ON SOME FAMILY OF MULTIVALENT FUNCTIONS

By VYasuharu SASAKI

1. Quasi - convex Functions,

Let
22 K
o F’(Z)=2P+g:.’“ Mz-”

be any function regular in Jzl<1i |
where P 1is a positive integer

If we denote a fariily of functions

of the fornm (1), by which (gl«<i 1s
transtormed into a starshaped (with
the center at the origin) or a convex
region of p-valencg,respectively de-
noted by @, oOr , then %he fol-
lowing theorem is well known.

Theoren 1,

The necessary and quxficient con~
dition that F(z) should belong
to Tl’ or Rr is that

Fig
R[z F'lz)] >0
or
1rRr[z t"(z)] -t Rz F;:::))]>o

holds respectively in IZ] <1 .

Now we denote by a family
ol functions of the foJE (1) which is
characterized by the following pro-
perties:

1° fThe mapped region of [Z]<1
by w= F(z) 1is p-valent,

2° The curvature at any point
on the mapped curve of [Z|= YV
by w= [(Z) 1is positive and
tinite, where ¢y 1is an arbi-
trary positive number less than
unity.

And we say that F(x) in of, is
n quasi-convex function, then we have
vhe theorem as follows:

Theoren 2.

The necessary and sutficient con-
dition that F'(2) should belong
to %ﬁ, is

o

1+ R [i"‘_‘ >0

(l21<1),

Proof. We have, by (1),

F‘fz\
[—z"pT =P to.

X=20

Therelore, if

RELEEELT o

F?i)]
F/( 2) < F ?Z) > 9,

then —Ezg* 0 in [zl< 1 and

Faa¥ 0 tn o<izi<t Y pe-
noting by § the curvature at any
point given in 29, we have

F
S = IZF(z)l K[I -/((.))] 0.

The _ma ped curve C of J2|=T by
is regular and the angle
between the real axis and the
tangent to the curve C at any point
on C is given by m};zr(z) .
Hence we have, as g describe |z)=
in the positive direction,

foa 1 dg +m

[layzP = 2pe,

and consequently the curve C 1is
closed and p-valent, Here 7t belng
arbitrary, the mapped region of

zl< L is p-valent.

Converaely, ir f£>o , then
1R [z F'(‘)] >0

from the equality for S cited
above., COur theorem is thus proved.

follows directly

2. Relations among ¥ , g@r
and r .

Let F(Z) be any function
ragular and p-valent in [zl< { s



does not vanish
Therefore there
exists a function #(z2) which
is regular in (jzJ<1 and satisties

he~2 )/ E | - [ao]!
#(o)=0, o) -1,

Consequently, we have

and then @ (z)
in o<|zj<1 .

F(z) {(2.)
;.-(,,] = p R[22 <o
L]z m.;J 1rR[ }ff,‘,‘,”*m[ £

ltR,[z

From these equallt:icq we obtain im-

|

4y

Fi
F’(:] Yl Fo 1 k[zﬁf‘)]

mediately that ir Fiz) €

then #(2) € )‘" and if F(z)egg,,,
then @) € 5§ . Hence if F(ze
then 4(z) € and, by the theorbm

due to E, Str‘%!mcker“‘f

s
R [z -2EL (‘z)’] > L

we have

and, by (3),

ifQ[z
R (2

)
F’u
o
F&)

Tl > T (p-1)20,
]7?.

These inequalities conclude that if
Fl2y ¢ &'_P , then F@ be-
longs both to and I’P .
Next we investigate the relation be-

tween and  ¥p . If FeeSe
and @ 1is the angle defined in 3§ 1,

then
d F
'd% -]é-mjtzf‘f:) =1 *K[z 777;;]>0,

Therefore the tangent to the_mapped
curve of ([2)= ¢ by wW=}F(&) ro-
tates so as to increases the angle

¢ , as Z moves in the positive
sense on |zl=Fr . And, as the
curvature at the point F(=)

is positive, the radius vector F(2)
1rom the origin rotates in the posi-
tive sense., (onsequently we have

R[z F.(z)] -4 ay f >0,

90 -

Thus, we get the result that if

F) € of, » then f) € fp

From the above arguments,
the tollowing theorem:

we have

Theoren 3.

ReCa, 7.

In the case of p=1 |
theorem is reduced to the
fact,

?ZJ/IE%CX}

N. Be this

by (3).

Finally, Iron the equality (2) in
§ 1, we have

Theoren 4.

ir F(z)e (ff s then Tz F‘(z)
€fp , ana ir F@e ¥y , then

6
P ey
3 Distortion theorem and coef'-
t'icient problem ror @, .
Let Fl) belonéJ to

then, by the Theorem 4
and theretore

I’

2p - T

(1+ (1) (1- m) (1-z1)F
From these inequalitiec, we have, by

the similar method as in the case
, the following Distortion

s -Lzhm e)",.

-L'z Fa| § ———

Tieorem H

Theorem 5,

Let [  belong to q’ ,
then

pEM i piit?

