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NOTE ON (LM)-GROUPS OF FINITE ORDERS

By Noboru ITO

(Communicated by H. Toyama)

In the present note, we study
some properties of a finite group
whose lattice of subgroups is lower
semi-modular. We, however, use no
result of the general theory or
lattices,

I give my hearty thanks to Mr,
M.SUZUKI for his kind remarks and
advicese.

NOTATIONS: S;(X)=Sp(X), H:(X)=Hg.(X),
C(X), Ca(X), 6(X) and F(X) denote
a P ~-Sylow subgroup, a p -Sylow
complement, the centre, the hyper-
centre, the commutator subgroup and
# -subgroup of a group X respec-
tively; (X) may be often omitted.
Tly(X) denotes the normalizer of
a subgroup X 1in a group Y .

l. On the P=-nilpotency.
DEFINITION 1. A finite group
is called P -nilpotent when it has

a normal P -Sylow complement.

PROPOSITION 1. Let &G be a
group whose order has at least
three distinct prime tactors and
let P be one of them. Then G
is P-nilpotent ii every proper
subgroup ot G 1is so.

PROOF. Let G be a group which
satisfies our condition. If
is not P -normal in GRUN's sense’),
there exist a P -subgroup P and
a P-regular element A in & such
that A 1induces a non-identical
automorphism into P , bymvirtue
of a theorem of W.,BURNSIDE . Since
P-{A} is non-p-nilpctent, we
have G =P-{A} - Let A=AA:" Ar
be the Sylow decomposition or A .
Then 122 by our condition.
Clearly G # P-{A}, whence P-{A}=
Px {A:} -« Therefore G=Px{A}
which is a contradiction., Hence
G is_P=-normal. Now by a theorem
of 0.GRUN®,

Sp(&/e(@) = Sp (T (CSH/p(ictsy)

1r G=N(C(SYH) , since the latter
is p-nilpotent by our condition,
Sp(R(e(Sp)/ B(N(C(Sp)) =+ e

whence Sp( G/e(&) = e + There-

fore, G = 0(§) whence 1t is easily
verified that & 1is P-nilpotent,
If  &=T(c(S) and Spc(Sy) ,
then induction argument can be ap-
plied to G/c(sp) and we can see
that & /c(sp) is p-nilpotent
whence it is easily verified that
is p=-nilpotent. Finally if
G=(cp) and S, =C(Sp ,
then there exists, by a theorem of
I.SCHUR), one H, in G . Since
G %= SpSq(Hp) , by ouchondizlon,
Sy Sq (Hp)=S»§Hwhence G = SpxHp .
There'rox"e,")oﬁopg:se, G isPP-
nilpotent.

PROPOSITION 2., Let G be a
non-p-nilpotent group whose every
proper subgroup is p-nilpotent.
Then G =S5, Sy where Sp 1s normal,

Sq=1{Q} is cyclic, non-normal.
And every proper subgroup of G 1is

nilpotent. In particular it is
soluble. The converse is also va-
1id.

PROOF. Let G be a group which

satisfies our condition. Follow
the proof of PROPOSITION 1. First
it 1s evident that the order of
is ¥™d™ by PROPOSITION 1. There-
tore if G 1is not P-normal, then
A=A , using the same notations
as in the proof of PROPOSITION 1,
and this proves PROPOSITION 2. Now
assumeé that is P-normal., Then
relcsm=6 , since 1irf N(cSP)*G ,
6 1s p-nilpotent, as is easily
seen by virtue of the proof of PRO-
POSITION 1. Ir C(Sp)#Sp , induc-
tion can be applied to G/c(Sp) and
we can easily prove PROPOSITION 2.

