and hence
P 1is a strictly relative maximum
boundary point, that is, #(PY= o0 .
On the other hand, P € {7 implies
that b(P) 21 , which is absurd.
Thus o(py)2y .« If oP 22 ,
then b(p)24 for P€G and b(p)
22 for PeB . By F.A.III and IV,
these points are finite in number.

If Pe @ and o(P) 21 , then
biprz20p) =2

If PeB and o 21 , then
P 1is an end point of Y . Tor, if

P 1is not an end of Y , then &(pP)
22 . On Y, uw is constant, thus
Y does not contain a subinterval of
B . By o«P>)=1 , there is only
one sector S_(P) below u(p)in _
CN(P)e . One component [; of Y
is a boundary of S_(P), and the
other component [, of ¥ exists in
GACNCP)e . Any point Q of [}
AGACN(P)e except at P has b(R)
=2 and o(Q)=1 . Thus S_(P
has [, as the boundary, In local
at P ,Y consistsof I, ,P ,

[2 with this order. But in this
case Y #s not able to deform into a
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continuous curve Z homotopically,

which is a contradiction. Thus, if
PeB and ¢ Y , then o) 22

except at two end points of Y .
Thus at this point P , b(P) 22
and P is a saddle point.

The familiarity relation R« satis-
fies the equivalence relations, that
is, ¥ =% , "y~ ¥,= ¥~ ¥, and
]’1& 12, ,yL%YSQ ‘Xl"\"/ 'X:, °

Definition 22, A family of the
open minimum loci,

A class classified by the above
familiarity relation is called a
family, We suppose that a family,
as a point set, consists of all the
open minimum loci, any two of which
are familiar.

Definition 23.
family,

Range set of a

Union of a family (considered as a
point set) and all the possible re-
lating connecting paths (including all
the relating connecting points) are

v called the range set of a given family

(considered as a class),

Here we must remark that the range
set of a family has no multiple point
except at most at the relating con-
necting points and at the finite
number of multiple points on the open
minimum loci.

Lemma 13. The range set of a
family can be divided into a finite
number of simple arcs and is a closed
complex of one-dimension,

Definition 24, Euler number of a
family.

Euler number of a family (con-
sidered as a point set) is defined by
the following number: (Euler number
of a range set of the given family)

- (sum of Euler numbers of the

connected unions of all the
possible connecting paths).

The connected unions of all the
possible connecting paths are defined
as the connected collections of all
the connecting paths, of which any two
successive paths have a common con-
necting point. We call this connected



union a hedge.

Lemma 14. The different families
are finite in number and each family
is of finite BEuler number.

16, Restatement of the first
main Theorem A.

Let R(¢) be the number of the range
sets of a family lying on ¢ and
having the Euler number 1, Let
R_;(¢) be the number of the range
sets of a family lying on ¢ and
having the Euler riumber -i , Let
T; (¢) be the number of the connected
unions (hedges) lying on ¢ and having
the Euler number j . Evidently j 1is
either 1 or O, since any connected
union (hedge) is simple, And we put

ZZ({H) R_;tar=R,,

¢ {30
S O CUR(a= R, ,
¢ {20
Zc: R(C) = R’l ’
Z,Z Kq,‘-”’ R
¢ 130
and

‘CZTJ-(”‘ Ti» (3=0.1),

Lemma 15. Let% be a family con-
sisting of the open minimum loei 7, ,
..CI’ ’y."’ L] Then

»n

;E (%) = The Exxl%number of a

® family by the secon
definition: 5(,‘55’ ) .

a

Proof. Let Y~; have a.f inner
vertices, a; edges and wm¢ connecting
points, then

E(V;)a (‘Li’&-'mi ,a,:'- ~mt

L] 0 o

Thus
"

(¥ = 1l
‘z'_:‘E 1 ‘{Z_;(a’o a'1).

By the definition of the connecting
path each connecting path is a simple
curve. Hence we have

CUFr =2 ais 1)~ s 5)
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-'(17. -S‘)

=0 (ai- )

=1

where {, is the number of the vertices
on the connecting paths and S, is the
number of the edges on the connecting
paths.

