By Yûsaku KOMATU

1. We may and do use, as a canonical domain of multiplicity $n \ (>2)$, a concentric annular ring slit along concentric circular arcs. Let the boundary components of such a domain \mathcal{D} , laid on z-plane, be

$$C_{1}: |z|=1; \qquad C_{2}: |z|=Q (<1);$$

$$C_{j}: |z|=m_{j}, \quad \theta_{j} \leq \arg z \leq \theta_{j} + \theta_{j}$$

$$(3 \leq 1, \leq n);$$

and the interior and the exterior sides of the slits C_j ($3 \le j \le m$) be

$$\begin{split} C_{j}^{(c)}: & |z| = m_{j} - 0, \quad \theta_{j} \leq \arg z \leq \theta_{j} + \gamma_{j}, \\ C_{j}^{(e)}: & |z| = m_{j} + 0, \quad \theta_{j} + \gamma_{j} \geq \arg z \geq \theta_{j}, \end{split}$$

respectively. The total boundary of D be denoted by

$$C = \sum_{j=1}^{n} C_{j}$$

Any function U(z) regular barmonic in the domain D and continuous on the closed domain D + C is represented by Green's formula in the form

$$U(z) = \frac{1}{2\pi} \int_{C} U(\zeta) \frac{\partial g(\zeta, z)}{\partial v_{\zeta}} ds_{\zeta},$$

 $g(\zeta, z)$ being, as usual, Green function (with variable ζ) of D with singularity at z, y_{z} and A_{ζ} denoting inward normal and arc-length parameter at a boundary point ζ .

If we denote the equation of the boundary C by $z = \zeta(\lambda)$ and the harmonic measure of a part of C from a fixed point to the point $\zeta(\lambda)$ by $\omega(z, \zeta(\lambda))$, then we have

$$\frac{1}{2\pi} \frac{\partial g(\zeta, z)}{\partial y_{\zeta}} d\xi = d\omega (z, \zeta(s))$$
$$\equiv \omega (z, d\zeta(s)),$$

But, we use here an another aggregation, namely the one corresponding to Herglotz type. Let $\mathcal{D}(z)$ be an analytic function one-valued and regular in \mathcal{D} and continuous on $\mathcal{D} + \mathcal{C}$. We denote by $\mathcal{G}(5, z)$ an analytic function of z whose real part colncides with $\mathcal{G}(5, z)$; $\mathcal{G}(5, z)$ being uniquely determined except an additive purely imaginary quantity depending possibly on ζ and possessing multivaluedness due to periodicity moduli with respect to the boundary components. We have then, by the formula mentioned above,

$$\Phi(z) = \frac{1}{2\pi} \int_{\mathcal{C}} \mathcal{R} \Phi(\varsigma) \frac{\partial G(\varsigma, z)}{\partial v_{\varsigma}} ds_{\varsigma} + i c,$$

c being a real constant.

We now assume that $\mathcal{RP}(z)$ is of bounded variation along \mathcal{C} . Then, so is also the function ($\zeta \in C_1$)

$$\rho_{j}(\varphi) = \int^{\varphi} \mathcal{R} \Phi(\zeta) \, ds_{\zeta} \qquad (\varphi = a \, sg \, \zeta);$$

in fact,

$$\int_{C_j} |dg_i(\varphi)| = \int_{C_j} |\mathcal{R}\Phi(\varsigma)| ds_{\varsigma}.$$

In this case, we may write the expression as in the Herglotz type which states

$$\Phi(z) = \frac{1}{2\pi} \sum_{j=1}^{n} \int_{C_j} \frac{\partial G(\zeta, z)}{\partial y_{\zeta}} df_j(\varphi) + iC.$$

