By Yûsaku KOMATU

1. We may and do use, as a canonical domain of multiplicity $n(>2)$, a concentric annular ring slit along concentric circular arcs. Let the boundary components of such a domain D, laid on z-plane, be

$$
\begin{gathered}
C_{1}: \quad|z|=1 ; \quad C_{2}:|z|=Q(<1) ; \\
C_{j}: \quad|z|=m_{j}, \quad \theta_{j} \leqq \arg z \leqq \theta_{j}+\gamma_{j} \\
(3 \leqq j \leqq n),
\end{gathered}
$$

and the interior and the exterior sides of the slits $C_{j}(3 \leqq j \leqq n)$ be

$$
\begin{array}{ll}
C_{j}^{(i)}: \quad|z|=m_{j}-0, & \theta_{j} \leqq \arg z \leqq \theta_{j}+\gamma_{j}, \\
C_{j}^{(e)}, & |z|=m_{j}+0,
\end{array} \theta_{j}+\gamma_{j} \geqq \arg z \geqq \theta_{j}, ~ \$
$$

respectively. The total boundary of D be denoted by

$$
C=\sum_{j=1}^{n} C_{j}
$$

Any function $U(z)$ regular harmonic in the domain D and continuous on the closed domain $D+C$ is represented by Green's formula in the form

$$
\begin{aligned}
& U(z)=\frac{1}{2 \pi} \int_{C} U(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu_{\zeta}} d s_{\zeta}, \\
& g(\zeta ; z) \text { being, as usual, Green } \\
& \text { function (with variable } \zeta \text {) of } D \text { with } \\
& \text { singularity at } z, \nu_{3} \text { and } s_{3} \text { denoto } \\
& \text { ing inward normal and arc-length para- } \\
& \text { meter at a boundary point } \zeta \text {. } \\
& \text { If we denote the equation of the } \\
& \text { boundary } C \text { by } z=\zeta(s) \text { and the hara } \\
& \text { monic measure of a part of } C \text { from a } \\
& \text { fixed point to the point } \zeta(s) \text { by } \\
& \omega(z, \zeta(s)) \text {, then we have } \\
& \frac{1}{2 \pi} \frac{\partial g(\zeta, z)}{\partial \nu_{\zeta}} d S_{\zeta}=\operatorname{d\omega J}(z, \zeta(\Delta)) \\
& \equiv \omega(z, d \zeta(s)) .
\end{aligned}
$$

But, we use here an another aggregation, namely the one corresponding to Herglotz type. Let $\dot{\Phi}(z)$ be an analytic function one-valued and regular in D and continuous on $D+C$. We denote by $G(5, z)$ ax analytic function of z whose real part coincides with $g(5, z) \quad G(5, z)$ being uniquely determined except an additive purely imaginary quantity depending
possibly on ζ and possessing multivaluedness due to periodicity moduli with respect to the boundary components. We have then, by the formula mentioned above,

$$
\Phi(z)=\frac{1}{2 \pi} \int_{C} \pi \Phi(\zeta) \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d s_{\zeta}+i c
$$

c being a real constant.
We now assume that $\mathcal{R} \Phi(z)$ is of bounded variation along C. Then, so is also the function $\left(\zeta \in C_{j}\right)$

$$
\rho_{j}(\varphi)=\int^{\varphi} R \Phi(\zeta) d s_{\zeta} \quad(\varphi=\operatorname{axg} \zeta)
$$

in fact,

$$
\int_{C_{j}}\left|d \rho_{j}(\varphi)\right|=\int_{C_{j}}|R \Phi(\zeta)| d s_{\zeta}
$$

In this case, we may write the expression as in the Herglotz type which states

$$
\Phi(z)=\frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d p_{j}(\varphi)+i c
$$

