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1. Let <?(*) be a continuous
periodic function with period 2re which
satisfies the Lipschitz condition of
order oc i o <<* < 1 )

 m
 Suppose through

this paper that

O.I)
r2<X

J ?(•χ) dx. « O ,

The object of the present paper is
to discuss the various similar proper-
ties of the series

Σ, ̂
as the Fourier series with gaps, for
example, the convergence, mean conver-
gence, absolute convergence of (1.2)
and distribution properties of partial
sums of (1.2).

Among other results, M.Kac has pro-
ved that if λ.

u
 are positive integers

such that

11.53

then the convergence of

11.4.) 21 Cr,
i

implies the convergence of (l ?) at
almost all χ_ and the mean conver-
gence in every finite interval.O Recently
M.Udagawa and the author proved that
the convergence property of (1.2) under
the condition s c

n
.
a
 < &c holds good

for non-integer sequence *.<*,
Also it was shown by M.Kac that, if
<fί*.> a: *{»-

 f
 then the above re-

sult also holds ev n if the integral
character is not supposed t

1
), and in

this case the divergence of (1.4) im-
plies the almost everywhere divergence
of '

v
i,2\ Ήie last fact is due to M.

Eac 1)and P.Hartman (*). For general
series (1.2), the more severe condition
than (1,3) on gaps is necessary for the
validity of the last fact. Recently
M.Udagawa and the author proved that
the almost everywhere convergence of
(1.2) under the condition Σ:c

vx
.

x
<o&

follows for non-integer sequence IΛ«)
with (1.3). In § 2, we shall prove
the more complete theorem (Theorem 1)
as to (1.2) which is well known for
Fourier series with gaps (1.3), under
the following gap condition,

the general series (1.2) will be shown
in Theorem i X .

In the last section we shall con-
sider the behavior of the distribution
of partial sums

2*. Lemma 1. Let <£(%) belem
* — - ^-wr-r- rar i - ' ^,'.77.7,.Γ

to Upo^i o^<*<i) satisfying (
and l e t (1.3) to be hold. We put

.2.1)

fr_ _nf

SiSB

j
T&3Σ2. A Is a constant lnflep
j aad

 h
 •

This lemma was proved by M.Kac (
6
) in

the case fλ
fe
j are integers and was

generalized by M.Udagawa and the author
to general case.ΦWe shall suppose φ

ί3s
-)

tc be real in this paper.

the Fourier cosine and sine coefficients
Ψix> which sat is f ies the condi- '

s in Lefimâ T { ao^o by (1.1)), and

3JL (̂  * 5) kolAs_and

A being a constant ifl (2.2), then

CiS) J S*cχ)dx ϊ ΔΣLCH

where

anϋ

Proof. We have

where c is any positive number, and
the X^ is not necessarily an integer.

The Fourier series with gaps (1.3)
of a bounded function, converges abso-
lutely. This is well known theorem of
S.Sidon, which was generalized to the
non-harmonic series, (almost periodic
Fouriar series) by M.Udagawa and the
author. *") Corresponding theorem for

'J

1-2.7;



Now / /£ c*o λ
k
β^ x, fx s^. λ

AJ
«x] is an

orthonormal set' of functions inf-^oo)
with respect to σγχ; which is consi-
dered as measure function, u» 4,JL,... J

k=1.2>, - i f
0 Γ
 '

cos Ax dircx)*. ( { - iλ!) , iλl < 1

(2,$) - o iλ/>/

J Sin XK d<Γ(x) = 0, -Ur every X .
— (>o > 0

Hence

ίi.f)

say. By (2*13) we have

Integrating with respect to <rcκ) we
get

Bj Lemma l, we have

hyl

Λ=,

Next we consider

where ^ is a positive integer.
multinomial theorem

ZL

Let ^ be so large that 4 <
and suppose that

We shall now prove the following theo-
rem.

perlo-

a

Theorem 1* Let <pcι) be a per
die function belonging to Up <χζ

σ<
«.

(l l) helms supposed^ If there is
 ι
>

positive number
 c
 such that

Then we have

1 L Λ
 . ^

 M
 . . ^ for, for example, it holds that

then for byo there exist constants
4. » Bp independent of n \ ,Λ,I..,—««,

n f>/χ

Proof. ¥e take the sequence of in-
tegers ,

{
-m̂  j such that

Let T>» ̂χ; be m -th FβJβr mean of the

Fourier series of ψd) Then sin-

ce ψ(χ) (~ Ub <Λ. , we have

Γ

uniformly for - °* < * < <χ> The constant
C here and hereafter may differ on

each occurrence.

and th greatest frequency of the first
factor is «/»**/*,/t*>κ) which is less
than λ

h
jπκ) In virtue of (2.18).

