ON GAP SERIES

By Tatsuo Kawata

1. Let <P(x) be a continuous
periodic function with period 27 which
satisfies the Lipschitz condition of
order X (0<x<1), Suppose through
this paper that

2T
(1.1) _[ P dx = 0,
The object of the present paper is
to discuss the various similar proper-
ties of the series

o
(1.2) 2 Cn P (Arx),
n=1
as the Fourier series with gaps, for
example, the convergence, mean conver-
gence, absolute convergence of (1.2)
and distribution properties of partial
sums of (1.2).

Among other results, M.Kac has pro-

ved that if A, are positive integers
such that
/\nH
(1.3) ~—/\—1: 2 ' >1 5
then the convergence of
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implies the convergence of (1.2) at
almost all x and the mean conver-

gence in every finite interval.() Recently

M.Udagawa and the author proved that
the convergence property of (1.2) under
the condition = cw.w*< oo holds good
for non-integer sequence An
Also it was shown by M.Kac that, if

Pl = eix , then the above re-
sult also holds even if the integral
character is not suprosed (*), and in
this case the divergence of 21.4) i~
plies the almost everywhere divergence
of {L.2). The last fact is due to M,
Eac Yand P.Hartman (%), For general
series (1,2), the more severe condition
than (1.3) on gaps is necessary for the
vaiidity of the last fact. Recently
M.Udagawa and the author proved that
the almost everywhere convergence of
(1.2) under the condition T cnt< o0
follows for non-integer sequence iAa}
with (1.3). In § 2, we shall prove
the more complete thevrem (Theorem 1)
as to (1.2) which is well known for
Fourier series with gaps (1.3), under
the following gap condition,

-

(1.5) )*\fi“ 2 n®
where ¢ 1is any positive number, and
the 1A,, 1is not necesgsarily an Iinteger.

The Fourier series with gaps (1.3)
of a bounded function, converges abso-
lutely. 1This is well known theorem of
S.Sidon, which was genmeralized to the
non-harmonic series, (almost periodie
Fourier series) by M.Udagawa and the
author. *) Corresponding theorem for

the general series (1.2) wi
in Theorem 12 ( ) will be shown

In the last section we shall con-
sider the behavior of the distri i
of partial sums Fibution
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& Lemma ), Let ¢x) belong

to Lepon (0~x27) satisfying (1.1)
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Then
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where ,4 is a constant independent of
d' and 4 .

This lemma was proved by M.Kac (%) in
the case {Ax} are integers and was
generalized by M,Udagawa and the author
to general case.® We shall supross @.x)
tc be real in this paper. §
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Lemme £ be
the Fourier cosine and sine coefficients

%; @(x) which satisfies the condi-
ions in lemma . ( a,=o by h.m, and
denote

(2.3) == J: a? 2
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If (3.3) holds and
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A being a constant in (2.2), then
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Now {vlm/{ II'Q_SM)A/«c;g}isan

orthonormal set’of functions in f-os,oc0) Salx) = ZC&?"AR‘) Zch ¢ Chyts = T, iR
with respect to o¢(x) which is consi- #=1 *
dered as measure function, /u= 1,2, 000,
/€=’/2»)’°' . for +IQZ;C,{T,,.R()A1)‘—‘- J+Ta,
=1
Jw coshx de@)= (¢~ IM) , 1A<T, say. By (2.13) we have
(2. = Al > el
y °. g [T] & 32161 POw0~ T (40
oe h=y ®
;/Nﬁm,ll doa)=0, for every A, < C Z" iCul
Hence - k= mX
| Y, n W/ n /2
do P U x)doex) (2.04) = C(Z_C:) (ZL)
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m/&m»_’ —w( ‘/a/“ws/lk/‘n-é“:m ﬁ./lll)dr(l)
(2.9 o r Intt;egrating with respect to o(x) we
- 4 (a2, 5%) = ge
2 /42:11 ot bp) = B,
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Next we consider

