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In I, we will prove a theorem on
the compactness of space LY (t>o0)
ana in II, we will apply it to prove
simply Carleman's theorem on integral
aquations.

I. Compactness ol space | (p>0) ,

1. Let F be a set of functions
fox defined for -e< x< e , such
that

o0

\f(l)“dz.(o. (p>0).

- o0

If from any sequence f (ve F , we
can {ind a partial sequence f-.ku.) »
which converges to f(x)cC L' almost
everywhere in (-os, =) , such that

Lim S'f (x)- f(a.)l dx =o,

R e

= r

E H"(x)] dx = Lim _‘.lf".(nl dx

~00
then we say that F 1is compact. We
will prove

Theorem 1. The necessary and suf-
ficient condition that is compact
is that the the following condition
(A) is satisfied:

(1) f \f(m\ des ™M

, for any
f(n e F;

(11) For any £ >0 , we can find
N.,>0 , such that for any
fixre F ’

14
ol dx <&, if N2z N
IxI2 N

(111) For any £E>o0 , we can *
find &»0 , such that for

any fo e F,
o
_Llf(ut) -)Cm)”da <g, 1f ltlcd,

The case P21 was proved by M.
Rieszi so that we will prove the

case o<p<i o

Proof. Since the necessity can
be provec easily, we will prove tHe
sufficlency in case 0<¥P<{ , where
we assume that the theorem holds for

P =1 .
Now if o<p<i, x>0, &>0.,

* ¥ 5t § dt
(x+8) - « =f[m éff Tt
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=&t

so that
| l'—‘J'li lx—:n', (20,420, 0 <pct) (D)

P § $ =Py
=2 p Gt () 4

r | |-
§ ¢ T( MJ‘;-L \ f(("";)f_x*) ,
hence .
IPLURN I S T B
I ‘“é\'(lt—'ﬂ ) [x7- 471,

(%0, 450, o<p<1), )

First we suppose that fm Zo for
all f@xr e F ., Then from (1),
1haet) - ool € 1fovn - fra)?,
¢
hence F () satisfy the condition
(A) with p=1 , so that by M.
Riesz' theorem, from any sequence
fim e F , we can find a par-

tiFal sequence (which we denote
(v ), such that

fhc'm (mldx<8 iff mynzn€) (3

By (2), we have

o o-fwl’ .
-
( fatn f0 ) ) £loo-fll

a0~ £ 01
Let E be the set of <« , such
that
futn + fow

1 ¢
o = facy| k.
then by (3), r
f:{- w-fo0)fan g K1 Fiwo £ o] ax

1,E
(g

*F’

L
Let &' be the complement of E

then in E'
f,,‘ (%) + ‘F, (x)

|00, ml S v ,
so that

I"C-'““f w iz
4

E
éF‘F( fE,f (m“ﬁ (mu)
.. 2M &’
=Rt



hence
o b KI'P€
f | fm(x)-f..(x)l da £ ~ +Jk'1—_ 5

Hence 1f we choose K:% , then

Co
P 1

[ I]Cm(x)—f,.(ml dx £ (+ e2rt) et (©

had
so that fat0 converges 1in the
mean, hence by Hobson's theorem,
we can t'ind a partial sequence, which
satist'ies the conaition of the theo-
rems

In the general case, we put

%0 = L1l + fu), Fo=L{ifwr-foo)
foy= -F"m—{}mm ,

then
0% fw('l) < lf(l) L o< fm(g) s l'F(‘"" ,

We can easily prove that

H %t %01 ¢ 1fortr=f en],

\'Fw(ut)-p”(t)‘ < l‘F("*t) -'P('Jl,

™ 2
so that \C Ga, F”tx) satisfy the
condition (4), hence if §
=flt-f¥« be any sequence rrom F ,
then we can find a partial sequence
(which we denote f, (0 ), such
that

J-Tf:)(xy ‘F‘: W I'dx <&,

—o0

@ @ P if mzazna,
flf,,u)—)f ol dx <g,
~-0

Since R
i o-fan ] 2 w0- fhal

1120 - fPlt |

Ta GO converges in the mean,
so that we can tind a partial sequen-
ce, which satisties the condition of
the theorem., g.e.d.