H nct

where

« 22 -

» f ( 0, cos v,x f 0, sK*\t, * J * ••

ι»
A
< . . , and thus



In general if,

A< At < < by
then (2.19) holds. But (2.20) is true,
since

•
2
-k-2

Then we have by (2.22),

,„ f£C
κ

Next, by Lemma 2, and Holder
f
s ine-

quality, if f is so large that (2,4)
is true, then

Thus (2.19) is proved.

Now let
tion. Then
and so

"be an odd func-
) is also odd,

if

cr£ (x) A er(χ

if oc is odd. Therefore the left hand
of (2.19) is not zero, only when *,,
<*

t
, - are all even numbers. Thus we

have

J {

which is. putting
not greater than

zK is an even function greater
than

Tie have therefore

Tnus we have proved (2.11), under t
assumptions (2*12), (2.18), (2.4) a

the
and

To prove (2,11) generally, we divide
jλ

κ
j into r sequences of / \^

+̂ί
 j

koιzwhere
 s p 2 r (

j
k*o,ι,z.

t

Since

q
where

p t 2

If 9
f χ
-) is an even function, then

we consider

and we can prove (2.21). In general
case, by dividing ftx, into the sum
of an even function and an odd func-
tion, we can prove that

if we take r so large that Z k^^
*c v° and then take τ*

M
 ̂ ̂  rc'/̂

 ?
and further iYc/

Λ
y

v
~i > 2 A/g , then

by the fact above proved, we have

U22)

where C depends on i .

Now for any A > o , we take an
integer A. such that

5
*-

tf
/ 7' '

 r Λ /
 . E5r adding

these inequalities with respect to 5
and using the inequality,

c(\x,\
r
+



(* ' °J where C may depend on T
. we get the (2.11). Thus we have

completely proved the theorem.

Theorem 2. If <*>.2 7t, and suff i-
cierΓEIy large, then there exΓsts con-
st s A and 6 which may depend on f

, such that

provided that f(x)
τisfy the conditions in heorem 1."

This follows from Theorem 1 in the
following manner. Since ^frV*
for _ ^

 ΊC/z

we have

Hence by Theorem 1

Generally considering
o f
 <rU) >

 w θ h a v β

-^instead

from which if ^

(2,2+) Λ β ( Σ ^ ) \

On the other hand

, then

λlcJ
\x

which does not exceed, using (2.24),

provided A ••*• ' ° . This and
(2.24) show the theorem.

Ve mention that it holds

(z.zs) JZ

This is evident by (2.24)

g. The object pf this section is
to prove the inequality theorems con-
cerning η0

<Λi
 £*c« f X*

k
'x) ' . Ve.

get the following theorems.

then under
the conditions of Theorem 1^ we have

Theo; 5. If /»> /

where f\ does not ύepend on N .

f
he conditions of Theorem l

f
 we have' :

> β >

where A Ίg Iπ4f pendent of
depend on fx. .

birt jφayh

Ve shall prove Theorem 4. Clear1^
we may suppose tjiat

 c
<- is large.

Putting

S^(χ;- Σ C*f iκ»x)
 ?

we have, for any x.
o
 , N>^ ,

say. Then we have

Since

A

Hence

Next noticing thai

C being independent of Λ and 4t
which follows by the assumption
f
x
* f(χ-) jίz*o , v nave

(Σ.



Hence combining this with (3.3),

Now we take
that

such

and take A - A6f*/ = Λ/J . Then
the above expression does not exceed

* c (z:

Combining Theorems 3 and 4 with
Theorems 1 and 2, we can state the
following results.

Theorem 5. If the conditions in
Theorem 1 are assumed, then f> > /

ls

¥here

N
C constant independent^,

Theorem U. *> >** and t h e c .
ecΓΓtEheorem 1 are assumeα

on-
en«

for there exists f > /

Thus we get

such that

^'>
 a n d

from which follows:

^ ^ ^

By the well known aaximal theorem of
Hardy and Littlβwood, we have, for

r> i >

where (j may depend on a but not on

N
4^ We consider the convergence pro-

blem of

(4;/) Z C*t ί**X).

As we stated in $ 1, if,

K'-l
 K

then (4.1) converges almost everywhere
provided that \X-*-I/A* 2L % > I , and
5P Cx) satisfies the conditions in

Theorem 1. We shall first show the con-
verse in the following forms.