Finally if C(S)) = Sp , then
G=SpSq . And if S;=TVU
where T and U gs! , Since
GH¥ ST and S,U, S, T = SpxT
and SpU= SpxU whence ¢-=S,xSy
which is a contradiction. There-
fore Sgy 1s cyclic and this proves

PROPOSITION 2. The converse is
obvious.
REMARK 1. Similar results as

PROPOSITION 1 and 2 have been ob-
tained by many authors, for instan-
ce, 0,SCHMIDT®?, D.KOLIANKOWSKY®’,
S.TCHOUNIKHIN and K.IWASAWA?® ,

And our result is a slight modifi~



cation of theirs, But it seems to
me that our formulation is a little
more general and applicable than
antecedents. (Cf. M.SUZUKIP ).

pROPOSITION 3'?. 4 simple non-
abelian group G has a proper sub-
group which satisfies the condition
in PROPOSITION 2 for every prime

factor p of its order.
PROOF. Clearly & 1is not P~
nilpotent. Therelore G has at

least one non- P =nilpotent subgroup,
for instance, 6+ 1itself. Choose

a minimal one of such subgroups.
Then it is a group of PROPOSITION 2
and soluble. Therefore 1t does not
colincide with &

PROPOSITION 4*”. Let the order
g of a group G have just n

distinct prime factors. If has
at most mn-l non-isomorphic pro=-
per non-nilpotent subgroups, 6 1is

soluble,

PROOF, Clearly we may assume

that G 1is p-nilpotent for some

p which is a prime factor of § ,
as 1s easily seen by virtue of the
proof of PROPOSITION 3. The P -
Sylow complement has clearly at most

mn-2 non-isomorphic proper non-
nilpotent subgroups. Now ror n=1

G 1is nilpotent. Therefore we
can easily prove PROPOSITION 4 by
induection for n .

2. On (C)-groups.

DEFINITION 2., A finite group
is called a (C)=group if every
maximal subgroup of any subgroup has
a prime index.

PROPOSITION 5. A (C)=-group is
b -nilpotent for the least prime
factor p of its order. In parti-
cular, it is soluble,

PROOF. Let G be a group satis-
f'ying the condition in PROPOSITION
2, If & 1is a (C)-group, then G
has a subgroup H of 1lndex p as
a maximal subgroup containing Sg
and H 1is normal since P 1s the
least., Since H 1s nilpotent,

Seg(H)=Sq(G) 1is normal in H
and therefore in G . This &s a
contradiction,.

REMARK 2. Groups of thi% type
investigated first by 0.0REg?and
complemented by G.ZAPPA®®and K.
IWASAWA!®

We shall refer only to

PROPOSITION 6. A minimal nor-
mal subgroup of a (C)-group has a

prime order. Therefore, it has a
chiet' series each oIl wnose factors
is of a prime order. The converse
is also true.

PROOF. We shall show that G
has a normal subgroup of order #

where p Is the maximum prime

factor of the order of G . If
C(S5,)-H, ¥ G then C(S)'H; has

a normal subgroup of order R and

clearly this is also normal in & .
Assune that C(S)-H=G . Then
G+ has a subgroup M of index

R as a maximal subgroup contain-
ing H . If S(M)*e then M
has a normal subgroup of order R
and this clearly is also normal in

G o+ Flnally if S,(M)= € then

$(§) is normal in & and of
order BB . The remainder and the
converse are obvious.

3. On (LM)-groups.

CEFINITION 3. A finite group
Gr 1s called an (LM)-group if
every intersection of two distinct
maximal subgroups of any subgroup
is maximal respectively in such two
maximal subgroups.

PROPOSITION 7. An {(LM)-group is
p -nilpotent for the least prime
factor P of its order. In parti-
cular, it is soluble,

PROOF, Let &G be a group as in
PROPOSITION 2. Assume that G 1is
an (LM)-group and we kick out a
contradiction. To do this we use
induction argument. If S 1s not
minimal normal we take such P
contained in S, ana ccnsider €% .
Then a contradiction easily tumbles
out, Hence we may assume that S,
is minimal normal. Further if Sg
is not of order q¢ , a maximal
subgroup T of Sgq is normal in

« If we observe &/T ,
a contradiction easily tumbles out.
Eence we may assume that S; is
of order 9 ., Then S» and Sq
are maximal in G and obviously

SpnSy =e . Since G 1is assumed
to be an (LM)-group, S, must be of

order p and S is normal in G
since P< 9 . This is a contra-
diction.