Now, considering residue at point ∞ , we have particularly

$$\frac{1}{2\pi}\int_C \frac{\partial G(s, z)}{\partial v_z} ds_z = 1,$$

and hence

$$1 = \frac{1}{2\pi} \sum_{j=1}^{n} \int_{C_j} \frac{\partial G(\zeta, z)}{\partial v_{\zeta}} d\sigma_j(\varphi),$$

where $\sigma_i(\varphi)$ is defined by

$$\sigma_{j}(\varphi) = \begin{cases} \varphi & \text{on } C_{1}, \\ -Q \varphi & \text{on } C_{2}; \\ m_{j}(\varphi - \theta_{j}) & \text{on } C_{j}^{(i)} \\ -m_{j}(\varphi - \theta_{j} - \tau_{j}) & \text{on } C_{j}^{(i)} \end{cases} (3 \leq j \leq n),$$

The last equation shows that an additive purely imaginary constant is contained in the general representation vanishes out for the particular function $\mathcal{Q}(z) \equiv 1$.

2. Consider now an analytic function f(z) one-valued and regular in D and piecewise regular on D+C.

The boundary points, finite in number, where the regularity of f(z) is broken down, be

$$z_{jr}$$
 $\begin{pmatrix} \mu = 1, 2, \dots, n_{j}, \\ j = 1, \dots, n \end{pmatrix}$.

The existence of limits of f(z) from both sides along C will be assumed at each of such points.

We assume further that f'(z) vanishes nowhere on D + C except at these exceptional points $z_{j\mu}$. The image of D by mapping w = f(z) then possesses, on Riemann surface, a piecewise analytic boundary and the function f(z)can be prolonged analytically over every boundary arc containing no exceptional point. Denoting generally by ζ any exceptional point, then the image-curve of C possesses at $f(\zeta)$ an angular point. Denoting by $a\pi$ the exterior angle at such an angular point with respect to the image-domain, the jump of $\arg f'(z)$ at ζ along Cis given by

$$\arg \frac{f'(\zeta_+)}{f'(\zeta_-)} = (\alpha - 1)\pi,$$

 ℓ_{Σ} being infinitely adjacent points at both sides of ℓ_{Σ} .

The image-curve of C will moreover have angular points, in general, also at the image-points of end-points of the slits. If $f'(\mathcal{X})$ is regular at such an end-point p and does not vanish there, then the exterior angle of the image-curve at f(p) is 0 and the jump of $\arg f'(\mathcal{X})$ there vanishes out. But, if p coincides with an exceptional point '5 for which the imagecurve possesses an angular point with exterior angle $\mathscr{A}\pi$, then the jump of $\arg f'(\mathcal{X})$ there becomes $\mathscr{A}\pi$ since $\arg d\mathcal{X}$ jumps there by $-\pi$.

Let ζ be an exceptional point coinciding with none of end-points of the slits and the corresponding angle $\alpha\pi$ be different from 2π . Then

 $(f(x) - f(\zeta))^{1/(2-\alpha)}$ is regular at a vicinity of ζ and has ζ as a simple pole; namely, the function $f(x) - f(\zeta)$ is uniformized by a local parameter $(z - \zeta)^{2-\alpha}$. Therefore, $f(x) - f(\zeta)$, as a function of $(z - \zeta)^{2-\alpha}$, possesses a simple pole at ζ . In case $\alpha = 2$, instead of $(z - \zeta)^{2-\alpha}$, $l_{\alpha}(z - \zeta)$ may be taken as a local uniformizing parameter. In any case, the function

$$(z - \zeta)^{d-1} f'(z)$$

is regular and non-vanishing around \Im . If an exceptional point \Im coincides with an end-point β of a slit, then the power $2-\alpha$ in local parameter has to be replaced by $(2-\alpha)/2$.

In the following, we suppose none of exceptional points coincide with any one of end-points of the slits, i. e., $2 \neq \beta$. But, if it happens $2 = \beta$, the only modification must be made, according to the fact stated just above, that α has to be replaced by $\alpha/2+1$.