Theorem 1. Let f (*) satisfy the
conditions in Theorem \

f
 and let

has gaps fe,10)Γ~"τbιe&.there exlsts
such that

Aί
J

which is not greater, by Theorem 2,
than

if α. is large. Hence

Theorem 3 is proyβd similarly, if
we notice that the maximal theorem is
true even in the form

Λr(
*>

where

and
is the set κx,

where £• is any measurable set of

sitive measure, Λ , B being
of

The following fact follows imme-
diately from Theorem 7.

Theorem 8>
Theorem 7

f
 ^f

Under the conditions of

then the series Σ C
κ
 f (Ά

k
 x) diver-

ges almost everywhere.

- 25 -

For if Σ
 c
* ?(**x) converges

on a set of positive measure, then this
series uniformly on a subset /=" of po-
sitive measure. And hence by (4.3)
there exist M -such that z"*t*<M
This contradicts to (4.4).

We now prove Theorem 7- Let \£-\7°
 β



Letting «
β
 is any number temporari

ly, we have

-iff C

= 7,

By

characteristic function of the set ~
Since i β

h
ι \ ̂ M'" (putting ,fj^ ̂

as before) the right side of (4.7) is

the last series being convergent by
Bessel inequality.

Now we take /c
c
 so large that the

last expression is less than

(AΛ) * ij
Kow we have

which is, denoting

And

we have

Now the sequence ^IT ̂
Λ
^ κ

x
) ^j(^

χ
)

K4 j forms as normal orthogonal
h

j
sequence, where

Hence

Here

where k is the Fourier coeffi-
cient (with respect to β~ ) of a

say. Then

- 26 -



**"•

Further we assume that ko is so
large that the last series is less than

where £ shall be determined soon
latex** This is possible by Bessel in-
equality, The same is also true for
the second term in the inner bracket of
(4,10). Hence we get, for sufficiently
large fc

β
 , by above facts and (4.11)

ί i£ C»* L C rt+fr

The following theorems are also
consequences of Theorem 3 and 4, and
analogous theorems for independent
functions were proved by S.Karlin
Proofs of the theorems are completely
analogous.

Theorem 10. (Conditions in Theorem
1 are assumed. Then z7 ί* <rtxκκ)
converges almost everywhere to a func-
tion of Lf (f>O in every finite
interval, it is necessary and suffi-
cient that

(4,13)

for every

1 are assum
ll

a

ed.

- T

being dependent

Conditions in Theorem
Then if

converges almost everywhere to a func-
tion which belongs to L* in every
finite interval, then the series con-

nean u* with respect to
And the'converse i s true.

verges

5. We shall consider, in this sec-
tion the absolute convergence of

->-i<? c * r''
l
 j

 2

4* 2 £••- & /-> 0ί/te
Theorem 12 below is an analogous theo-
rem in a sense to the well known theo-
rem of S.Sidon concerning Fourier series
with gap.

onditipngin

Σ ̂ j
ete« Λ,

 J£

Now clearly we can take ^ and >/$,, so
that the last expression

for some constanc /| . Thus we get
the left side inequality of (4.5),
where /?

0
 may depend on £ .

That the right hand side of (4.3)
is true, is implied in the above proof.
Hence the theorem is proved.

Vβ shall now give the consequences
of theorems obtained. Ve have already
stated that (4.2,) implies the almost
everywhere convergence of (4,1) under
rather more general condition (1.3),
ΐfhich was gotten by M.Kac, M.ϋdagawa
and the author . But if we assume
(2.10). then we get the following theo-
rem which is an immediate consequence
of Theorem 3 or 4.

βorβm 9. Î et f M ]j
tioned as in Theorem 1 and
be assumed. J£

To)

fog, every

C

C being independent of n , then

A?
to; Z / ĉ  i < DO

/«*/
By (5.2) and Theorem 7, Z C

Λ
V «» .

