1. Let $\varphi(x)$ be a continuous periodic function with period 2π which satisfies the Lipschitz condition of order $\quad \alpha(0<\alpha<1)$. Suppose through this paper that

$$
\text { (1.1) } \quad \int_{0}^{2 \pi} \varphi(x) d x=0 .
$$

The object of the present paper is to discuss the various similar properties of the series

$$
(1.2) \quad \sum_{n=1}^{\infty} c_{n} \varphi\left(\lambda_{n} x\right),
$$

as the Fourier series with gaps, for example, the convergence, mean convergence, absolute convergence of (1.2) and distribution properties of partial sums of (1.2).

Among other results, M.Kac has proved that if λ_{n} are positive integers such that

$$
\text { (1.3) } \frac{\lambda_{n+1}}{\lambda_{n}} \leq q>1 \text {, }
$$

then the convergence of

$$
\text { (1.4.) } \sum_{1}^{\infty} c_{n}^{2}
$$

implies the convergence of (1.2) at almost all x and the mean convergence in every finite interval.(') Recently Moddagawa and the author proved that the convergence property of (1.2) under the condition $\Sigma c_{n}{ }^{2}<\infty$ holds good for non-integer sequence λ_{n}
Also it was shown by M. Kac that, if $\Psi(x)=e^{i x}$, then the above result also hoids oven if the integral character is not supposed (${ }^{2}$), and in this case the divergence of (1.4) im... plies the almost everywhere divergence of (2.2). The last fact is due to M . Kac Jand D. Hartman (s). For general series (1,2), the mare severe condition than (1.3) on geps is necessary for the veiidity of the last fact. Recently M. Udagawa and the author proved that the almost everywhere convergence of (1.2) under the condition $\sum c_{n}{ }^{2}<\infty$ follows for non-integer sequence $\left\{\lambda_{n}\right\}$ with (1.3). In § 2, we shall prove the more complete theorem (Theorem 1) as to (1.2) which is well known for Fourier series with gaps (1.3), under the following gap condition,

$$
(1.5) \quad \frac{\lambda_{n+1}}{\lambda_{n}} \geqq n^{c}
$$

where c is any positive number, and the i_{n} is not necessarjiy an integer.

The Fourier series with gaps (1.3) of a bounded function, converges absolutely. This is weli known theorem of S.Sidon, which was generalized to the non-harmonic series, (almost periodic Fourier series) by M. Udagawa and the author. 5) Corresponding theorem for
the general series (1.2) will be shown in Theorem 12 .

In the last section we shall consider the behavior of the distribution of partial sums
(1.6) $\quad \sum_{k=1}^{n} C_{i k} y\left(\lambda_{k} x\right)=S_{n-1}(x)$.

2n Lemma 1. Let $\varphi(x)$ belong nd let (1.3) to be nold. We put
2.1)

Then

$$
\text { (2.2) } \left.\iint_{-\infty}^{\infty} \varphi\left(\lambda_{j} x\right) \varphi\left(\lambda_{k} x\right) d \sigma(x)\right\} \equiv A q_{r}^{-\alpha\left(l_{j}-k!\right.}
$$

Hhere A is a constant independent of j and k.

This lemma was proved by M.Kac $\left(^{6}\right.$) in the case $\left\{\lambda_{k}\right\}$ are integers and was generalized by M. Udagawa and the author to general case.(7) We shall suppose $\varphi(x)$ tc be real in this paper.

Iomma 2. Let $a_{\mu}, b_{\mu}(\mu=1,2, \ldots)$ be the Fourier cosine and sine coefficients of $P(x)$ which satisfies the condim: tions in Lemma $-\left(a_{0}=0\right.$ by (1.1)), and denote

$$
(2.3) \quad B=\frac{1}{2} \sum_{\mu=1}^{\infty}\left(a_{\mu}^{2}+b_{\mu}^{2}\right)
$$

If (1,3) tolds and

$$
124: \quad q^{\circ} 1>\frac{2 A}{B}
$$

A being a constant in (2.2), then
(2.5) $\int_{-\infty}^{\infty} S_{n}^{2}(x) d x \geqq \Delta \sum_{k=1}^{n} c_{i}^{2}$,
where
(2.6)

$$
S_{n}(x)=\sum_{k=1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)
$$

and

$$
\Delta=B-2 A C_{q}, \quad C_{q}=\frac{1}{q^{\alpha}-1} .
$$

Proof. We have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} S_{n}^{2}(x) d \sigma(x)= \\
& =\int_{-\infty}^{\infty} \sum_{k \cdot j=1}^{n} c_{n} \varphi\left(\lambda_{k} x\right) c_{j} \varphi\left(\lambda_{j} \cdot x\right) d \sigma_{j}(x) \\
& =\int_{-\infty}^{\infty} \sum_{k=1}^{n} \sigma_{k}^{2} \varphi^{2}\left(\lambda_{k} x\right) d(C(x) \\
& \text { (2.7) }
\end{aligned}
$$

Now $\left\{\sqrt{2} \cos \lambda_{k} \mu x, \sqrt{2} \sin \lambda_{k} \mu x\right\}$ is an orthonormal set of functions in $(-\infty, \infty)$ with respect to $\sigma(x)$ which is considered as measure function, $\mu=1,2, \ldots$., $k=1,2, \ldots$, for

$$
\begin{aligned}
\int_{-\infty}^{\infty} \cos \lambda x d \sigma(x) & =(1-|\lambda|), & & |\lambda|<1, \\
& =0, & & |\lambda|>1,
\end{aligned}
$$