Now, considering residue at point z we have particularly

$$
\frac{1}{2 \pi} \int_{C} \frac{\partial G(\zeta, z)}{\partial \nu_{5}} d s_{S}=1
$$

end hence

$$
1=\frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d \sigma_{j}(\varphi),
$$

where $\sigma_{j}(\varphi)$ is defined by

$$
\sigma_{j}(\varphi)=\left\{\begin{array}{ll}
\varphi & \text { on } C_{1}, \\
-Q \varphi & \text { on } C_{2} ; \\
m_{j}\left(\varphi-\theta_{j}\right) & \text { on } C_{j}^{(i)}, \\
-m_{j}\left(\varphi-\theta_{j}-\gamma_{j}\right) & \text { on } C_{j}^{(Q)}
\end{array}\right\}(3 \leq j \leqq n) .
$$

The last equation shows that an additive purely imaginary constant ic contained in the general representation vanishes out for the particular func* tion $\Phi(z) \equiv 1$ 。
2. Consider now an analytic function $f(z)$ one-valued and regular in D and piecewise regular on $D+C$.

The boundary points, finite in number, where the regularity of $f(z)$ is broken down, be

$$
z_{j \mu} \quad\binom{\mu=1,2, \cdots, n_{j},}{j=1,}
$$

The existence of Iimits of $f^{\prime}(z)$ from both sides along C will be assumed at each of such points.

We assume further that $f^{\prime}(z)$ vanishes nowhere on $D+C$ except at these exceptional points $z_{j \mu}$. The image of D by mapping $w \equiv f(z)$ then possesses, on Riemann surface, a piecewise analytic boundary and the function $f(z)$ can be prolonged analytically over every boundary arc containing no exceptional point. Denoting generally by ζ any exceptional point, then the image-curve of C possesses at $f(' \zeta)$ an angular point. Denoting by $\alpha \pi$ the exterior angle at such an angular point with respect to the image-domain, the jump of axg $f^{\prime}(z)$ at $/ \zeta$ along C 13 given by

$$
\arg \frac{f^{\prime}\left(\zeta_{+}\right)}{f^{\prime}\left(\zeta_{-}\right)}=(\alpha-1) \pi
$$

'Ss being infinitely adjacent pointa at both sides of ζ 。

The imagemeurve of C will moreover have angular points, in general, also at the image-points of end-points of the slits. If $f^{\prime}(z)$ is regular at auch an endmpoint p and does not vanish there, then the exterior angle of the image-curve at $f(p)$ is 0 and the jump or arg $f^{\prime}(z)$ there vanishes out. But, if p coincides with an exceptional point ' ζ for which the imagecurve possesses an angular point with exterior angle $\alpha \pi$, then the jump of axg $f^{\prime}(\pi)$ there becomes $\alpha \pi$ since arg $d z$ jumps there by $-\pi$.

Let ${ }^{1} / \zeta$ be an exceptional point coinciding with none of end-points of the slits and the corvesponding angle $\alpha \pi$ be different from 2π. Then

$$
(f(x)-f(\zeta))^{1 /(2-\alpha)} \text { is regular }
$$ at a vicinity of ζ and has ' 5 as a simple poles namely, the function $f(z)-f(\%)$ is uniformized by a local parameter $(z-\zeta)^{2-\alpha}$. Thereforeg $f(z)-f\left({ }^{\prime} \zeta\right)$, ss a function of $(z-' \zeta)^{2-\alpha}$, possesses a simple pole at $/ \zeta$. In case $\alpha=2$ instead of $(2-1 \zeta)^{2-\alpha}, 1_{\xi}(z-1 \zeta)$ may be taken as a local uniformizing parameter. In any case, the function

$$
(z-\zeta)^{\alpha-1} f^{\prime}(z)
$$

is pegular and non-vanishing around
ζ. If an exceptional point ' ζ coincldes with an end-point p of a slit, then the power $2-\alpha$ in local parameter has to be replaced by $(2-\alpha) / 2$.