Lθtting
 c

say. If (2.18) is true, then f'Sc (***>}
f ocrms the orthogonal system. Denoting

we have

Thus
o v

Σ |ch

say, where |0XC?O M M and U
a positive constant such that

is

* L
- 27 -



The existence of Ά in (5.4) is im-
plied in the proof of Theorem 7 (4.10)

If we put

(s i) KW-

then, by (5.4)

and hence

(r,V F~t*)>°
Now by (2.18) <Γ-:(AJ,X) - ^(λ^jc)

have no terms with same frequencies

,:./;,. >- ^.V) and

has maximum frequency C/ZT.') (ms^*

•+
/1Λ
£j-,λi,_,-t - - + ̂ i,Λ

ύ |
j) and minimum

frequency <•/£*;
 c w 4j λ

 ~ - ** *-.
Λ
 -*- <

~ """ - w
t
 >,£ ) The former is

less than ' '

R Salem and A.Zygmund have proved

then for every bounded set S ,}s\ >o

si

Moreover they remarked that if

ίJL, f, ίλi*) 1-A* f (λ
t
,X)+ ~+(l»f(***)

then under the conditions that

and the latter is greater than

Hence if f is sufficiently large,
then we see that

except when &ι
/2/
- s&) consist of

a single factor <r^ (X*x) . Thus
multiplying out γ^ * '

Since
J

a
* y

Λ
ι χ ) - J,

and

^ Dβing any set in ( o,2.π)

Ve shall show that analogous theo-
rems holds for a series (6.1), under
some assumptions.

Theorem 18. Let J(x)
periodic function with period
longing to jj^ y and be s

(

U»&) J
o

be a
2ic be

such that

. Thus by
(5*9) we get, noticing (5.7)

Hence by (5.4)

which proves theorem when 2 i s suf-
ficiently large and L^TU<°°
Even in general case under the hypo-
thesis (1.10), we can prove the theorem
in similar manner in the proof of Theo-
rem 1.

6^ We consider the distribution of
the. partial sum

as For the series

Σ

Further we fig3\yn? that

for every bounded set

Ve can first prove, under the assump-
tions in Theorem 13,



where (e) -
 W (i > t)

This can be proved by similar way
as in Salem and Zygmund

f
s paper if we

make use the following Lemma 3.

That (6.8) holds if (6.9) is true
for every k?o , is shown as follows.

Let the characteristic function of

t

h —JFT- *
τ

where S is any bounded set. Since

if (6.9) is assumed then

Now

for . Bϋr (6.10)

If we consider the set B(S~(X)/A~>2)
ς , then

Then similarly as (6.11), we have

which means

(6.11) and (6.12) proves

Hence for the proof of the theorem,
it is stifficient to show (6.9) for every

Lemma 3. Let 5 be a bounded set.

nveree to a non-decreasing function 6K
ς(-o°)-=o, q(oo)* i ) at conti-
ity points of the latter function,,

Then
-fm. t > o

holds at continuity points

For ^ C E(X-κ ft) + Y^ ft; < y }

Hence

<*

Here it is assumed that j + ε is a
continuity point of 3

Next since

(Γ
k

from which it results

where ^ - e is a continuity point
of $ . (6,14) and (6.15) shows our
assertion.

We now prove Theorem 13. Write

t

+ Σ

Now

Ck(

converge to a non-decreasing function $0) Hence

ty points of
suppose that

Since
we have

can be arbitrarily chosen.

- 29 -



from which <Γ
K
 (

 ε
(fJ<*J&l

>£
)) ^ o .

Hence by Lemma 3 for the proof of
(6.9), it suffices to show that

But (6.17) can be shown a quite analo-
gous way as in the paper of Salem and
Zygmund

The characteristic function of the
distribution of yU (-h) is

\
 c

Since ^KΛ/, < >κ+ι
easily prove . we can

which tends to zero on account of
£"/A *-*><>

 0
 Hence the set of

measure of the set
tends to zero for any but fixed positive
constant <Γ .

Further the first term of (6.18) is
equal to

where β(f^ means to converge to °
uniformly in t , λ being assumed
to be bounded. Now

Since
And

is uniformly bounded.

il

. (of

is clearly tends to zero as ^^-^oo
 %

Therefore by (6.19) and (6.SO), writing

the measure of the set

tends to zero. Hence we get the limit
of the left hand side of (6.18) is the
limit of

But in virtue of (2.20), we can write

where 9
K
 y / and £*•*, -&M 7Ί

Thus the integral of (6.21) is

(6.**; ft is) + Γ/iΓ
;
Λ

f c

say. Then

λπ being the Fourier coefficient
with respect to ft(Ό of the charac-
teristic function of the set $ , It
is easy to see that /* ̂  tends to
zero as -Ή-* *• since c^/A* -* * .
and the second t*rm tends to zero as
^ • ^ A . Thus (6.21) converges to
C "

Λ
^ . Veil known theorem on the

convergence of distributions shows
(6.17).

(*) Received 13th April, 1950.

(To be continued to p. 40)
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