Now, the function defined by

$$\Phi(z) = z \frac{d}{dz} lg \left(f'(z) \prod_{j=1}^{n} \prod_{p=1}^{n_j} (z - z_{jp})^{d_j p - 1} \right)$$
$$= \frac{z f''(z)}{f'(z)} + \sum_{j=1}^{n} \sum_{p=1}^{n_j} \frac{(a_{jp} - 1)z}{z - z_{jp}}$$

is evidently one-valued and regular throughout $D+\mathcal{C}$. Hence, it is expressible in the form

$$\Phi(z) = \frac{1}{2\pi} \sum_{j=1}^{n} \int_{C_j} \frac{\partial \mathcal{G}(\zeta, z)}{\partial \mathcal{V}_{\zeta}} d\mathcal{P}(\varphi) + \mathcal{C},$$

C being a real constant and $f_{i}(\varphi)$ being a real function of $\varphi = ax\varphi \zeta$ given by

$$\rho_{j}(\varphi) = \int^{\varphi} \mathcal{R} \Phi(\zeta) ds_{\zeta} \quad \text{for } \zeta \in \mathcal{C}_{j}.$$

The linear function $z/(z-z_{j\mu})$ behaves regularly everywhere except only at a simple pole $z_{j\mu}$ and its real part is identically equal to 1/2 along C_j . It will be easily seen that a representation of the same type as given above for $\Phi(z)$ holds good also for such a function.⁽¹⁾ Hence, we obtain the following representation formula with respect to f(z):

$$\frac{zf''(z)}{f'(z)} = \frac{1}{2\pi} \sum_{j=1}^{\infty} \int_{C_j}^{2\frac{Q(j,z)}{2p_j}} m_j darg f'(\zeta) + \iota C^*_j$$

$$C^*$$
 being a real constant and $m_1 = 1$, $m_2 = Q$.

On the other hand, we have seen that, for particular case $f'(\alpha) \equiv \alpha$, the corresponding representation reduces to

$$L = \frac{1}{2\pi} \sum_{j=1}^{n} \int_{C_j} \frac{\partial G(5,z)}{\partial y_j} m_j daxg\xi,$$

an additive constant vanishing out. Hence, remembering that the relation

$$darg \, df(\zeta) = darg \, (\zeta f'(\zeta) \, i \, dg)$$

= $darg \, (\zeta f'(\zeta))$ (g=arg \zeta)

is valid along $\, \mathcal{C} \,$, we have

$$1 + \frac{zf''(z)}{f'(z)}$$

= $\frac{1}{2\pi} \sum_{j=1}^{n} \int_{C_j} \frac{\partial G(\zeta, z)}{\partial Y_{\zeta}} m_j daxg df(\zeta) + cc^*$

The real constant c^{+} can be determined as follows. For any fixed point z_{o} in D, we put

$$L(z,\zeta) = \frac{1}{2\pi} \int_{z_n}^{z} \frac{\partial G(\zeta,z)}{\partial v_{\zeta}} \frac{dz}{z}$$

This function has a periodicity modulus around each boundary component \mathcal{C}_s . Hence, if, introducing the uniformizing parameter $\log z$, we put

$$M(\lg z, \zeta) = L(z, \zeta),$$

then the difference

$$M(\lg z + 2\pi i, \zeta) - M(\lg z, \zeta)$$

remains constant, for fixed ζ , along each C_{σ} , i.e., χ is contained in this expression only apparently. Hence, we may put

$$M_{j}(\zeta) = M(lgz + 2\pi i, \zeta) - M(lgz, \zeta)$$
$$(z \in C_{j})$$

Integrating the above obtained expression for f''(z)/f'(z) with respect to Z , we get

$$\lg \frac{f'(z)}{f'(z_0)} = \sum_{j=1}^{n} \int_{C_j} M(\lg z, \zeta) m_j d\arg f(\zeta) + ic^* \lg \frac{z}{z_0}.$$

