By Yasuharu SASAKI

1. Quasi - convex Functions.
$L \in t$
(1) $F(z)=z^{p}+\sum_{k=1}^{\infty} a_{\beta+k} z^{p+k}$
be any function regular in $|z|<1$ where p is a positive integer (a) If we denote a family of functions of the form (1), by which $|x|<1$ is transformed into a starshapod (with the center at the origin) or a convex region of p-valence, respectively denoted by γ_{p} or \mathcal{R}_{p}, then the following theorem is well known.

Theorem 1.
The necessary and sufficient condition that $F(z)$ should belong to γ_{p} or δ_{p} is that

$$
R\left[z \frac{F^{\prime}(z)}{F(z)}\right]>0
$$

or

$$
1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]-\frac{p-1}{p} R\left[z \frac{F^{\prime}(z)}{F(z)}\right]>0
$$

holds respectively in $|z|<1$.
Now we denote by Of a family of functions of the rom (1) which is characterized by the following proparties:

10 The mapped region of $|z|<1$ by $w=F(z)$ is p-valent,
2° The curvature at any point on the mapped curve of $|z|=r$ by $w=F(z)$ is positive and finite, where r is an arbitray positive number less than unity.

And we say that $F(x)$ in of is a quasi-convex function, then we have the theorem as follows:

Theorem 2.
The necessary and sufficient condiction that $F(z)$ should belong

$$
1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]>0 \quad(|z|<1)
$$

Proof. We have, by (1),

$$
\left[\frac{F^{\prime}(z)}{z^{p-1}}\right]_{z=0}=p \neq 0 .
$$

Therefore, if
(2) $R\left[z \frac{\left(z F^{\prime}(z)\right)^{\prime}}{z F^{\prime}(z)}\right]=1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(x)}\right]>0$,
then $\frac{F^{\prime}(z)}{z^{p}} \neq 0$ in $|z|<1$ and
$F^{\prime}(x) \neq 0$ in $0<|z|<1$ (3) $D e-$ noting by ρ the curvature at any point given in 2°, we have

$$
\rho=\frac{1}{\left|z F^{\prime}(z)\right|} \cdot R\left[1+z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]>0 .
$$

The mapped curve C of $|z|=r \quad$ by
$w=F(z) \quad$ is regular and the angle
9 between the real axis and the
tangent to the curve C at any point
on C is $\mathfrak{E i v e n}$ by arg $i \approx F^{\prime}(2)$
Hence we have, as 2 describe $|z|=r$ in the positive direction,

$$
\begin{gathered}
\int \operatorname{dagg} \text { ix } F^{\prime}(z)=\int \operatorname{dang} z^{p}+\int \operatorname{darg} \frac{F^{\prime}(z)}{z^{p-1}} \\
=\int \operatorname{dang} z^{p}=2 p \pi,
\end{gathered}
$$

and consequently the curve C is closed and p-valent. Here r being arbitrary, the mapped region of $|z|<1$ is p-valent.

Conversely, if $\rho>0$, then

$$
\left.1+R\left[2 \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]>0 \quad \text { follows direct }\right] \text { y }
$$

from the equality for ρ cited above. Our theorem is thus proved.

$$
\begin{aligned}
& \text { 2. Relations among } r_{p}, \Sigma_{p} \\
& \text { and of }
\end{aligned}
$$

Let $F(z)$ be any function regular and p-valenti in $|z|<1$
and then $F(\boldsymbol{z})$ does not vanish in $0<|z|<1$. Therefore there exists a function $h(z)$ which is regular in $|z|<1 \quad$ and satisfies

$$
\begin{aligned}
& h(z)=z \sqrt[p]{\frac{F(z)}{Z^{p}}}, F(z)=[h(z)]^{p} \\
& h(0)=0, \quad h^{\prime}(0)=1
\end{aligned}
$$

Consequently, we have
(3) $\left\{\begin{array}{c}R\left[z \frac{F^{\prime}(z)}{F(z)}\right]=p R\left[z \frac{h^{\prime}(z)}{h(z)}\right], \\ 1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]=1+R\left[z \frac{h^{\prime}(z)}{h^{\prime}(z)}\right]+(p-1) R\left[z \frac{h^{\prime}(z)}{h^{\prime}(z)}\right], \\ 1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]-\frac{p-1}{p} R\left[z \frac{F^{\prime}(z)}{F^{\prime}(z)}\right]=1+R\left[z \frac{h^{\prime}(z)}{h(z)}\right],\end{array}\right.$