By Lemma 1, we have
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where A 1is a positive integer. By
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! {2 e o, amr}
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k=y R> Z / (2.77) =“*€; ZA“I!’&/"" ®, x,
YAy =
253 kZ"_,ck—z/]kZ_ch ;Z: —i:r . Ax) ,,1 LR
=; =/ =/
s .~ let 4 be so large that h < j/g-i)
2 (B- '”"CQ)Z, G and suppose that
R=y (2./8) ﬂmﬁ,l‘ < /1"/ )
We shall now prove the following theo-
rem. Then we have
et @¢z) Dpe a perio- (2./9)
c = ctio O} ) L/p n.[a(u.é[) 7 /6' M z) (Ahx) - daca)
being supposed,
_p_g,tt ve number . such gg o 0
(2.10) 'llm 2hS >0, k=12 = /fm:’(,{‘x)dwx)/f%d L)AG1x)e- -y
\
(/z.(/v <
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Proof. We take the sequence of in- w2 4 sinehyx) ¢ I3
tegers {m,{ such that

and the greatest frequency of the first

factor 18  «myig /27 which is leu
(22) -3 St oo than A, fon . i virtue of (2.18).
A= Hence
?st . T (2) N be ?-th FcJor m“?mor u:; o .
ourier series o Per) . en sin- 05, 1A x) LA x
¢ @melipo , we have g, Hy) Timy )
- r"’J 3 3) )] vxde -
(2/3) Qo) = Tmind)] & ;E- o (s b S
uniformly for — e <x<ee , The constant where (<y<v, <. . ., and thus

C here and hereafter may differ on
each occurrence. 00
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In general if,
(2.20) oym, Ay +Qamy A+ <A,,/.J
k<h < - <k‘,‘,
then (2.19) holds. But (2.20) is true,
since
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Thus (2.19) is proved.
Now let @)

tion. Then Tom (%)
and so

be an odd fune~
is also odd,
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if o is odd. Therefore the left hand

of (2.19) is not zero, only when «,,

g;, - are all even numbers. Thus we
ve
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which is, putting v, 00 )g M,
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If @

is an even function, then
we consider

oo l
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and we can prove (2.21). In general
case, by dividing &ix, into the sum
of an even function and an odd func-
tion, we can prove that

/o fZ Gy Oy Uy x)} mu

-c0

(2.22) sc( Z C,,) i
ksy

where (C depends on { .

Now for any pro

we take an
integer 4 such that !

2h-2<ps2h

Then we have by (2.22),
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Next, by Lemma 2, and Holder's ine-
quality, if ¢ 4is so large that (2.4)
is true, then
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where 2h 1is an even function greater
than (z2- t)r/(r ‘L)

/!LL‘?(MH{’Z#&)} 5e) 7

We have therefore
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, V“"K )\l\r’dri‘(i)if
Feyts st g aromlan
Thus we have proved 52 llg under the
assumptions (2.12), (2.18), (2.4) and
alz(g=1)
To prove (2.11) generally, we divide
Mn into 7 sequences of {xk,ﬂi

R=0, 1,2, =< where S=0,1,2, r—t
since ' ’
N(R+1) T 5 > k'
A RT+S

- <y
if we take 1 go large that Z R Kreta

<o and then take M= RT% ,
and further (ve/2)%; > 2A/e , then
by the fact above proved we have
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S=90,7, - r-i. By adding
these inequalities with respoct to ¢,
and using the inequality,

(K4 et - -fIr)r
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(x> 9) where C may depend on Y
we get the (2.11). Thus we have
compietely proved the theorem.

Theorem 2. ay>2r, ang suffi-
ciently Yarge, then there exIsts con-

sts A and 6 which may depend on p
éni p>o N such that
(22 A(fckz)"/zgjﬂz“c,?’(n )| tx
; x4
» 2 P,
< B(2G )/f

ovide F(x) Ak sa=
e conditions in Theorem 1

This follows from Theorem 1 in the
following manner. Since 4& ¥%/y* > (2/x)°
for _rs < y< my, » We have

[71% e s oo | e o
2[NS Gy |TAT
2 ( “ 4
> (%)% 7t[;C,‘, ?(xe ) | A,
~K
Hence by Theorem 1
B 2 [T 1Ecrnn)) dx

Generally considering ¢ (z-j)instead
of a4 (x) , We have

Tte m
BZen™ =] 1Eason0]|'tx,
' -T(’,
from which if ,>2n , then
no. b & n 4
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Ehich does not exceed, using (2.24),
m 2 2 22 M o
28080 2p(f o)L
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Hence
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2 ,_j‘: l - ,J,x'>k’

n 3 2 7z
Z A('ZCKZ)/___E_‘fz.Lk) 2

A—f—)(ZC *) %

B <,
?rovided A-=x - This and

2.24) show the theorem.
We mention that it holds

(A . N
(2.25) Jim %) 13 cx900m U $8E46)
A0 ~A

This is evident by. (2.24).