PROPOSITION 8.
is a (C)-group.
not true.

An .(LM)~-group
The converse 1is

PROOF., Assume that every proper
subgroup of G is a (C)-group. We
show first that the number of prime
factors of &M 1is invariant by
the choice of maximal subgroup ™M .
In fact, let N be another maximal



subgroup if any, then G {MAN =
(G1M(MIMAN)=(GN)(NIMAN)
and MAN 1is maximal in M and N
since G 1is (LM), therefore,
MIMnN and NIMaN are prime
whence the assertion’'is obvious.
If there exists no such N , then
is cyclic and the assertion
is- trivial, Now since & 1is solu-
ble, &M is prime and &G 1is
(C) .+ Thus induction completes
our proof.

PROPOSITION 9. Let the order of
a group G have the following prime
factor decomposition: RR P or RE
where B >B D> P o Then is a
(C)=-group, except the case that

G= 0, . Further & 1is a (C)=-
group and not an (LM)-group if and
only if H; induces an automorphi-
sm of order EP; or B intc S .

PROOF. If §; 1is not normal then
n(s)=S , therefore, B =1
(mod B ) whence £ =3 p=2
and G =0, . Hence S; 1is normal
if not G= « This proves
our first assertion. Assume that
G 1is not isomorphic to Ol .
Now 6 is nilpotent by a theorem
of 0.0RE"®and irf 6% or more
generally G 1s not fully irredu-
cible, then G 1s clearly an (LM)-

group. Further assume that &G 1is
not an (LM)-group. Therefore.
$=6 . Then H, 1is cyclic and

is considered as a group of auto-
morphisms of S, , as is easily
seen, Conversely, assume that this
is the case, Putting S;= {A}

we have HMAH = e o There=
fore 6 1is not an (LM)-group,

REMARK 3. PROPOSITION 9 was
suggested to the author by Mr. S.
SATO and I give him my hearty thanks.
(cf. s.safo )

PROPOSITION 10. Assume that
the order of a group & have the
following prime factor decomposi-
tlon:  ppERS (RO>R DR 5
If & 1is an (LM)-group, then

s.5g=slxsz or S.Ss =S,XS3 .

PROOF. Assume that the asser-
tion is true tor all groups of
smaller order. Now & _ 1is nilpotent
by a theorem of 0.ORE'" and if

0% 5 , then S,(8) or S3(8)
is distinct from € , Further if
5:(6)=S, or S;3(8)=S; then

55:=5XxS, or 5,5 =5XxS; ;

and 1f S506)=%S, then induction
can be applied to &/5,(9) and
[5.8:] or [5.S5]1E s, (8) .

Since [S1,S:] and [s,5]) ¢ S,,(SS,)

or [S,,S;)] & S.(0)AS;=¢e whence
5,5, = SxS,; OPF 5S5;=5,xS; +°
Hence we may assume that 6g<S, .

Whence H; 1is abelian., Putting

S, ={A} , we consider H, ~ B
then this contains S, or S; ,
whence we can easily see that S,
or S3 1is normal in &G . Therefore
58, =S5 x5, or 58 =5xXS; .
Thus induction completes the proof.

PROPOSITION 1l1. Let G be a
(C)=-group whose order § has at
least four distinct prime factors.
If every proper subgroup is an (LM)-
group, then & 1is so, too.

