REPRESENTATION OF FUNCTIONS ANALYTIC IN A MULTIPLY~CONNECTED DOMAIN

By Yiisaku KOMATU

R. We may and do use, as a canoni-
cal domain of multiplicity m ( >2), a
concentric annular ring slit along
concentric circular arcs., Let the
boundary components of such a domain

D , laid on z-plane, be
Cl: fZl:’ij Cz', |Z(=a(<1)/
Cy - izl=m;, o sagzsé+T
(3 = = %)J

and the interior and the exterior sides
of the slits CJ (3= 42m) be

W 47,
) = m, -0, @ 5argzs6+
C; (Z]= ™ ) FAIE=T T
@ 0.+ V.zarwgz20
C’J fzl=omyt 0, &+ 4 £4=5
respectively., The total boundary of
D Dbe denoted by
o
c=2 ¢
=1
Any functlion U (Z) regular harmo-

nic in the domain D and continuvous
on the closed domain D + C 1is repre-~
sented by Green’s formula in the form

)
U= z/(;)fiﬂf—Z ds

(%, ~) being, as usual, Green
function (with variable ¢ ) of D with
singularity at 2 , Y, and 4, denot-
ing inward normal and arc-length para-
meter at a boundary point § .

If we denote the equation of the
boundary C by %z = ¢ (4 and the har-
monlc measure of a part of C from a

fixed point to the point J(4) by
w (z/ ;(4)) s then we have
2 Z(§ 1)
o= ” = da (%, {(4)

= w(z, 45(5),

But, we use here an another aggrega-
tion, namely the one corresponding to
Herglotz type. Let P (z) Vve an
analytic function one-valued and regu-
lar in ) and continuous on D+
We denote by ¢ (3, %) ar analytic
function of Z whose real part coin-
cides with 3%(5, 2) ;: ¢ (5,z) belng
uniquely determined except an additive
purely imaginary quantity depending

possibly on ¢ and possessing multi-
valuedness due to periodicity moduli
with respect to the boundary components.
Ne have then, by the formula mentioned

above,

blor= = f’kl’(;)w“’“ 48 4 ic,

c being a real constant.
We now assume that RE(z) 1is of
bounded variation along C . Then,

so 1s also the function (e CJ)

14
g((fo:fﬂ@(;)ru; (¢=args);
in fact,
f lAj’.Uf’)l:fC RS G| as,
G J G

In this case, we may write the ex-
pression as in the Herglotz type which

states
f 2&(§ )dﬂ(¢)+¢c
J— / ;

(o=
Now, considering residue at point
% » We have particularly

L ?_wug.;i,

Y

and hence

§ 26(3,2
-kl [ 25w

where 03 (¢) 1s defined by

.(f on C{,}

c(p = "% Gy

4 ;g (9-9) o c“’
fﬂ{;{ﬂl§

= (§-0-7) o c“’

J

The last equation shows that an addi-
tive pursly imaginary constant ic con-
tained in the general representation

vanishes out for the particular func-

tion Py= L o
2. Consider now an analytic func-

tion £(z) one-valued and regular
in D “and plecewise regular on D+C .
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The boundary points, finite 1in number,
where the regularity of +(Z) 1is bro-
ken down, be

. (/L:i} 21“"”}/)
Vind J=1" ‘om ‘

/
The existence of limits of F(ZX) from
both sides along will be assumed
at each nf such points.

We assume further that f?z) vanishes
nowhere on D+ C except at these
exceptional polnts Zue . The image
of D by mapping w = (%) then pos-
sesses, on Rliemann surface, a plecewilse
analytic boundary and the function (%)
can be prolonged analytically over
every boundary arc contalning no ex-
ceptional point. Denoting generally
by % any exceptional point, then the
image-curve of possesses at f£(%)
an angular point. Denoting by «m the
exterior angle at such an angular point
with respect to the image-domain, the
Jump of azg £'(%) at /g along (
is given by

7¢, being infinitely adjacent points
at both sldes of ¢ .

The Image~-curve of ( will moreover
have angular pointe, 1n general, also
at the ;mage-points of end~-points of
the slits. If F7(Z) 1s regular st
such an end-point p and does not va-
nish there, then the exterior angle of
the imege-curve at f(f is 0 and the
Jump of axg /(2 there vanishes out.
But, if £ “colncides with an excep-
tional point ‘¢ for which the image-
curve possesses an anrgular point with
exterler angle « 7T , then the jump of
Arg £7(%)> there becomes . since
arg Az  Jumps there by -7

Let /f; be an exceptional point
coincldlng with none of end-points of
the slits and the corresponding angle
7T be different from 27C , Then

1/ (2 =)

(Fez) = £078)), s regular
at & vicinity of 5 and has 6 as a
simple pole; namely, -the function

f(v - £ 18 uniformiued by a local
parareter (z~"8)*" Therefore,

f(z) — £(’2) , as a function of

z - ’§)*=* , possesses a simple
pole at” 5 . In case « =2 , in-
stead of "¢z - 733* %, lgcz - '3)
mey be taken as a local uniforrv* ing
parameter, In any case, the function

