ON PRIMAKRY ELFEMENTS OF A MODULAR LATTICE
BY VYuzo UTUMI

It is weli known that, in a Noe- be In @ . Ir g, == I (e)lor =12
therean ring, every ideal can be <y and Q. =1 ("é) ror k=r+1, '
written as an intersection ol primary -, m then ag="¢, g Aq
ideals. The theorem was extended inean v

by M.Ward and R.P.Dilworth to integral Proof. By the assumption, g, .
modular lattice ordered semigroups ANu=T(O) and hence 4 = QA q,n-
with maximum condition.([21, (3]) .. 1:(9—) . But 9= @, TOr =iz

The purpose of this paper is to dis- ey e ThUuS  @p= 00200 ~ Bre

cuss it for modular lattlces with =4 a2 4

maximum condition. =qa bt 2 gy
Theorem £, In two short repre-

§ I. Definitions. sentations ol an element a in L, the

radicals o1 the components coincide.

Let L. be a modular lattice with

maximum condition and @ be a set Prooi'. Assume, two short repre-
of congruences on L, such that every sentations A= %Aq2n - A bu= %11
meet of congruences in ® 1is also A%2n- A% are given. Let the mini-
in® . For a congruence @ the mal one among the p(¢.) and p(%)
class containing an element a 1s de- be, say, p(g)=06 . NOW Q¢= ¢5n%n
noted by @(a) and the greatest ele- “NGwe= Yien Yron-- Ywme« I €VEry pg3)
ment of @(a) by Qe . were difrerent from 6 then 9zn.-.
A n=¢1n%%n AQm=a Which contradicts
Definition I. An element 9 of our assurmption. Hence among the
. 1is primary (with respect to & ) £(g5) some one, say, P(%1) 1is
ir and only if 4= %o or ¢=1 (6) equai to € . Wnnce gn- N Em

for every @ in @ . =9zn- A% which completes the proot
by the finite induction.
Def'inition 2. A congruence @

in ® 1is a radical (with respect 3. DECOMPOSABILITY

to @ ) of an element a in [, 1ir

and only if @ 1s the smallest one Theoren 3. A meet ol a tinite
among the congruences by which a is number of primary elements which
congruent to I. have the same radicals is also primary

and has the same radical.
The radical of a 1s denoted by

f(a) . Evidently, €2 p(a) ir Proof. Assume, ¢, ¢, 2
and only if a= I (6). For a primary are primary and p(g,) = pf%,‘),' = P(gn)
element we have ¢ = I (8)1r let ¢ be in @ . If o2xp(4q)
62 rP(g) , and qo=¢ 1if gZr) . then g¢,=71 (§) Lor <=1, 2 , .
Hence q, A qyn-n %. = 1(6). But, ir
Definition 3. By a short repre- 0t play then ¢.= ¢,4 1Or ¢=| 2.
sentation (with respect to ® ) ol an +w m o, Thus (img.,\.../,%“)(ﬁg’ or-.
element a in |, , it is meant a - n 8%« . Whence $a%ndang noen
representation or a as an irredundant 1s primary. Next, ¢ ag.n. . ~¢.=T(ps)
meet of & rinite number ol primary since ¢, = T (p(g)) . ut, ir
elements all of which radicals are §nen AGu= I(P) f'or sone ¢
diiferent, in @ then a rortiori ¢,=1 (¢)
thus p(%)$¥® . Hence $iadan nGn
Definition 4. A congruence on L, has the radical p (¢) .
is sald to be neutral i1 (a) the
class containing I is a neutral dual Theorem 4, An irredundant meet
ideal ( [I]) and (b) a is congruent ol a I'inlte number ol primary elenments
to b Lt and only 1 aax= 6.4 tor of which not all have the same radl-
some x and Y congrusent to I. cals is not primary.
§2, UNIQULNESS Proof’'s We may assume by th, 3
that all the radlcals ol primury cori-
Letma I. (QA®)g= Qg . g ponents are dilferent. Let Q=9$,,3.n-
N Gm be 1lrredundant where g,
Theoren I. Let A= Agun- 'n %, be primary. If the minimal one among
where every ¢; be primary and g () g, say, p(3) =6 then
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Y Tl e e M Be=1
s P (81n %20 AQn)g = 3an--- A
=+ %1"1:/\ la} %w
. . But, it rollows also
from q,==I(6) that ¢.aqqyn--- A G

FIO) + Thus ¢ aun. ~9q,.
is not primary.

Lemma 2. For a congruence £ on
L, az=+4(e) implies a2tnac
for some ¢ = I(9) if and only ir
8 1s neuiral.

Proof'. Assume that, & satisfies
the above condition. If == ¢=1I (6)
then (Xx.@)v(yat) = avé (6) and hence
(Xxr@)V(Yat) = (vl 2 and Z= 1 (6)
for some gz which prove that e(I)
is neutral., The renuining part ot
the lemma is aiso easlly proved.