PROOF, Let ™M and N be any
two distinct maximal subgroups of
G .+ We have to show that MaN
is maximal in M and N , Now
if ™M and N are not conjugate
MN=NM= G , by a theorem of
0.O0RE?”, whence we can easily see
that 1M = N:MaN=prime and
G:N= M: MAN=prime. Therefore

MAN 1is clearly maximal in
™M and N . Hence we may assume
that N=M* for some element x
of & . Now let & have the fol-

lowing prime factor decompositions:

PE B BT (BOR> > Py

1 -k

and r24) . If GWM=F ,i>1 ,
then G/s; 2 M/s, and ", and
G/s, = H, 1is an (LM)-group,
whence the assertion trivially
holds. Hence we may assume that
Gi1M= B . Now assume that
the assertion is true for all groups
of smaller order. If )i then
S,(M) is normal in G and we
can apply induction argument to
Gr/s,(M) 2 M/S5 (M) and N/S(M).
Then we can see that & /S(M) is
an (LM)-group whence the assertion
clearly hclds. Hence we may assume
that ¢=1 and put S,={A and
x=A . Now PROPOSITION 10 can
be ax)plied to this case: We have
S =S; except at most one
kK (I<k ¢r) , where M=S5,S,-
+++S, ., Finally consider S,S.
and Sk N Sk » Since 5,5 1s
an (LM)-group, Sf ASk is maxi-
mal In Sk and S . Hence MaN
is clearly maximal in M and N o
Therefore PROPOSITION 11 has been
completely proved by induction.

PROPOSITION 12. Let G be a
soluble group. Then & 1is a (C)-
or an (LM)-group according to that

G/Coo is a (C)- or an (LM)-group.
The converse is also true.

PROOF. First assume that &/Ce
is a (¢)-group. We use induction
for the length of the upper central
series, Then we may assume that

Co=C >e . Let M Dbe any

maximal subgroup of & . If MDC,
then since G/c DM is a (C)-
group, G:M=prime. If ™M dbc



then M 1is normal in & and ob-

viously we have G:M== prime. Next

we assume that & /¢, 1is an (LM)-

group. As above we may assume that
Cn=C D¢ . Let M ana N

be any two distinct maximal sub-

groups of & .« If M ana N are

not conjugate, we have MN=NM=Gby

a theorem of 0.0RE®® and easily sve
GIM= NIMAN = prime and
G :N= MiMnaN=prime. Thererore
MAN 1s clearly maximal in ™M

and N , Hence we may assume that
Mm and N are conjugate. Then
m and thereiore N DC , sSince

if not we can easily see that m

is normal and M=N which is a

contradiction. Then since

G/c 2M/cand Ng
MAN 1s clearly maximal in

and N . Therefore induction pro~

ves PROPOSITION 12. The converse

is trivial,

PROPOSITION 13. Let & be a
(¢)~- but non-(LM)-group whose every
prcper subgroup is an (LM)-group.
Then & has a homomorphic image
which is a group as in PROPOSITION
9,

PROOF. Follow the prcof of PRO-
POSITION 11. Let &G be a group
which satisfies our condition. We
may replace 6 /Cw for G by
virtue of PROPOSITION 1l2; therefcre
we may assume that C=e€& , Now
the order cf has the following
prime factor decomposition.

R® B pS2 o BH B (ROPa ) P)
and Gr has a homomorphic image
of order p p% p% or b pf2
as is easily seen in virtue of the
proof of PROPUSITION 1ll., There-
rore we may assume that the order
of & 1is pp ps or I'Pe’ o
Now G /H,(98) satisfies the same
condition that &G does. There-
fore we may assume that 6 ¢ S, o
Hence H, is abelian. Now put

S ={A} and let K be a
maximal subgroup of H, and we con-
sider KA KA o Since SK is
an (LM)-group, KAKY 1is maxi=-
mael in K . On tne other hand,
it is contained in C . Therefore

KA~K*=e . Therefore H, is
of order AP or B and this
completes the proof or PROPOSITION
13.

Now we shall apply the method,
by which P.HALL®*"studied comple-
mented (C)=-groups, to general (LM)-
groups. And this is proposed by
Mr. M.SUZUKI.