(z - %)< flez)

regular and non=-vanlshing around

. If an exceptional point ‘4 coiln-
cides with an end-point p of a slit,
then the power 2 -—~«& in local parameter
hag tc be replaced by (2-«)/2,

%,
s

In the following, we suppose none
of exceptional points coincide with
any one of end-points of the sl*ts, 1.
e., ’c+p . But, if 1t happens 5 =p,
the only modification must be made,
according to the fact stated just abo-
ve, that o has to be replaced by
A /241,

Now, the function defined by

p nom oL ~1
bz = zfi— lg (f(z) ﬂ—ﬂf (=~ 3',,.) " )

J=t
Vs ”. ~1
_ zf(z)+ Z (e )z
Fio 1/~=L z-

is evidently one-valued and regular
throughout D+ C . Hence, it is
expressible in the form

L5 [ 2882 p0r+ec
O N v
5

C beling & real constant and P (¢)
being a real function of ¢= azir;
given by

(? YAb for ¢eC
plp= | REOM, for 2

The linear function z/(z- z,‘)
behaves regularly everywhere except
only at a simple pole Z;, and its
real p&rt is identically’equal to 1/2
along .« It will be easily seen
that a reﬁresentation of the same type
as glven above for $(z) holds good
also for such a function.¢® Hence,
we obtain the following representation
formula with respect to f(x) @

Y,
Z .

¢* belng a real constant and m, = L,

m, = o

On the other hand, we have seen that,
for particular case {£7z)= %X , the
corresponding representation reducss to

(; z)
= 'L,,‘,;Z‘_J Gr 'm}.o(aifggj
J

an additive constant vanishing out.
Hence, remembering that the relation

aaxg (§F (z)uiﬁ’)

ata«g df(3) =
=azg¢)
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is valid along c » we have
z f(2)

L £=)

e ) (5 0 *
=gl ) Wy

J:

The real constant ¢c* can be deter-
mined as follows. For any fixed po-
int 2, in D , we put

/‘z
Liz,¢y= L [ 2642 4%
’ 2Ty, 2% z
This function has a periodicity modulus
around each boundary component
Hence, if, introducing the uniformizing
parameter {g z , we put

Mgz, = L= ¢)
then the difference

M (lgz+omi, $3 = Mgz, 8)

remains constant, for fixed ¢ , along
each C, , l.e,, Z 1is contained in
this expression only apparently. Hence,
we may put

MJ ()= M(lgz+ami, §)- Mlgz, )

(zeCj)

Integrating the above obtained ex-
pression for #’ ‘(z) /¥'tz; with respect
to 2 , we get

0 N eveictle
A M (loz, 0 )m, darg f(D)+iclg .
lgf/(zo) J-l J(‘; 5 E ji g XZ‘,

Now, F/(2) bdeing one-valued, the left-
hand member of the last relation in- |
creases by an Integral multiple of 2T+
for substltution Igz f gz + a2 i,
Accordingly, the real part of this in-
crease calculated from the right-hand
member must vanish. Hence we get

o

2= 5 m, f xm,(;)mrgf’(;),
J=1 J C J

J

which is the relation determining ¢¥

Since, in particular case +7(z)= %,

the corresponding constant vecomes ( ,

we may write also

= — 1:, ”m J RM. /‘)ﬂmérxj(;)

The constant ¢¥ having baen deter-
mined, we obtain the desired reprssen-
tation formu;a

L+

_ L f(3&(§2)+ Rm,{;g)dmgdf({))
am S it 2% d
J J
which, by Iintegration, yields a re-
presentation for f(x) itself,

3. As an application of the above
general formula, we consider here the
case where W= f(Z) maps the basic
domain D onto a domain bounded by
7n rectilinear polygons. Then, the
exceptional points /4§ are the points
corresponding to vertices of the image-
curve of C, ana arg 4f becomes a step
functfon hraving Jjump with hight («—{)#
at each /4 . Hence, the general fore
mula reduces here to a simple form with-
out integration sign which states

z +"(z)
L+ 5
1_ " n -
=g m Z -0 285
jet o 7,

c* bpeing given by
L
ek Sm Z’m ORM, (2,
et dp
The successive integration vields then
I zf12)
s % fT8)
m - &3
=l «’Z(’Q,n 0Lz

Jsi rrl

*] Z
z FleE+A
Jf)+b Sz, 7,
A1 being an Integration constant,

Flo n
< b g (r 2T m L )

f

,.1 ety iy ,
= A1z mf:@t ” - )i
¥

_1 a“-_ i

/
A ang A denoting 1ntegratinn won -
stants which depend only cn posJ t
and magnitude of the poelygonal imags
domain. The last forrula may be
garded as a generalization c?
Christoffel’s one for aimply=-c
case and of a formula for doub
nected case previously given b
present author % @

(*) Received October 9, 1950,
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