2., As an application of Theorem
1, we will prove the tollowing Car-
leman's theorem.

Theorem 2. Let ‘F,,(%*J)Zo be
integrable in azx ¢b s asYsb

such that
bpb
L.Mff f,.("'ﬁ)d“','] =0
" a o

We put

b
(ﬁ‘ () = I‘ f.\ ey dy.

o
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Then we can 1ind a partial sequence
$n 1y, which converges to zero
almost everywhere in Ca. b] N

Proof. By the hypothesis,

. bro
,?“ Wdx = [ [ “‘\” (1.3) d.'t&:' < ['1_ (""},"‘) )
b e o k4 4
[Falxet)= B, (x)]dx € rﬁfn(ust,g)-f.(x,y)l dady

.
ézf [ fpdaayce
o

[

—_— P

®

(nl2n,).

If we choose § >o , such that if

It <§ »

b
f 19,4 01-F 2 fda <& (n=t,2, -1 ),
o
then
o
[1fnwm—?nw\u< €, 1€ 1t1<d,(nelz, ) (2)

Hence $,(x) satisfy the condi-
tion (A), so that we can find a par-
tial sequence Pn (m , which con-
verges to Py C L almost
everywhere in ta,\] , such that

f:‘fm dx = L. rffumd.x
®

% o
-4 |

Since P20 , we have Prr=0
almost everywhere in (&, b]
Qe€eCa

[bf't(*,'j) dxil =0,

»

IX. Carleman's theorem on
integral equations,

carleman® extended Fredholm's
theorem on integral equations with
continuous kernel K («.4) to the
case, where K(x.94) are square
integrable as follows, where ~ o

means = O almost everywhere in
La,b] .
Theorem 3, Let WK (x y) be

square Integrable inasx£b
tfég b » then the integral equa-
on:

b
Tm—xf Koy feyrdy -feno h

either (1) nas one and only one
solytion P C U for any f(x)
CL", or (11) the homogeneous
equation:

b
?m-xf Kagrgapay ~ o (1

has £ (1£7% <®) 1linearly independent
solutions ¥, , ¥ , eecp, VY .
In the rirst case, the conjugate
equation:



b
?(x)—xf K(g,x) Fyrag-Jxinvo (I

has one and only one solution for
any §(2) C L2 . In the second
case, the conjugate homogeneous
equation:

rb
Pra—A ) G x) Ptydy ~o (&)

has T linearly independent solu=-

tions X, , Xs , eoa, and

(I) has solutions when andx only when
£ () satisfies r conditions:

(\C»X‘.)=ffw LML =0 (i=1,2,-,1),

Ve assume that Fredholm's theorem
holces for continuous degenerated
kernel K(t:3)= T Ailxn Bt ,
where A,(xy, B;y) are continuous
and by means of  Theorem 1, we will
prove our theorem, If we specialize
that jc (% and oy are
continuous, or more generally,

Koo,y are of the form

(xy)
K(1;3)= ‘“i.g%r (o(a((-l-), where
H(x,4) are continuous, then we can
prove easily that the solutions @P(x)
are continuous and ~ o becomes =o ,
hence we have Fredholm's theorem for
such kernels,

Procf. We approximate K(z.s)
by K, 0uy) , Where K., (uy) are
polynomials in « and % , so that
are degenerated kernels, such that

L r,rbl Kh(l.,)- K (1,3,["41.13 =0,

J S K(*;)dxd:‘ Lf[K (%,y) dx dy

o

(1)

and we approximate f(l) by conti-
nuous f, ), such that

L ‘f,.(m = fu) (2
almost everywhere in [a,b]l , and
b
2..,.[ i, 0= foul®dx =o (3)
o

and for a fixed A
integral equations:

P - A rK,,(x,w Flpdy = f"m (4)

, we consider

Then the tollowing two cases occur.