PROPOSITION 14, Let G =& Xérz
be & soluble group. Every maximal
subgroup M , such that M 429,—‘
and G, , is normal.

is an (LM)- group,

PROOF. Assume that the asser-
tion is true for all groups of
smaller crder. And we shall prove
PROPOSITION 14 by induction. Now
if MAG =¢ and MnAG,=e ,
then G = M6, = MG, and G:M= p*
where p 1s a prime factor of the
order of & . Therefore G,:e =

Gore=pt= G ™ and, in par-

ticular, & 1is a P -grcup.
Hence ™M 1is obviously normal in
G . Then we may assume that,

for instance, ™MAG, = N De .
Since J(N) D M and G., N,
is normal in & . Therefore we
can apply inductlon to

G/MN, =6 /NyxG2 D M/N, « Hence

™M 1is normal in G . And incuc-
tion completes the proof of PROPO-
SITION 14.

PROPOSITION 15. If &, and

G, are (LM)-groups, then
G =6, xG; 1s so, too.

PROOF. Let the assertion be
secured ror groups of smaller
order., And we shall prove PROPOSI-
TION 15 by induction argument.
First it is trivial that G 1is a
(c)-group by PROPOSITION 6. Let

M and N be any two distinct
maximal subgroups of &G . If

M and N are not conjugate,
then, MN=NM=G by a theorem
of 0.0RE®Y, Hence 6G:M =N: MAN =
prime and GIN= M MAN=prime.
It M and N are conjugate, then

M and N contain G, or by
PROPOSITION 14 and therefore ™MAN
contains G, or 6r. , whence it is
clear that ™MAN 1s maximal in ™M
and N , Now it is sufficient to
show that every proper subgrcup of

& 1s an (LM)-group. So we shall
assume that there exists at least
one non-{LM) subgroup in &G ; let

H be a minimal one. Then every
proper subgroup of H 1is an (LM)-
group. Now we may assume that

G H= G;H— . For if not,
say HF G then induction
can be applied to G,H= G x (G2 ~G,H)

and we see that &,H

is an (LM)-group. Then, of course,
H 1is (LM) which is a contradic-
tion. Further we may assume that

any minimal normal subgroup L
of & which is contained in &
or G&; 1s contained in H . For
if not, it is evident that
N(HAL)2Hand G, or &, . There-
fore N(HAL)=G , that is,
HalL is normal in & .
Since HAL is distinct from
L and since L 1s minimal,
HAL=c¢ « Then inducticn
can be appl‘ed to G/L = G /LxG,

2 HL/_ and we see
that Gr/L. is (LM). Then, of
course, HL/L = H 1s (LM) which



is a contradiction. 1In particular
H contains a minimal normal sub-
group P, which is contained in
G, or G , say G, of order b
where p, 1is the maximum prime
factor of the order of G : The
existence of P, is secured since
Gr is a (C)-group. Now as is
easily seen in virtue of the proof
of PROPOSITION 11 there exists a
maximal subgroup ™M of index P
in H such that the intersection
MAM" i3 not maximal in M
or MP , say M , for a suitable
element h of H . Now we may
assume that ™M contains no minimal
normal subgroup which is contained
in G or G, . For if not, in-
duction can be applied and we see
that MAM" 1s maximal in M
and MM which is a contradiction.
In particular, ™M does not contain
P, . Then GM=GFRAM=GH=6 .
Similarly G,M=G . Now consi-
der &, ~M , then N(GAMI2 M
and G, , that is, M (G A M)= G
and G, M is normal in &G .
Therefore G&G,AM=e¢ » Similarly
G ~AM=¢ « Then 1t is
easily seen that HANG, =P and
HAG.=PF where P, 1s a
minimal normal subgroup which is
contained in G, of order P .

Therefore H=P-M=P,-M .
Since PrH (M) » B-H (M)
is an (LM group. Then

S, - (H (M)B = S; (M) x B, except

at'most on y one’ ; by PROPOSITION
10, Then as in the proof of PROPO-
SITION 11 it is easily seen that

MAMP is maximal in ™M which
is a contradiction. Theretfore in-
duction completes the proof of
PROPOSITION 1S5.