3, The object of this. section is
to prove the inequality theorems con-. .
cerning ZCr P X)L Ve
get the fol owing theorems.

Ihs.qrm_ﬁ.;\n p>1 _, then under

the conditions  of Theorem l, we _have
(3‘,) [ | ch?()kX)’ df(%)ZA(Z ck)/L
-t , SnsN

where A does not depend on N ,
Ih.emn.h IL “pP>1 , %

eorem e ha
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We shall prove Theorem 4. Clearly
we may suppose that . 1is large.
Putting

n
Sn(x)= kz‘/ CKT()‘RX‘) S
we have, for any X, , N>» |,
Zo+h
hj 5N(;)o(1~ Sm (Xs)
Xoti
=5 Gy, 70w X
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C being independent of & and £ -
which follows by the assumption

[ F(x) Ax=o0 , we have
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Hence combining this with (3.3),

le

s Ee el A",

5,4(1) dx— z Ck ¥ (MeXo))

Now we take n=n, = 7, (%) such

that

anx IZCn TOwx.) = Z C/< FOnrX),

R

and take h = A (xo) :/\n,,' . Then
the above expressicn does not exceed

1)

vz
< C~('§_I ) )

(£ ) Ceam

for k?qere exists 7 >/ such that
Ame € ¢ —(Mo—k) k< mo) and
it nolas 7 (reme
¥ —'n-/")zo(
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Thus we get
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from which follows:
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By the well known maximal theorem of
Hardy and Littlewood, we have, for

r>1

[ e 15[ 0 dx ) P e
1SS

< C[a sy e | M

which is not greater, by Theorem 2,
than

c(Xe*) &

if a 1is large. Hence
[ o /zcw(»kx)fdxéc(ﬂw
-a [5n4N

Theoren 3 is proved similarly, if

we notice that the maximal theorem is
true even in the form

/ ¢ XA
ax I;?E;))l sN(x)oLr(x)] A6 ()

| Ed

- 'ln!ép.
. [ ’v
s ch (s )| F Ao ),

where E.a is the set (X, x+4)
and

- 25

o (Ex,p) =jE” Ao (x)

Combining Theorems 3 and 4 with
Theorems 1 and 2, we can state the
following results.

Theorem 5., If the conditions in
Theorem 1 are assumed, then P>,

7 mon 12 g 0] e o
Gy T lewAN K

écf |3 e § O x| Tl
oo R=I

where (C is a constant independent of

Theorem 6. If A& >2x and the con-
ditions in Theorem 1 are _assumed, then,
P>1 >

!

Lo mN‘ZCk?\MI)! fi

£ e[ f oo |45

vhere (¢ may depend on a but not on
N .
We consider the convergence pro-
blem of

(]

(1) X Ce¥ (MeZ),
k=)

As we stated in § 1, if,

oo

4.2 2 & oo
(42) K)E' el <
then (4.1) converges almost everywhere
provided that e+ /g 2z ¢ 7! , and

P (x) satisfies the conditions in
Theorem 1. We shall first show the con-
verse in the following forms.

Theorem 1., Let ¢(X) sati
conditions in Theorem 1, and Jet
has gaps (2.10). Then there exists
such that

” 2 S
0> 8 £ < tlp(,\,,x)rdﬂx)
@p Af s L L] o

the

II}

z

£ B/Eg(f(%)‘kz;—k ¢

where E is any measurable set of
ositive measure A, B being

The following fact follows imme-
diately from Theorem 7.