In the following, we suppose none of exceptional points coincide with any one of end-points of the slits, 1. e., ' $\zeta \neq p$. But, if it happens $\zeta=10$, the only modification must be made, according to the fact stated just abo$v e$, that α has to be replaced by $\alpha / 2+1$ 。

Now, the function defined by

$$
\begin{aligned}
\Phi(z) & =z \frac{d}{d z} \lg \left(f^{\prime}(z) \prod_{j=1}^{n} \prod_{\mu=1}^{n}\left(z-z_{j \mu}\right)^{\alpha} d^{-1}\right) \\
& =\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\sum_{j=1}^{n} \sum_{\mu=1}^{n} \frac{\left(\alpha_{j \mu}-1\right) z}{z-z_{j \mu}}
\end{aligned}
$$

is evidently one-valued and regular throughout $D+C$. Hence, it is expressible in the form

$$
\Phi(z)=\frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d p_{j}(\varphi)+\iota c
$$

C being a real constant and $\rho(\varphi)$ being a reai function of $\varphi=a x g 5$ given by

$$
P_{j}(\varphi)=\int^{\varphi} R \Phi(\zeta) d s_{\zeta} \quad \text { for } \zeta \in C_{j}
$$

The linear function $z /\left(z-z_{j \mu}\right)$ benaves regularly everywhere except only at a simple pole $z_{j \mu}$ and its real part is identically ${ }^{j \mu}$ equal to $1 / 2$ along C_{j}. It will be easily seen that a representation of the same type as given above for $\Phi(z)$ holds good also for such a function. (1) Hence, ye obtain the following representation formula with respect to $f(z)$:

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} m_{j} \operatorname{darg} f^{\prime}(\zeta)+\iota c^{*},
$$

c^{*} being a real constant and $m_{1}=1$,
$m_{2}=Q$

On the other hand, we have seen that, for particular case $f^{\prime}(z) \equiv z$, the corresponding representation r educes to

$$
L=\frac{1}{2 \pi} \sum_{j=1}^{m} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial v_{\zeta}} m_{j} d a r g \zeta
$$

an additive constant vanishing out. Hence, remembering that the relation

$$
\begin{aligned}
\operatorname{darg} d f(\zeta) & =d \arg \left(\zeta f^{\prime}(\zeta) i d \varphi\right) \\
& =d 2 \times g\left(\zeta f^{\prime}(\zeta)\right) \quad(\varphi=\arg \zeta)
\end{aligned}
$$

1s valid along C, we have

$$
\begin{aligned}
1 & +\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \\
= & \frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\xi}} m_{j} d a r g d f(\zeta)+\iota c^{*} .
\end{aligned}
$$

The real constant c^{*} can be determined as follows. For any fixed point z_{0} in D, we put

$$
L(z, \zeta)=\frac{1}{2 \pi} \int_{z_{0}}^{z} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} \frac{d z}{z}
$$

This function has a periodicity modulus around each boundary component C_{j}. Hence, if, introducing the uniformizing parameter $\lg z$: we put

$$
M(\lg z, \zeta)=L(z, \zeta)
$$

then the difference

$$
M(\lg z+2 \pi i, \zeta)-M(\lg z, \zeta)
$$

remains constant, for fixed ζ, along each $C_{j}, i . e_{0}, z$ is contained in this expression oniy apparently. Hence, we may put

$$
\begin{array}{r}
M_{j}(\zeta)=M(\lg z+2 \pi i, \zeta)-M^{\prime}(\lg z, \zeta) \\
\left(z \in C_{j}\right)
\end{array}
$$

Integrating the above obtained expression for $f^{\prime \prime}(z) / f^{\prime}(z)$ with respect to z, we get

$$
\lg \frac{f^{\prime}(z)}{f^{\prime}\left(z_{0}\right)}=\sum_{j=1}^{n} \int_{C_{j}} M\left(\lg _{g} z, \zeta\right) m_{j} \operatorname{daxg} f^{\prime}(\xi)+i c^{*} l_{g} \frac{z}{z_{0}} .
$$

Now, $f^{\prime}(z)$ being one-valued, the lefthand member of the last relation increases by an integral multiple of $2 \pi i$ for substitution $1 g z \mid l_{g} z+2 \pi i$. Accordingly, the $r \in a l$ part of this increase calculated from the right-hand member must vanish. Hence we get

$$
2 \pi c^{*}=\sum_{j=1}^{n} m_{j} \int_{C_{j}} R M_{j}(\zeta) d \arg f^{\prime}(\zeta)
$$

which is the relation determining c^{*}. Since, in particular case $f^{\prime}(z) \equiv z$, the corresponding constant decomes 0 , we may write also

$$
c^{*}=\frac{1}{2 \pi} \sum_{j=1}^{n} m \int_{C_{j}} R M_{j}(\zeta) \operatorname{darg} d f(\zeta)
$$