Lastly we shall analyse a struc-
ture of fully irreducible (LM)-
groups. Since it is evident that
a p -group belongs to this class if
and only if its centrum is cyclic,
we shall treat in the following
only non-p -groups. We however,
contrary tc Hall's case, have not
succeeded in writing out a struc-
ture of such groups.

Let Gt be a fully-irreducible
(LM)=-group. Then since G 1is a
(¢)-group, © 1is nilpotent by a
theorem of 0.0RE¥®), Therefore

6s S by our assumption
where p, 1s the largest prime
factor of the order of G and
hence H, 1s abelian. Let §(c(S))

be a subgroup of (C(S)) which
is consisted by all elements of
order P of C(Si) and consider

Q(C(sl)) Hp - . Then
it is easily verified that Q(C(SV)
1s of order P since if not G

has at least two minimal normal

subgroups. Therefore (C(S,) is
cyclic and S, 1is fully irreducible.
Further it 1is evident that H, is

considered as a group of some auto-
morphisms of S, and that every
prime factor ¢ of the order of
H, satistlies the conditicnl
Pb=1 (mod q). We have used
no tact that G 1s an (LM)=-group
in above observation,

PROPOSITION 15, Let &G be an
(LM)-group and H be its proper

subgroup, If ™M 1s a maximal
subgroup of G , then M2 H or

HAM 1is maximal in H . In
particular & (H) ¢ F (&)

PRCOF. Let N be a maximal
subgroup of G which contains

H « If N=M then M2H .
If N*M™M , then NAM 1is maxi-

mal in M and N since G 1is an
(LM)-group. Now induction can be
applied to N , H and NaAM and
we 'can see that NAMA H=MAH1s
maximal in H . Thus induction
proves PROPOSITION 15,

Again let & be a fully irre-
ducible (LM)-group. Since 2 (6r)
is nilpotent, 3(G) S S, from
our assumption. Therélore &(H)=e
and H, 1s a direct product of
elementary abelian 4 -groups where

9 runs all the prime factors of
the order of H, . Finally let

S=ETOTD - DT =e

be a part of principal series of

G .« Then it is easily verified
that H, 1induces a group of auto-
morphism cf at most prime order into
each T /1y, ((=o0, - 1 €-) R
Conversely such a group is evident-
1y a fully irreducible (LM)-group.
Such a characterization, however,
is not constructive at all, we
think,

be a prime such
where

EXAMPLE. Let P
that P-I=4, g‘

B PO a 'in are primes
and r 1s a positive integer. Let
S be a p-group of order p27!

defined by Iollowing relations:
[Az,,_l s Az;,]’A for i= /02, - , N,
[Ak > Ay 1=e for (k.1)zZ(2i-,2¢)
p or (2it,2¢-y) and
A; =e . Then, as 1s easily
verified, § 1s fully irreducible
and of class 2. Denote by T; the
subgroup which is generated by
Azi-1 and Azl for
i{=/,2,---, n « Then, as is easily
verified, T; has a cyclic group
Q;={8;} of prime order 4. as
a group of automorphisms such that
AB: Au = A% ’

"t
2imt = Ah-l ’



and mod .
Let %= X = _":xzi tmee 2
group of ad%omorphisms ot S where

Qx induces an automorphism of
order 4y into Ty in the same man-
ner as above and does an identical
automorphism into T, witn I+ k .
Let G=S'H be a holomor'ph of

S by H . Then, as is easily
verified, & of order p*™'q,...q,

is a fully 1rreducible

(LM) ~group,

(*) Recelved Lecember 29, 1950,

(%) I have obtained the following
results during 1947-1948,., After I
had accomplished this work, it was
reported that Mr. A.JOHNES had stu-
died groups of similar type. Yet
his proof is not communicated to me,
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