Iheorem 8. Under the conditions of
Theorem 7, if

5 G P (nex)

e serie diver-
s ost everywhere,
For if £ Cie P(2xrX) converges

on a set of positive measure, thea this
series uniformly on a subset £ of po-
sitive measure. And hence by (4 3),

there exist M .such that s*( <M .
This contradicts to €4.4). -

We now prove Theorem 7. Let [El>0 |



mtt;ng g is any number temporari--
1y, we have

S k) | A0

o,
j {z Co L F (er) = Ty M X))
*gkock o Rk )] 4T
A2, cn g waF de
*2] Z G (FOw)- O, O0)

: chhrmk Overx) A6 )
R=Ro

n F3 .
+jE fkgnock(?’(z\ki) - @,"O‘k I)}AJ‘(X/

V)

=T, +7T21 T,
By (2.14)

| 7. ”2fj (Z Ce (P(AieXx) =05 (,\kx))].xm))

'{fa.[ ZENCRG;"U‘RI)] o(ﬁ‘(x) ] V2

wh o gc(f ck)(r )
And
EAER IS LZ R (70w 6, o,,)y
'de"(z)
Z (P ';,1,'7

rnh, Rake Ty
we have

J;f 2 Ch Ty (Ar ) }"o(o—fx)
A 2 2 &
'—'jE uz;‘n,c" ™ (,\,,z)} do )
+ Z/Eg} CCy Ty (M) 6y (4 AT

Now the sequence Ty (M%) Oj O %)
NP forms as ZOrmal orthogonal
sequence, where

"4} j T 2 X) Gom ()« x) d&(x)

Hence

< o (A %) A5
Zfl—: n%zk.kc) Ty (M) B2y 70

VA
§ ¢
52 (A%,-z}‘f* o,
.{)%,)2,'«< jso;‘k
s2(Z ”{(S P by Y

Lq;ke

(47)

vhere ; is the Fourier coeffi-
cient (with respect to 6 ) of a

- 3 VJ‘
) 5 2y ) o)

characteristlc function of the set #
Since i pxj [ < M°  (putting .9/< ™
as before) the right side of (4 7y is

Uy =«c¢ (k%k o) (‘Ekobn{; )/2

the last series being convergent by
Bessel inequality.

Now we take k. so large that the
last expression is less than

n
4y £ 3 dow (Z ).
Now we have

[ 3 i ont (nx) A8 (x)
E k=Ko k

-chj

k=K,

()‘k x) A0 ()

n Mg Vi A
= ; (1~ 3 c yX
hak,ck L [ u%/( ) (2 co

+ by A p ) Ao ),
which is, denoting ("#,;) = dvk
Ayeos VL + by an VX = Ay(x),
m P
-z c,f[Lé dyn Ay ORI A5 @

(‘“0) +,f ',Z dﬂk - A, ()\Kl)A,,(AkX)
Aé‘(x)]
Here
"'K < 2 xé—(x)
|3 A Ay )
EVa
e af st R st AP E
-/§I A""IE(A"W * g

+ 2R by CoNgPX som AR VX )d 6

e .
= ‘;_E; ”(/,2;; (Ay*LV)JE dsx)
e do(x
+3 Bl (@2 e rwr x40
- l,;j, e 2 MV X L6 X))
e

+2:§: fi;ﬁa a, A,]E oo Ay VEA= Ky VX Ads)
W)= éfl" A aiebl) Je 47+ Ik,
say. Then
;,Mc,fl?hl A c;”(ﬂfnlaub,,;ﬂ,;)
'é},f:(lf:m 20 VXAC®)
] j Sim2 N /X Co DY xdo’(x),)
)A

e (a/rb/)(Z [
V=i
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(z: (J em2h Yrde )

%
g5 222X e 20 Vldfa)))
€e(3, cd) (£ ([ emrpxdroo)

+ (jsin 2h P Xew 2 M VAT ) j"g
E

Further we assume that Ko is so
large that the last series is less than

B oe(e?

where ¢ shall be determined soon
later, This is possible by Bessel in-
squality. The same is also true for
the second term in the inner bracket of
{4.10). Hence we get, for sufficient
large’ gk, , by above facts and (4.11

5 S 6y, (M) Ao ()

E ‘f=ka ”

Hp 2

n
245 085 dip (@}+43)[ doto

,««zg.lz e . oA 6 (%)

Now clearly we can take B and 'k, so
that the last expression '

. o(r(af)-f Cu

for some constanc A . 'Thus we get
the left side inequality of (4.3),
where R, may depend on £ .