By the Lemma 15, we have R +R,
-T,= @ . Thus we have

Theorem A",
CNC2+ R,*RZ—TI—S

= 2 -V,

17. Causality for occurrence:
of a boundary component.

Each ordered maximal continuation.
lying on a level ¢ is a simple arc,
being either of looping one or of non-
looping one, Every looping simple
ordered maximal continuation is
classified into two types. Let
be a looping simple ordered maximal
continuation lying on ¢ . G5 (L)
and [; (L)) are relating ordered

¢ -field and its proper boundary,
respectively, where € is a suf-
ficiently small positive number.

[; (Lte)) is also a looping simple
curve and bounds a domain Dg (L@) .
If De(L(e)) contains L(¢) in its
interior, then we say that L.(c) be~
longs to the divergent type. If it
is not the case, then we say that
L.(c) belongs to the convergent type.

Next we shall define a figure of
boundary type.

1f & satisfies the following
conditions, then we call 25 the
boundary type.

i) on b , wsc holds and J-
is connected.

ii) o and a finite number of
boundary components bound a number of
connected domains D;(Jf) .

iii) J_ Di(&) = D(&L) contains a
finite number of boundary components
By, eeeey B, , any two of which are

arcwisely connectible along a part of




iv) For every i , all the re-
lating maximal continuations, if
exist, end always at the boundary
points, and the relating [ ¢ (proper
boundary of & ~field) end always at
the different boundary points, and
every [, is contained in D) .

v) & 1is a minimal one among all
the linear connected graphs satisfying
i) - iv), that is,

D) & D&

holds if 573-1 satisfies i) - iv),

Now we should classify all the re-
lating maximal continuations ending to
the boundary points but constituting
a simple closed curve in total. We
now construct a simple closed curve
from all the relating [¢ by connect-
ing the pairs of end points along the
parts of boundary curve contained in
each N(P), where P is a boundary
point on Lit¢e) . If a simple closed
curve thus constructed bounds a domain
D; (Liter) containing L.(¢) in its in-
terior, then we say that L.(¢) belongs
to the divergent type. If it is not
the case, then Litc) belongs to the
boundary type.

A figure of any type is a causali-
ty of the occurrence of a sort of
critical point or of a boundary com-
ponent, in view of the subharmonicity
of w , Exact causality for the
occurrence of a boundary companent
arises fram the occurrence of the
figure of boundary type or of con-
vergent type.

If ¢ is a critical value of w ,
and L.©) is a looping simple maximal
continuation relating to a range set
R (¢) of Buler number O, and the
number of hedges is 1, and further
this hedge is of Euler number O, then
there is a slight disturbance in the
flows of the level lines but no ef-
ficiency for the causality in [c-¢,
c+e] , If ¢ is an ordinary value
of w , then each level curve lying on
€ 1is a simple curve,. either looping
or non-looping. If Li(e) is a looping
level curve, then the relating
(L) and” [ (L©). are also looping
level curves and $F¢( L) and
(L) have no critical point or a
boundary component. Hence re,“—-“’) ,

- b -

-¢s€,a¢ , has the same causality

as L),

Next we shall calculate the number
of different causalities for the
occurrence of a boundary component
which relates to the closed minimum
loci and the range sets of the
families,

Let b, £ , and %, be three
numbers defined as follows:

b is equal to the number of the
figures of boundary type in a given
connected level, £ the number of the
looping simple maximal continuation of
convergent type, and t, the number of
the hedges of Euler number O in the

same figure.

Let 3’.; be a closed minimum locus
of w with the Euler number -m , then
the relations b+ = m+ 1  and %,
= 0 remain true. Therefore there
must exist at least m+1 boundary
component.s,

Lemma 16, In any connected col-
lection of level curves, there is at
most one maximal continuation of
divergent type.

Proof. If there are two such
maximal continuations L, (&) , L,(¢)
of divergent type lying on ¢ , then
there are two relating bounded domains
De(.Ll.(C)) ’ Dg(bl(t)) con-
taining L,(cv, L, (¢) , respective-
ly. Then either D, (L) D Dg(L,(0)
or De(Lyen A Detlate) = #  (empty
set) remains true, But L, (c) cannot
be connected with L,(¢) along a
curve, on which u=c¢ . Both cases
contradict the connectibility of the
original figure.