The constant c^{*} having been determined, we obtain the desired reprosentation formuia

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

$$
=\frac{1}{2 \pi} \sum_{j=1}^{m} m_{j} \int_{C_{j}}\left(\frac{\partial G(\zeta, z)}{\partial v_{\xi}}+\mathcal{R} M_{j}(\zeta)\right) \operatorname{daxg} g f(\zeta),
$$

Which, by integration, yields a ree presentation for $f(\boldsymbol{z})$ itselfo (\boldsymbol{z})
3. As an application of the above general formula, we consider here the case where $w=f(Z)$ maps the basic domain D onto a domain bounded by n rectilinear polygons. Then, the exceptional points $/ \zeta$ are the points corresponding to vertices of the imagecurve of C, anci $a r g d f$ becomes a step function having fump with hight ($\alpha-1$) ft at each $/ \zeta$. Hence, the general for. mula reduces here to a simple form witha out integration sign which states

$$
\begin{gathered}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \\
=\frac{1}{2} \sum_{j=1}^{n} m_{j} \sum_{\mu=1}^{n j}\left(\alpha_{j \mu}-1\right) \frac{\partial G\left(z_{j \mu}, z\right)}{\partial z_{j \mu}}+i c^{i} \\
c^{*} \text { being given by } \\
c^{*}=\frac{1}{2} \sum_{j=1}^{n} m \sum_{\mu=1}^{n_{j}}\left(\alpha_{j \mu}-1\right) R M_{j}\left(z_{j j}\right) .
\end{gathered}
$$

The successive integration yields then

$$
\begin{aligned}
& \lg \frac{z f^{\prime}(z)}{z_{0} f^{\prime}\left(z_{0}\right)} \\
= & \pi \sum_{j=1}^{n} m_{j} \sum_{\mu=1}^{n}\left(\alpha_{j \mu}-1\right) L\left(z, z_{j \mu}\right)+i c^{*} \lg \frac{z}{z_{0}}+A_{i},
\end{aligned}
$$

A_{i} being an integration constants and

$$
\begin{aligned}
& f^{\prime}(z) \\
= & \left.A z^{2 c^{*-i}} \exp \left(\pi \sum_{j=1}^{n} m \sum_{\mu=1}^{n}\left(\alpha_{j \mu}-\cdots\right) L_{i} i z, z_{j \mu}\right)\right) \\
& f(z) \\
= & \left.A \int_{j}^{z} z^{*} e^{*} \exp \left(\pi_{j=1}^{n} \sum_{j \mu}^{n} \sum_{j}^{n}\right)^{n}\left(z, z_{j,}\right)\right)_{a} z
\end{aligned}
$$

A and A^{\prime} denoting intagration sonstants which depend only on position and magnitude of the polygonal image domain. The last formula mat be we. garded as a generalization of Schmarzw Christof'el's one for simply wonvected case and of a formula for doubly-cosw nected case previously Eiven by the present author: (3), (4)
(*) Recelved October 9, 1950.
(1) Cf. Y.Komatu, Derstellungen der in einem Kreisringe analytischen Funktionen nobst den Anwendungen auf konforme Abbildung über Polygonalringgebiete. Jap. Journ. Math. 19 (1945), 203-215.
(2) The corresponding formulae for simply- and doubly-connected cases have previously been given in Y.Komatu, Einige Darstellungen analytischer Funktionen und ihre Anwendungen auf konforme Abbildung. Proc. Imp. Acad. Tokyo 20(1944), 536-541 and in the paper cited ${ }^{(1)}$, respectively.
(3) Loc. cit (1) and (2)。
(4) For generalization of SchwarzChristoffel formula, see also Y.Komatu, Conformal mapping of polygonal domains, Journ. Math. Soc. Japan 2(1950), a preliminary note of which has been reported under the same title in these Reports Nos. 3-4 (1949), 47-50。

Tokjo Institute of fechnology.