Now, f'(z) being one-valued, the lefthand member of the last relation increases by an integral multiple of $2\pi i$ for substitution $\lg z \mid \lg z + z\pi i$. Accordingly, the real part of this increase calculated from the right-hand member must vanish. Hence we get

$$2\pi c^* = \sum_{j=1}^{m} m_j \int_{C_j} \mathcal{R}M_j(\zeta) daxg f'(\zeta),$$

which is the relation determining C^* . Since, in particular case $f'(z) \equiv z$, the corresponding constant becomes (), we may write also

$$c^* = \frac{1}{2\pi} \sum_{j=1}^{m} m_j \int_{C_j} \mathcal{R}M_j(\zeta) dasg df(\zeta).$$

The constant \mathcal{C}^{*} having been determined, we obtain the desired representation formula

$$1 + \frac{z f''(z)}{f'(z)}$$

$$= \frac{1}{2\pi} \int_{j=1}^{\infty} m_j \int_{C_j} \left(\frac{\partial \mathcal{G}(\zeta, z)}{\partial \gamma_{\zeta}} + \mathcal{R}M_j(\zeta) \right) daxgdf(\zeta),$$

which, by integration, yields a representation for f(x) itself.⁽²⁾

3. As an application of the above general formula, we consider here the case where w = f(x) maps the basic domain D onto a domain bounded by π rectilinear polygons. Then, the exceptional points ' ζ are the points corresponding to vertices of the image-curve of C, and arg Af becomes a step function baving jump with hight $(\alpha - i)\pi$ at each ' ζ . Hence, the general formula reduces here to a simple form with-out integration sign which states

$$1 + \frac{z f''(z)}{f'(z)}$$

$$= \frac{1}{2} \sum_{j=1}^{n} m_j \sum_{\mu=1}^{nj} (\alpha_{j\mu} - 1) \frac{\Im G(z_{j\mu}, z)}{\Im z_{\mu\mu}} + c^{z}$$

c* being given by

$$C^{*} = \frac{1}{2} \sum_{j=1}^{n} m_{j} \sum_{\mu=1}^{n} (a_{j\mu} - 1) \mathcal{R} M_{j} (z_{j\mu}).$$

The successive integration yields then

$$\int_{a}^{b} \frac{zf'(z)}{z_{o}f(z_{o})} = \pi \sum_{j=1}^{n} m_{j} \sum_{\mu=1}^{n_{j}} (z_{j\mu} - 1) L(z_{o}, z_{j\mu}) + c^{*} \int_{a}^{b} \frac{z}{z_{o}} + A_{i},$$

 A_i being an integration constant, and

$$f'(z) = A z^{-c^{n-1}} \exp\left(\pi \sum_{j=1}^{n} m_{j} \sum_{\mu=1}^{n} (x_{j\mu} - z) L^{(2, z_{j\mu})}\right)$$

$$f(z) = A \int_{z}^{z} \int_{z}^{c^{n-1}} \exp\left(\pi \sum_{j=1}^{n} m_{j} \sum_{\mu=1}^{2^{j}} (x_{j\mu} - z) L^{(2, z_{j\mu})}\right) az$$

$$+ A^{j}$$

A and A' denoting integration constants which depend only on position and magnitude of the polygonal image domain. The last formula may be megarded as a generalization of Schwarz-Christoffel's one for simply-connected case and of a formula for doubly-connected case previously given by the present author.⁽³⁾,⁽⁴⁾

(*) Received October 9, 1950.

(1) Gf. Y.Komatu, Darstellungen der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf konforme Abbildung über Polygonalringgebiete. Jap. Journ. Math. 19 (1945), 203-215.

(2) The corresponding formulae for simply- and doubly-connected cases have previously been given in Y.Komatu, Einige Darstellungen analytischer Funktionen und ihre Anwendungen auf konforme Abbildung. Proc. Imp. Acad. Tokyo 20(1944), 536-541 and in the paper cited⁽¹⁾, respectively. (3) Loc. cit(1) and(2).
(4) For generalization of Schwarz-Christoffel formula, see also Y.Komatu, Conformal mapping of polygonal domains, Journ. Math. Soc. Japan 2(1950), a preliminary note of which has been reported under the same title in these Reports Nos. 3-4 (1949), 47-50.

Tokyo Institute of Technology.