The outest hedge of Euler number O
is the hedge bounding a domain which
contains all the points of the given
range set.

Let R4 be a range set of a family
having one looping maximal continu-
ation of divergent type. On R4,
there is no outest hedge.

Let Ry, be a range set of a family
having the outest hedge and let R _
be a range set which does not belong
to Rd.(\ Rh .



Lemma 17. In an R.h , there holds
a relation

b+l +t, =4 +2,

where —i 1is the Buler number of the
given range set.

Proof. In the first place we shall
consider that Rw has no figure of
boundary type. Conventionally, we
consider that the given range set is
a closed minimum locus, having no
figure of boundary type, then there
are irl  looping simple maximal
continuations of convergent type and
1 looping simple maximal continuation
of divergent type. Since there are
t,— 1 inner hedges of Euler. number
0O and 1 outest hedge of Euler number
0, we have i+1~ (t, -t ) con~
vergent maximal continuations,

In the second place if R, has
b figures of boundary type, then
any figure of boundary type can be
took place by a looping maximal con-
tinuation of convergent type. There-
fore we have the desired result.

Lemma 18, In an R, or an R,,
there holds a relation

L't'i *tn"tfl,

Proof. Proof is similar as in the
above Lemma.

For an R, of Euler number O, we
shall exclude this case for our calcu-
lation of the causalities.

Lemma 19. The 2,(b+ L) causalities
thus calculated for the occurrence of
the boundary component are all differ-
ent.

Proof. Evident.

Let Ny _¢,t, be the number of the
range sets of R,(u=d,4% ,c )
type, of Euler number -{ and having

t, hedges of Euler number O, Thus
we have an inequality:

irl N it
ZZ_: (in-t) Ny, e, +ZZ (i+2-%) Nh;t,to
130 t,=0 121 t=t
3 wataN
* (ir1-1,) +C. - C
=% t°=0 ° ¢, -i,t, 3 2
£ v-1
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From this we have

IR kT IN heid” Lo

&0 T2 ¢,
+ Cs - Cz s v=4 ,

and hence
Rs-Ry+ N, +C,-C, - T,

it

é V“t 2 Nh SZ:Z N"A“'::tg .
13l to‘l

Thus we have the third main theorem.

Theorem C.
Ra*'q," R—a’cz +N|‘
s T° + v—1
By this theorem C we have

Theorem D,
Cl'caf R'I*R's"'Nh
s S+ T, *Tl_ +1,

18, Applications and a
concluded remark,

Analogues of minimax principle due
to Whyburn (1],

Theorem E, Let w be a subharmonic
function which attains a constant
relative maximum on each component of
B ; the constants may differ for
different components. If w has at
least two different minimum loci in G,
then there is at least a saddle point.
or an open minimum locus in G.

Proof. By Theorem D, we have

C+C+R, +R,; 5 C +C, +R +R*N,

§S+T°+ 1*1.

By the assumptions of this theorem we
have

N =_,S‘*_(SL== 0) and
C1+C3 fR.] +RSZ 2,



which lead to the fact S; 21 or
Te21 or Ty 21 . Moreover
T; 21 implies that there is at
least an open minimum locus in G.

Corollary 8., If G is a simply
connected domain and there is no hedge
of Euler number O, then R;= C,;=0.

Proof. By Theorem C, we have
0= Ry~R,+C,~C, +N,

s v-t + T

and by the assumptions, we have v=1
and T, =0, thus R;=C, =0 .

Let the flows of the level lines be
defined by Fig. 5, the arrows showing
the directions of the increasing
levels. What facts can we conclude
by means of Fig, 5?

ﬂg. 5,

In the harmonic case, we have
S =1, but in our case we have
either§ =1 or ©6=-1 and Ry=C,
= @ .= Because we have by the
first main theorem A

1=C] +Cz+9—8-

By the assumption C, = 2 , we have

0 2C,+6 -5 =-1

but_ by the last corollary, C,=R;=C,
=Ra=0 , thus 6=-1 of gy
remain true, ’

This fact shows that the similar
causality does not imply the same
conclusion, and moreover we cannot
distinguish these by our given datas.
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