From these equalities we obtain impmediately that if $F(z) \in \gamma_{p}$
then $h^{\prime \prime}(z) \in \mathcal{C}_{1} \quad$ and if $P_{F}(z) \in \mathcal{S}_{z}^{\prime} p$, then $h(z) \in \mathcal{S L}_{1}$. Hence if $F(z) \in \mathcal{F}_{p}$, then $h(z) \in \alpha_{1}$ and, by the theorem due to E. Strohhäcker', we have

$$
R\left[2 \frac{h^{\prime}(z)}{h(2)}\right]>\frac{1}{2}
$$

and, by (3),

$$
\begin{aligned}
& 1+R\left[z \frac{F^{\prime}(z)}{F^{\prime}(2)}\right]>\frac{1}{2}(p-1) \geqq 0, \\
& R\left[2 \frac{F^{\prime}(2)}{F(z)}\right]>\frac{p}{2} .
\end{aligned}
$$

These inequalities conclude that if $F(z) \in K_{k}$, then $F(2)$ belongs both to of p and γp. Next we investigate the relation between of p_{p} and γ_{p}. If $F(\in) \in \mathcal{F}_{p}$ and 9 is the angle defined in $\xi 1$, then

$$
\frac{d \varphi}{d \theta}=\frac{d}{d \theta} \arg i 2 F^{\prime}(2)=1+R\left[2 \frac{F^{\prime \prime}(2)}{F^{\prime}(2)}\right]>0 .
$$

Therefore the tangent to the mapped curve of $|z|=r$ by $w=F(z)$ ronfates so as to increases the angle
g, as z moves in the positive sense on $|z|=r$. And, as the curvature ρ at the point $F(z)$ is positive, the radius vector $F(2)$ iron the origin rotates in the porifive sense. Consequently we have

$$
R\left[2 \frac{F^{\prime}(z)}{F(z)}\right]=\frac{d}{d \theta} \text { arg } F(z)>0
$$

Thus, we get the result that if
$F(z) \in f_{p}$, then $F(z) \in \gamma_{p}$
From the above arguments, we have the following theorem:

Theorem 3.

$$
\hbar_{p} \subset q_{p} \subset \gamma_{p}
$$

N. B. In the case of $p=1$, this theorem is reduced to the fact,

$$
\tilde{R}_{1} \equiv \mathscr{F}_{1} \subset \gamma_{1}
$$

by (3).
Finally, from the equality (2) in $\$ 1$, we have

Theorem 4.
If $F(z) \in$ of $_{p}$, then $\frac{1}{p} z F(z)$
$\in \gamma_{p}$, and if $F(z) \in \gamma_{p}^{2}$, then

$$
p \int_{0}^{2} \frac{F(2)}{2} d x \in O f
$$

3. Distortion theorem and coedticient problem tor G_{p}
Let $F(z)$ belong to $O P_{p}$, then, by the Theorem $4, \frac{1}{p} z F^{\prime}(x) \in \gamma_{p}^{\prime}$
and therefore

$$
\frac{|z|^{p}}{(1+|z|)^{p p}} \leqq \frac{1}{p}\left|z F^{1}(2)\right| \S \frac{|z|^{p}}{(1-|z|)^{2 p}}
$$

From these inequalities, we have, by the similar method as in the case $p=1$, the following Distortion Theorem;

Theorem 5.
Let $F(z)$ belong to \mathcal{O}_{p}, then

$$
\begin{aligned}
& \frac{p|z|^{p-1}}{(1+|z|)^{2 p}} \leqq\left|F^{l}(z)\right| \leqq \frac{p|z|^{p-1}}{\left(1-(z \mid)^{2 p}\right.} \\
& p \int_{0}^{p|z|} \frac{z^{p-1}}{(1+z)^{2 p}} d z \leqq|F(z)| \leqq p \int_{0}^{\mid z 1} \frac{z^{p-1}}{(1-z)^{p p}} d z
\end{aligned}
$$

And the equality sign holds for the function of eff defined by

$$
F(z)=p \int_{0}^{z} \frac{z^{p-1}}{(1-z)^{p}} d z
$$

Next, if $F(x) \in \gamma_{p}^{\prime}$, then

$$
\left|a_{p+k}\right| \leqq \frac{2 p(2 p+1) \cdots(2 p+k-1)}{k!}, k=1,2,3, \cdots
$$

and the equality holds for the fundlion $F(2)=\frac{z^{p}}{(1-z)^{2 p}}$ (5) , Hence we have, for any function $F(z) \in$ of

$$
\frac{1}{p} z F^{\prime}(z) \ll \frac{z^{p}}{(1-z)^{2 p}}
$$

From this relation, we have irmediately the theorem as follows:

Theorem 6.
If $F(z)=2^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \in$ of p, then

$$
\left|a_{p+k}\right|<\frac{2 p(2 p+1) \cdots(2 p+k-1)}{k!(p+k)}, k=1,2,3, \cdots
$$

