ON COMMUTATIVE T-CIL,OSURE OPERATORS™®

By Sitiro HANAI

l. ILet S be a complete lattice
and $ be the set or all T-closure
operators 9 detfined on S, that is,
each element a of S is mapped by ¢
on an element a® of S such that
ac a® , (avt)¥=afut? , (¥ = at,
of =0 |, where o 1is the zero ele-
ment of S. Iet § , ¥ be two
elements of & . When a%c a¥
f'or any element o of S, we define
¥< g . Then it is known that 2
is a complete lattice by this partial
order ¢! When (a%)¥=(a¥)?
for any element a of S, we say that

¢ and ¥ are comrmutative, Denoting
(a?)? by a s, We say ?Pvy
the product of ¢ and ¥ °

In this note, we will obtain the
condition that $ and ¥ should
be cormutative, and as an application,
we will next investigate what proper-
ties a maximal) subset ¥ of & has,
of which any two elements are commu-
tative,

2. In the first place, we will
consider the condition for commutabi-~
lity, by the partial order of & .

Theorem 1, If P¥=v¥¢ , then
PY=9ny -

Proof. Ir a¥=a , a 1is said
to be ¢ -closed. Let Cyp , Cy e
the set or all & -closed elements
and V¥ -closed elements respectively.
Then Cy &and Cy are both complete
sublattices over S with respect to
meet? and 9 A ¥ 1s a T-closure

operator determined by 07 A C‘f” .

let a be any element of S, then
a',w= n(x.ec ;X>d.,)=n(x_¢c -1)@’{.!“*
ES A d x Y' )
Similarly

a‘”:ﬂ(xecr H xDo.’ua*)'
x

Since, by hypothesis 0.9" = a¥?
and Cy, Cy are both corplete sub-
lattices over S with respect to meet,

oY a”=ﬂ(1ec,,nc1, 5 xD m’va‘y]_
x
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On t;h:'a, other hand,
P .
a = Q(zc-C,,\C\, ,x:a.)

=N (xe C?,\CY‘, «.)a:fud’)_

Hence ¢y =v¢ o Q.L.D.

Remark. It is easy to see by
giving an example that the converse
of this theorem does not always hold.
But the following corollary is easily
verified,

Corollary., When P¥ < ¥ ¢ , then
144 Y9 If and only if ¢¥=9, ¥y o
In the next place, we will consider
the condition for commutability, by

the product of elerents of &

Theorem 2. P¥ =¥¢ if and
only I 9¥9 = 9¥ and yyy=-¥§ .

Proof's As the necessity is ob-
vious, we will prove the sufficlency.
Since a?¥¥ = af¥ for any element

a of S, a?ve C, o

On the other hand, a¥?=N\(xeC,;xda¥
hence a¥? ¢ o9V . ¥’ )’

Similarly, from a¥¥¥ = o V9 )
we get a?¥ ¢ aV¥ . G.E.D.

Corollary. PY =-ve9 if and
only If ¢y and ¥ ¢ are both
T-closure operators,

Proof, As the necessity follows
from Thcorer 1, we will prove the
sufficiency. By the assumption that

v is a T-closure operator, we
have

(a7¢)?+= Q(xec* s x D a?'l’?) = at¥
Then of% 5> af¥¥ .

On the other hand, a¥¥c af¥?
hence PY =Py °

Similarly V¢ =Y¥9PV¥ . Therefore,
by Theorem 2, ¢y =vy¢ . weliala

In the above reasonings, we con-
sidered [rom the point oi view of
the partial order and the product ol
elements of ¢ . We will next con-
sider according to the relation be-



tweasn O and Gy . lLet CL , G} be
the sets ol' elements of Cp , G),.

which do not belong to Cy A Cy re-
spectively, then we have the follow-

ing theorem.

Theorem 3. $PY¥ = ¥§ if and
only if any element a of G} and

any element ¢ of G} are not com-
parable, except the case when there
exists at least one element of C?n Cy
between a and ¢ 9,

Prool’, Necessity. Suppose, if
pos3ible, that there exist oeCq
%e Cy such that acé¢ and
no elerent of Cy A~ Cy Is between

a and & . Then

v, z.)o.) cé.
then c¢a .

(0,?)*: a¥ - Q(ie C
Denoting (a? )Y by ¢ ,

On the other hand, since € >e¢ »

then ¢&Cpn Cy . Hence (a¥)?

=¢P>¢ and ¢¥ xc . Therefore
a¥y 5 o 7Y and a¥f 4 a?V .

Jet A be the set
Cw which
and Cy .