Theorem 5. Every element ot |,
has a short representation ir and
only it every congruence in @ 1is
neutral.

Proof. Assume that, every congru-
ence in @® 1is neutral. Let ¢ be
not primary. Then $e+ ¢ and ¢%I(p)
for some g in ® . From g¢g=g,(p)
we get Q2 %pn~C fOr some ¢ =T (p) .
Hence q =¢on (gvc) , Where g, = ¢
and 4¥Yc¢ ¢ since q# T(gp). Thus

is reducible. Whence every ir-
reducible element is primuary which
proves a hall ol the theorem by Lhe
generalized induction principle and
th., 3. Conversely, if a has a short
representation & = 91 92n--- 4. then
aAa=Qent for some t = 1I(6) Dby
th., I. Thus, if a=+4 (#) then Q=
e 2% and hence a 2¢nt which
completes the proof.

§4. EXAMPLES

Let R be a noncomrmtative ring
satisfying the uscending chain con-
dition f'or two-slded i1deals. The
totality ol ideals in R rorms an
integral modular lattlice ordered
semigroup L .+ A lattice congruence
of [, is sald to be (right) regular
if 1t satisfies the condition that
A= 8 implies AC=BC and A:C=8B:C
rfor every C in Lb , where : shows
the ideal quotient. A subset % of

L, 1s called a & -syatem if and
only it it satisfies the condltions
that (a) ®a R , (b) * 1s J -
closed, (c¢) 4 is muliiplicatively
closed.

Lommaa 3., In every regular con-
gruence g of [, , 6(R) lorms
a k -systen and A=8 (p) il and
only i1 A°'B and B:A are in g(R).
Conversely, I'or every R =-system R
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of [, , the relation that A:8 and
B:A s8re in &« defines a regular
congruence © in [, and 4= ¢(R) .

Proof is omitted but it is easy.

The radical o1 an ideal A is
def'ined as the intersection ol all
prime ideals containing A and hence
1t is the greatest ideal o1 which
n -th power is contained in A for
some positive lnteger m . An ideal

Q 1is (right) primary il and only
it AB<@ 1implies A<@ or B =
radical of A . ( [47)

Now, let ® be the set of all
regular congruences of L. . The & -
system generated by one element A
of [L , that is, the setl of all
those X such that A< X 1ror
some positive integer m , is deno-
ted by %4 and the corresponding con=-
gruence in @ by 84 .

Theoren 6. An element Q of [, is
primary with respeci to @ 1ir und
only if the ideal @ 1is primary.

Proof. Let an element @ be
primary with respect to ® and AB4@,
Since AB:A2B e #g and A:AB=Reks
we get AB=A(0p). Il Q= Q,
then Q‘QengAB)o,= s2 A hence @2A.
But, 11 Q=1 ¢ chen B < @
for some «n ., o@‘hu&s @ 1is primary
as ideal. Conversely, let Q Dbe
primary as 1deal and 6 be in @ .
Since Q= @, () » We have Q: Qg€ %p.
From @ z @, (Q:Qp) It follows that

Q2 Qg or Q=(Q:Q,)" [lor some
m . If the former 15 valid then
Q = @Qp 4and 1r the latter holds then
Qe * o Thus @ Iis primary wilth

respect to ® .

Theorern 7. Let Q in L be pri-
mary. Then there exists a prime ideal
such that p(@)=06p . P 1is the
radical ideal of Q@ .

Proof. The radical ideal P of @
is prime. ( (4] ) ®,2Q since
P*"< @ . But, iI 6(R>)2 @ then
a fortiorli @(R) 3P and we get
62 Op .« Thus P(R) = Op . Ir
fp=6p Where P and P’ are prime
then evidently P =p" .

M.Ward and R.P.Dilworth presented
the rollowing condition ror the de-
composability of ldeals into primary
ideal conmponents. ( (2], [8])

Condition (D). For every pair of
ideals A und B there exists m
such that A B2 A.B"

Theorem 8. Every 6 in @ is



neutral 11 and only 1f the condlition
(D) holds.

Prool's We proved at the start
in the proot of th. 6 that AB=A(G).
If 6g 1s neutral then AB24,X ,
for some X € kg , by the Lerma 2,
But, from the definition of Rp, X258
for some 7 . Hence the condition
(D) holds. Conversely, assune the
condition (D). Let A=pB(e) Tlor
some 6 in @ . Then 4> B(A:B)
2 Bn(A:@)™ Wherv (a:BY ety -

As another example, we can apply
our results Lo the representation
of elements in a distributive lattice
as intersection of irreducible ele-~
ments.inlIa déstyibn distributive
lattice every vlement is neutral and
we can adopt as @ the set ol all
the neutral congruences corresponding
to principal dual ideals. Then an
element 1s primary ir and only ir
it is irreducible. The radical of
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an element 1s une conzsruence corres-
ponding to the principal dual ideal
generated by this element. Bul this
example has fewer neaning to us.

(*) Received July 28, 1952,
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