The equality sign holds only for the function

$$
F(z)=p \int_{0}^{z} \frac{z^{p-1}}{(1-z)^{2 p}} d z .
$$

4. The Radius of quasi - converity for γ_{p} 。
Let $F(2)$ belong to γ_{p}, then we have

$$
R\left[2 \frac{F^{\prime}(z)}{F(z)}\right]>0 \text { and }\left[z \frac{F^{\prime}(z)}{F^{(z)}}\right]_{z=0}=p .
$$

Hence

$$
p \frac{1-r}{1+r} \leqq R\left[z \frac{F(2)}{F(2)}\right] \leqq p \frac{1+r}{1-r}, \quad(|2| \leqq r)
$$

and, by the well known theorem of G. Julia, we have the following inequality:
$\left|2 \frac{F^{\prime}(2)}{F^{\prime}(2)}-2 \frac{F^{\prime}(2)}{F(2)}+1\right| \leq 2 \frac{|z| R\left[2 \frac{F^{\prime}(2)}{F^{\prime}(2)}\right]}{\left(1-|z|^{2}\right)\left|z \frac{F^{\prime}(2)}{F(2)}\right|}$.

Coribining these inequalities with each other, we have, in $|z| \leqslant r$ 。

$$
\begin{gathered}
1+R\left[\frac{F^{\prime}(2)}{F^{\prime}(2)}\right] \geq \frac{r^{2}-2(p+1) r+p}{1-r^{2}}>0, \\
\quad\left(r<\sigma_{p}=\frac{p+1-\sqrt{2 p+1}}{p}\right)
\end{gathered}
$$

and, in the case of the function
$F(2)=\frac{z^{p}}{(1-\mathcal{L})^{2}} \in \gamma_{p}$, we have, at

$$
\begin{aligned}
& z=-\sigma_{p} \\
& 1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right]=0 .
\end{aligned}
$$

Hence we have the following:
Theorem 7.

If $F(z) \in \gamma_{p}$, then we have, in $|z|<\sigma_{p}, F(z) \in$ of p $_{p}$, where the number σp cannot be replaced by any greater one.
5. The Radius of quasi - convexity for the bounded functions.

Let $F(2)$ be bounded, i.e.
$|F(z)|<M$, then we have
(4) $M r^{p} \frac{1-M r}{M-r} \leq \left\lvert\, F(z) \leq M r^{p} \frac{1+M r}{M+r}\right.,(z \mid \leq r)$

If we put $\varphi(z)=F(z) / z^{p}$, then we have $|\varphi(z)| \leqq M, \varphi(0)=1$ Hence

$$
\begin{aligned}
& \left|\varphi^{\prime}(\Omega)\right| \leqq \frac{M^{2}-|\varphi(2)|^{2}}{M\left(1-r^{2}\right)}, \\
& \text { or } \\
& \left(s^{\prime}\right) \left\lvert\, \frac{F^{\prime}(2)}{2^{p}}-p \frac{F^{(2)}(\mid) \mid}{2^{p+1} \mid} \frac{M^{2} r^{2 p}-\left|F^{2}(2)\right|^{2}}{M r^{2 p}\left(1-r^{2}\right)}\right.,(z \mid \leqq r) .
\end{aligned}
$$

From this lundarental inequality and (4), we have, in $|z| \leqq r$, the following inequalities:
(6) $\left|\frac{\lambda(z)}{z F^{\prime}(z)}\right| \leq R\left[\frac{\lambda(z)}{2 F^{\prime}(z)}\right] \geqq M \frac{1-2 M r+r^{2}}{p(r)}$,
(7) $\frac{|\lambda(z)|}{M r^{P-1}+|F(z)|} \leq \frac{r\left(1-2 M r+r^{2}\right)}{\left(1-r^{2}\right)(M-r)}$, (f) $\frac{\nu(2)}{M\left(1-r^{2}\right) r^{p-2}\left|F^{\prime}(2)\right|} \leqslant \frac{\operatorname{Mr}\left(M-2 r+M r^{2}\right)}{\left(1-r^{2}\right) P(r)}$
where $\lambda(z)=z F^{\prime}(z)-(p-1) F(z), \nu(z)=M^{2} r^{2(p-1)} \mid\left[\left.F(z)\right|^{2}\right.$ and $P(r)=P M-\left\{(p+1) M^{2}+(p-1)\right\} r+p M r^{2}$.