That the right hand side of (4.3)
is true, is implied in the above proof.
Hence the theorem is proved.

We shall now give the consequences
of theorems obtalned. We have already
stated that (4.2) implies the almost
everywhere convergence of (4,1) under
rather more general condition (1.3),
swhich was gotten by M.Kac, M.Udagawa
and the author . But if we assume
(2. 102A then we get the following theo=
vem which is an immediate consequence
of Theorem 3 or 4.

Iheorem 9, Let ¢ (% =
one . et (2.10)
be assumed., If:
“@J2) E e <
then 2: Cn ¢ (N X) is_convergent

%ﬁ .ﬁ ﬁheie in L——n oa) and
on belo L'l‘

for every [T .

The following theorems are also
consequences of Theorem 3 and 4, and
analogous theorems for independent
functions were proved by S.Karlin .
Proofs of the theorems are completely
analogous.

Theorem 10, Conditions in Theorem

e assumed. en > Cr § O X)
converges almost evemﬁe;;e to a func-
tion of L, (F >1) 4in every finite
terval s necessary and suffi-
cient that
'3 o
) [ 15 g |Phx T,
-& R/ !

i) dependent

for every & , ¥
on A and /9 .

em

Theorem 11, Conditions in Theorem
1 are §sumed. Then if > ck ¢ (k)

a
converges almost eve here to a func-

M&b_h.e_ggzs_tg Ly in every
finite interval, then the series con-
yerges in mean [ with respect to
o (x) . And the converse is true,

B, We shall consider, in this sec-
tion the absolute convergence of

G ;.Z Cr POk X)
=/

Theorem 12 below 1s an analogous theo~
rem in a sense to the well known theo-
rem of S.Sidon concerning Fourier series
with gap.

Let g;gg conditions in
meoggﬁ § a%e assumed., If.

Go | ZafOun) <
¢ being independent of n , then

o

63) kZ:’lc,,l<oo

By (5.2) and Theorem 7, ~ G’< »o .
Lettlng ¢ ()-5,7 G Owx) >

n
Sm(x) =n§ Cic (FOieX) = 6o, i x))
‘ff Ci Gomye (AR X)

J‘
say. If (2 18) is true, then Le e O 0}
forms the orthogonal system. noting

_f,f’*k ) A ”")=/5k )
we have
j“ A "G—ov\k(/\kl)df(f)ﬁ CkFK'
- bo
Thus .
Eﬂlck' Feriahis ;
-, b0 N ' 5—(’)
_}:’-ﬁ;lf,-a;k(;\,.x)mat

» L& =
M [ . Ler g6x)= 17,
« 2L 7 O 9 i ’

(&e = Sy Cr)

say, where Vo5.(G21€ M apg L is
a positive constant such that

9 pzL
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The existence of < in (5.4) is im-
plied in the proof of Theorem 7 (4.10).

If we put
0 Boom T & mon0),
then, by (5.4)
l'/\%’;’i Gomp M“’()lé L
and hence
&7
Now by (2.18) Om: (A% - Omy (i x)

have no terms with same frequencies
(hliad = <%) and

Pu(x) 20

8 Qs = ny (Aex) * s A isX)
has maximum frequency ( S ) (Mishis
4 M Nigo+ -0 -tmg X, ) and minimum

frequency ('A’I()(m.:, Aus = Mg X sy
- e S~ MmN, The former is
less than e
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We shall show that analogous theo-

rems holds for a series (6.1), under
some assumptions,
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tions in Theorem 13,

6.9 5 (EGD/Ansy),s) /e~ B})



’ 2
B Ao~ LX/
where o}, (€) 75[5 _Tz‘/z—z— dx  (k>0)
This can be proved by similar way
as in Salem and Zygmund's paper if we
make use the following Lemma 3.

That (6.8) holds if (6.9) is true
for every A >0 , is shown as follows.
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(*) Received 13th April, 1950,

(To be continued to p. 40)
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