('ﬂzl)“" Fel® /1)””’

Gl

Sl LR st

And the equality sign holds I‘or the
function of &f, defined by

zH
RRE] rf o 42

Next, F?z) € 3";- , then
2p(2pH) -+ (2p +K-
ml’**’s #) K(.'zp 2 ;s K2, 2,3.



and the equality nolds for the func-
2P )
tion F(")”('('_’;;Ip
have, for any function FYZJ\‘ %f,
r
-2 ———e
fla « ="

Fronm this relation, we have irmedi-
ately the theorem as follows:

Hence we

Theoren 6. ”

ir (=)=2P*2;‘amz € @ff , then
2p(apr)) - (2p +4~1)

Gy [ el 2.5

l’"l w! (ptk) » W12,

The equality sign holds only for
the function

4
2
fy-r [ —2—
° (-Z)
4, The Radius of quasi -~ con=-
vexity for Y'F °

dz .

Let FZZ) belong to TP , then
we have { Qz
F) Ft
Ry )7 wd [2 5 o des T
Hence

- Fla
:-'-’;-g R[= Fm] by (st)

and, by the well known theorem of
G. Julia, we have the following in-

equalilt ot
qu;? (z)y k@ F(z) / [al R.[z -;F.?z% .
2 2m "1* ) 22

Conbining these inequalities with
each other, we have, in [Z[§&F .

’fk{f—@ Zt -Z(Z")r+t)
Fé) o= f__.)

(r<ep=
and, in thﬁa case of the function

F{"’ _Z_l.:__)ir € r , We have, at

Z=-0‘p »
F -
lﬂt[ ——-L,” 0.

Hence we have the following:

Theorem 7.

1r F(z2) € fr then we have,
in (2 <L rp ’ (2) ”P »
where the number cannot be
replaced by any greé“’ter one,

5. The Radius of quasl - convexity
for the bounded functions.

ret F@)  be bounded, 1.e.
lF[Z} 3 ™M , then we have

M
W ML Ml b
Il we put ?(3) }'Tz)/z/’ , then
gzn?gve 7"”’ &M, Po) =1 °
/ M*- e3>
P s ——0rf =
P
/-{z) M- [P
/ fzp/ Mr"‘{:-r’) )(le I")

Prom this l'undarental inequality and
(4), we have, in [z} £ ¥ , the fol-
lowing :Lnequa1 ities:

r
CETIECY N
A(z)] r(i-2Mr+r*)
MrPis[FE)| = (-r)(M-r) 7
V&) < Mr(M-2r+mr?)
M- r2F |~ (1-r*) P(m

&

2

where A(Z)= zﬁ,) - ‘P“)F(‘) . y(,).Hz 2(?"7”_.[”/
sd  Plyje PM{(praM*etpi}r +pMr

The equality sign in (4) - (8)

holas at Z =p for the function
-Mz
o Fge M

B. Loomis generalized the theorenm of
J. Cleudonne f'or the starshapedness
of the bounded functions for 'r" to

the case of ¥ Now we gene-
ralize the theorem for the convexity
of the bounded functions for x

20 the case of 1’ % ﬁ'

Putting
2 z"'f(w)'WHF(z)
L =y
M2ZP wh - Fz) Fiw)
(ws -, lzict)
we have, in z]< 1 ,
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[¢I< ™M, Plo)=0

and, by the theorem of the bounded
functions,
1$l*, .,
M- v Z Kl /# (0] /
This is reduced to
(10 R[z LB 12¢00) RS
Fe) 212P2
ST [aw ]+2N/A(z)l

-JzF z ) velF )|
770
Mz =z FeyFlz) a@
+2R): v(2) z F?z;]
V(z)

- M

© P2
Ml-r*)z"? [Fe ]
Since the third term of the right
hand is not less than 2(p)R _7_\1!-2-—]

EE)MQ ) . Nz)
-2| v l zpml“ d ‘P"z,.-(,, 2Fin

we have, irgf (10),
[ Nter
(“) R[z Fl(a)] 2 P"z *[la; |z'l M P] R[:F’(z)j
l 7\(:) a2 .
M r"'ﬂFfvl

-2 MZl-—lz;*)’Izl M)

Putting (4) - (8) into (11), we

obtain ,.__' R
(., (v
(1) IfK[Z 'm 2 R (M-v)

(21 <)
where R(y):H‘P’ i(’ﬂ) M2 2' ~2p &V

-rf(zp"rzp-:)l‘f’f(p-«)‘}r‘ Mpr,

The equality sign in (12) holds
at 2 =7y for the function defined
by (9). It is easily proved that
the equation R,[r)ﬂfo has only
one positive root P less than
unity and, R(V and P are
positive I‘or osrs pp
Therefore we can establish the fol-
lowing theorem:

Theoren 8.

Let F(z) be an Iunct*on re-
gular and bounded ! 2)[ < M in
1z« 1 |, then Z) belongs to

in [z]< P , Where
is tﬁe positive root of the equation

R(rj=0 . 4nd fp cannot be re-
placed by any greater number,

In conclusion I wish to express my
hearty thanks to Professor iakira
Kobori of the Kyoto University for
his kind advice throughcut the com-
pletion of this work.
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