The equality sign in (4) - (8)
holds at $z=r$ for the function
(9) $F(z)=M_{z}{ }^{p} \frac{1-M z}{M-z}$.
H. Loomis generalized the theorem of
J. Ifeudonné for the starshapedness of the bounded functions for $\boldsymbol{\gamma}_{1}$ to the case of $\gamma_{p}^{(6)}$. Now we generalize the theorem for the convexity of the bounded functions for of $\% \AA_{1}$
to the case of of
Putting

$$
\begin{aligned}
& \phi(\zeta)=M^{2} \frac{z^{p-1} F(w)-w^{p-1} F(z)}{M^{2} \bar{z}^{p-1} w^{p-1}-\overline{F(z)} F(w)}, \\
& \quad\left(w=\frac{-\xi+z}{\operatorname{l-\delta } \xi}, \quad|z|<1\right) \\
& \text { we have, in }|z| \leqslant 1,
\end{aligned}
$$

$$
|\phi(3)|<M, \phi(0)=0,
$$

and，by the theorem of the bounded functions，

$$
M-\frac{\left|\phi^{\prime}(0)\right|^{2}}{M} \geq \frac{1}{2}\left|\phi^{\prime \prime}(0)\right| .
$$

This is reduced to
（10）

Since the third term of the right hand is not less than $2(p-1) R\left[\frac{\lambda(2)}{X F^{\prime}(z)}\right]$ $\left.-2\left|\frac{F(z) \lambda(z)}{v(z)}\right| \times \frac{\lambda(z)}{2 F^{\prime}(z)} \right\rvert\,$ and $(p-1) \frac{F(z)}{z F^{\prime}(z)}=1-\frac{\lambda(z)}{2 F^{\prime}(z)}$,
we have，from（10），
（11）$R\left[z\left[\frac{F^{\prime \prime}(2)}{F^{\prime}(2)}\right]^{z p-2+\left[\frac{2|z|^{2}}{1-|z|^{2}}+p\right] R\left[\frac{x(z)}{z F^{\prime}(z)}\right]}\right.$

$$
+2\left|\frac{\lambda(z)}{2 F^{\prime}(2)}\right| \frac{|\lambda(2)|}{M r^{p-1}+|F(z)|}
$$

$$
-2 \frac{V(2)}{M\left(1-|2|^{2}\right)^{2}|2|^{\mid-2}\left|F^{\prime}(x)\right|} .
$$

Putting（4）－（8）into（11），we
obtain

where $R(r)=M^{2} p^{2}-M\left\{(p+1)^{2} M^{2}+2 p^{2}-2 p-\eta\right\} r$ $+\left\{\left(2 p^{2}+2 p-1\right) M^{2}+(p-1)^{2}\right\} r^{2}-M p^{2} r^{3}$.

The equality sign in（12）holds at $z=r$ for the function defined by（9）．It is easily proved that the equation $R(r)=0_{\rho}$ has only one positive root，ρ_{p} less than unity and，$R(r)$ and $P(r)$ are positive for $0 \leqslant r \leqslant \rho_{p}$ 。 Therefore we can establish the fol－ lowing theorem：

$$
\begin{aligned}
& R\left[z \frac{F^{\prime \prime}(k)}{F^{\prime}(2)}\right] \geq(p-1)(p-2) R\left[2 \frac{F_{(2)}}{F^{\prime}(2)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +2 R\left[\frac{(z-1) M^{2}|z|^{2(p-1)}-z \overline{F(z)} F^{\prime}(z)}{v(z)} \cdot \frac{\lambda(z)}{z F^{\prime}(z)}\right] \\
& -2 \frac{V(z)}{M\left(1-r^{2}\right)^{2}\left(\left.\dot{z}\right|^{p-2}\left|F^{\prime}(x)\right|\right.} .
\end{aligned}
$$

Theorem 8．
Let $F(z)$ be any function re－ gular and bounded（ $|F|(2) \mid<M$ ）in $|z|<1$ ，then $F(z)$ belongs to of ${ }_{p}$ in $|z|<\rho_{p}$ ，where ρ_{p} is the positive root of the equation
$R(r)=0$ ．And ρ_{p} cannot be re－ placed by any greater number．

In conclusion I wish to express my hearty thanks to Professor hkira Kobori of the Kyoto University for his kind advice throughout the com－ pletion of this work．
（＊）Received July 3， 1952.
（1）In this note the function $F(\mathbf{z})$ is always of the form（I）， and so we omit this notice hereafter．

A．Kobori，Umber die notwendige and hinreichende Bedingung darür，dass ene Potenzreine den Kreisbereich af den schlichten sternigen bzw。 Konvexen Bereich abbildet． Mem．Coli．Sci．Kyoto Imp． Univ．（A） 15 （1932）．
E．Strohhäcker，Beiträge zur Thoorie cir schlichten Funk－ tionen．Math．żeitschr． 37 （1933）．
A．Kobori，Lac．cit．（2）。 H．Loomis，The radius and modu－ hus of n－valence for analytic functions whose first n－l derivatives vanish at a po－ int．Bull．Amer．Math．Soc． Vol．46，No． 6 （1940）or see E．Sakai，On the Multivalency of Analytic Functions．Journo． Math．Soc．Japan Vol ．2（1950）． Y．Sasaki，Theorems on the Con－ vexity or Bounded Functions． Proc．Jap．Aced．Vol．27 （1951）．

Faculty of Engineering，Fukui University