Sufficlency.
of all elementa of Ce n
contains all elerments of C/
Then A% 8 follows from S I, where
I is the unit elerent of S. Let B
denote the set of all elements of
C¢ n Cy which are contained in all
elements of C! and C§, . Then
B %6 follows from the fact that
B 2o , And let C be the set of all
elements of C? A Cy which do not be-
long to A and B.

lLet @&, be any element of S. When

we denote by + or the cases
according to whether @, 1is contained
in some element of B (or C, C'% , C§ )
or not, it 18 obvious that there arise
the following seven cases to be con-

sidered. In the following, we will
prove at¥ = a¥? . In the cases
(1), (3i1), (iv,, (vii), we can ea-
g8ily see that af¥ = a? , SO we
will prove the other cases.
B ¢ C* C#
(1) - - - -
(11) = z pa P
(111) = - + ¥
(iv) - + - -
(v) = t * o
(vi) - + + +
(vii) f\ * T :’_

Case (ii). As we can consider
the " Tatter case similarly, we will
prove only the ahove case, Jet
a e C,’, such that ag.> o, »
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then Q4 € Cq . Hence af
=Qag e Cg « Therefore af*=()(xeA;
25 Q) oy) . On the other hand,

a¥=N(xeA;x>4,) . Since any element

of A contains any element of C§ and
Cly , o DQ ax . Hence a¥> af¥ .
Therefore af¥<= ay . From aec A ,

it follows that a¥?= aY¥ . There-

fore af¥ = a¥f o

We will only consider
the above case. Let a,¢ Cg such
that ag > a, , then € .
Then there arlse the following :wo

cases: (1)Qa, ¢ C , (2)Ra,eCy .

Iet ¢, ¢ C such that
then ¢, eC . Hence
Therefore

Ccase (v).

Case (1).
Cy D 0, )
af=(Qa)nlp ) eC .

af¥. “af . Un the other hand,
since Y= (N a,)n (DY), a¥=(Na,)A(Q8,).
Thus aQ¥.o¥% . Pl RHRAINT

case (2). Since al=(Qa)n()cy) ’
af¥-QxeCyixdad) = Q) (x ¢Cy5 2D(Q )
f‘(Qcin « Then, in any case between
(Qa‘),\(f;c,)ECfncwy and (Do a(Rcy)
€CgnCy, RCy1s the least element of
Cy containing (Qax)an (R ¢;) o
Hence a V= Dy . On the
other hand, al? = Qcy fol-
lows fronm ay = Q Cy .

Case (vi)., In this case, it is
sufficlent to consider the following
two cases: (&) There exists ¢ €C
such that Qxa, > Cy 2 &, , (8)
There exists no element of C bhetween
Q ay and &, and between 0\
and &, , where 8‘, ¢ and .

< S

Case (& ). In this case, a‘!:f,\C, ,
0.;": (ch)n((p\ .‘ﬁ) > hence ﬂ.’*
=0 (xeCys 120 €7 e, 03T (x¢Coi 2 (Rl
Su*gpose that aY%p(y and
(L. *(;\Cr » then "O?C("c‘ ,‘l!'l"}"x .
T%s centradicts af = o Cz . Hence
“’D 2(;‘ Cx .

§ [ ). Since ﬁt‘(Qau)n(Q <),
af¥=Q (2€'Cys 2x2(Qa)n (R G)),
where Cg>a, , ey« C . Then
Qe (0¢) e Cy by the hypothe-
sis. On’'the other hand, since any
element of Cf 1is not comparable with
any element of CJ, , no element of CcY
is between M) ¢, and (Q &y )n
(@c, ). Hence af¥ . n cy .
Similarly qY? =r‘) ¢ . Q.E.D,

28,,

Case (

As an application of Theorem 3,
we will prove the following theorer
concerning the set .

Theorem- 4. W
sublattice over §
meet.

is a complete
with respect to



Proof. ~“As 1{ contains the
element ] and the zero element
of
that if )( is any subset of

ey * . Let ¥
ng}hxt of ¥ such that ¥€ X
Let = C’
to see that (f\

Vo) nc,
Let L be the ?

ST C

that is, the set o

;‘K

9

which belong to gex Cy but, not
vtvg’xc'"d Jtes she sel k¥
ere Gyy enotes e se c, K’y
On the other hand, since ¥ 1is com-
mutative with any ¢ e X , by
Theorem 3 any element of C¢y 1s not
comparable with any element of Cig

with the same exception as Theorem 3,

where Cjy denotes the set C,

a{J eJements

unit
o

, 1t is sufficient to prove

, then it is easy

FY o

’

Kao

’
be any ele-

»

Then any element of L is not compara-

ble with any element of the set
¢ - Q%L]gqx
exception as Theorem 3,

is determined by {X Cq
Theorem 3,

, with the same
As ey §
b

1l
is a T-closure

operator and is cormutative with <

When ¥€X  , then ¥>(NY

It is easy to verify that ¥

t e proof of this case.

°

and
are commutative, so we omit

On the other hand, since ¥ isa

g ,

maximal subset of

faf e ¥ -

thererore

Q.E,.D.

»

L)
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