Case I. (4) has solutions for
infitely many n , so that we may
assume that (4) has solution §,(x)
for all n ,
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o
$. ”7‘[ K, ov9) $lray = fn(l) 8]

such that X
w=09a,9.) = f fiwde £ M

(n=t,2,-- ), 3)

Case II. Either II(a): (4) has
solution ¥, for all M | but
Cp— o (noew) or II(b): (4) has
no solutions for all =m , so that
there exists Pn(m,(P,fu)=1 , such
that

§ntxy -AS Kot ) S pdy =0
o
m=r,2,.. ),
In case I, we will prove that
3
F ) = [ Ko l.g) 9 tgrdy t)
a

satisfy the condition (A) of Theorem
l. Since b

(F00) & f‘fmd} l Koty
™M [ K (x.ydy,
(F"(ux)_ﬁ, (z))zg M r( Kh(1+t,3)~K,,(x.3))let3

we have by (1),

nm

b N b .

!F- odx £ M H\ Kogprandy 2K (nas ), 9)

f(ﬁ,(ut)—F (l))ldzt £ Mrr (K, (et )-K (i,y))xd,,,l',
[[ [(K (142, 9~ ~Kewtp) dady

<3

3

+

—

[

-

b
I (Koot - K (e ) dxdy
"L

(K=K e Yanay |

p—" ¢

o

b(b
£ 3™ [E +[ l(K(ut,y)—Klw)f"“‘fj J

Mzm,),
We choose 8“>o , such that if I%]<§
¢t N
f I (Kt -Kloyp) dxdyc e,
o
then

&
f(Fn(“tVFntﬂ)ldl% c1Erte (n 2m,),

a

Hence we can choose o<§<§ ,
such that



“———\

Fatorsy - Fato) dx ClsMe, o (ti1<d

(neva ), e

Hence F.(x> satisty the condition
(A). Similarly f.(*) satisfy the
condition (A4), so that Fn)=f0+AF,00
satisfy the condition (A). Hence by
Theorem 1, we can find a partial ses

quence (which we denote ¥, (% )s
such that
b $0-9w0c U (1)
almost everywhere in [a, b] and
Lm Ib[ g, 0- 90| *dx =0 (12)
°

We will prove
b b
Lo f Kol ) g, ay = f K(l,g)?(j)d‘j (13)
n a a

almost everywhere in [a, b] .

”
‘JL K (1’3’3’»‘:’)‘K(lna)j‘(g)‘dnol&
l[ | Kptx g - l&(m;)lly,.(mldmy

* fbf K l19,00- fuga| axdy

(%

|7 A —

(14)
By (1), (6), (12).
bb .
( !l [Kag) -K g1 8, ¢q)]duay )
brb
¢ Goma) M [ (K- Ko )aney,

(mzm,),
brb
(f [ R gll g1~ gip] dosy )"

b brb
(M [ (iy-)ey [ T o pdzay

<&, (m2m,)

7
so that

Lo [T 1Ko 9,69 -Ken ) 9| a2y =o. ()

Hence by Theorem 2, we can find a
partial sequence (which we denote
9,0 ), such that

b
z‘:r'j [K, 0.9 5,090 - Ky §egd | dy = o
Q

almost everywhere in (a.b] , so that

n

wm

b b
b Mo gy - | Kep gpdy (o
almost everywhere in [a,b], Hence
from (2), (5), (11), (13), we have

“f(‘l)"kjb k‘*'ﬁ)f(ﬂ)‘ij —f(ot) ~nO (1)

In case II (a), we put

0, (1) = ?“(‘1)/6" ((a-"'r,,)=1)'(|'l)

then b
c-,,(x)—"xf K”(i,’)d‘"(u)dz = fﬂ("’/c,.(")
a

We can prove that Om (1) satisiy
the condition (A), so that we can
find a partial sequence, which con-
verges to §(uC L almost every-
where in [a, b] , such that

?(”—AJ',K(t,})?(ﬂ)dJ ~ 0 (19)

In case II (b), we can prove simi-
larly that there exists §(x) C L*
which satisfies (19). The other part
of the theorem can be proved similar-
ly as Courant-Hilbert's book? Hence
our theorem is proved.
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