(2.8)

$$
\int_{-\infty}^{\infty} \sin \lambda x d \sigma(x)=0 \text {, for every } \lambda .
$$

Hence

$$
\int_{-\infty}^{\infty} \varphi^{2}\left(l_{k} x\right) d \sigma(x)
$$

$$
=\lim _{m \rightarrow \infty} \int_{-\infty}^{\infty}\left(\sum_{\mu=1}^{m} a_{\mu} \cos \lambda_{k} \mu x+b_{\mu} \sin \lambda_{k} \mu x\right)^{2} d \sigma(x)
$$

$$
=\frac{1}{2} \sum_{\mu=1}^{\infty}\left(a_{\mu}^{2}+b_{\mu}^{2}\right)=B
$$

By Lerma 1, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\{\sum_{k=1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right\}^{2} d \sigma(x) \\
& \geqq B \cdot \sum_{k=1}^{n} c_{k}^{2}-2 \sum_{k>j}\left|c_{k} c_{j}\right| \int_{-\infty}^{\infty} \varphi\left(c_{k} x\right) \varphi(n \cdot x) d \sigma(x) \mid \\
& \geqq B \sum_{k=1}^{n} c_{k}^{2}-2 A \sum_{k>j}\left|c_{k} c_{j}\right| \frac{1}{q^{\alpha(k-j)}} \\
& \geqq B \cdot \sum_{k=1}^{n} c_{k}^{2}-A \sum_{k>j}\left(c_{k}^{2}+c_{j}^{2}\right) \frac{1}{q^{\alpha(k-j)}} \\
& \geqq B \sum_{k=1}^{n} c_{k}^{2}-2 A \sum_{k=1}^{n} c_{k}^{2} \sum_{r=1}^{\infty} \frac{1}{q^{\alpha} r} \\
& \geqq\left(B-2 A \cdot C_{q}\right) \sum_{k=1}^{n} c_{k}^{2} .
\end{aligned}
$$

We shall now prove the following theorem.

Theorem le Let $\phi(x)$ be a periodic function belonging to $L p$ a $(0<\alpha \leq 1)$ (1.1) being supposed. If there is a positive number c such that
(2.10) $\frac{\lambda_{k+1}}{\lambda_{k}} \geqq k^{c}>0, k=1,2, \ldots$,
then for $p>0$, there exist constants A_{p}, B_{p} independent of n,
$\left(\rho_{p}<A_{p}<B_{p}<\infty\right)$ such that
(2.11) $A_{p}\left(\sum_{k=1}^{n} c_{k}^{2}\right)^{p / 2} \leq \int_{-\infty}^{\infty}\left|\sum_{k=1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x)$
$\leqq B_{p} \cdot\left(\sum_{k=1}^{n} c_{k}^{2}\right)^{p / 2}$.
Proof. We take the sequence of integers $\left\{m_{k}\right\}$ such that

$$
\text { (2.12) } C=\sum_{k=j}^{\infty} \frac{1}{m_{k}^{2 \alpha}}<\infty
$$

Let $\tau_{m}(x)$ be $m-t h$ Fejér mean of the Fourier series of $\varphi(x)$. Then since $\varphi(x) \in \operatorname{Lip} a$, we have

$$
\text { (2.13) }\left|\varphi(x)-\tau_{m}(x)\right| \leq \frac{C}{m^{\alpha}},
$$

uniformly for $-\infty<x<\infty$. The constant C here and hereafter may differ on each occurrence.

$$
\begin{aligned}
& S_{n}(x)=\sum_{k=1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)=\sum_{k=1}^{n} c_{k}\left\{\varphi\left(\lambda_{k} x\right)-\tau_{m_{k}}\left(\lambda_{k} x\right)\right\} \\
& +\sum_{k=1}^{n} c_{k} \tau_{m_{k}}\left(\lambda_{k} x\right)=J,+J_{2}, \\
& \text { say. By }(2.13) \text { we have } \\
& |J| \leqq \sum_{k=1}^{n}\left|c_{k}\right|\left|\varphi\left(\lambda_{k} x\right)-\tau_{m_{k}}\left(\lambda_{k} x\right)\right| \\
&
\end{aligned} \begin{aligned}
& \leqq \sum_{k=1}^{n} \frac{\left|c_{k}\right|}{m_{k}^{\alpha}} \\
& (2.14)
\end{aligned}
$$

Integrating with respect to $\sigma(x)$ we get

$$
\text { (2.15) } \int_{-\infty}^{\infty}\left|J_{1}\right|^{2 h} d \sigma(x) \leq C\left(\sum_{R=m}^{n} c_{k}^{2}\right)^{n}
$$

Next we consider

$$
(2.16) \int_{-\infty}^{\infty}\left|J_{2}\right|^{2 h} d \sigma(x)
$$

where h is a positive integer. By multinomial theorem

$$
\left\{\sum_{k=1}^{n} c_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}^{2 k}
$$

$$
\begin{array}{r}
k=1 \\
(2.17)=\sum_{\alpha_{1}+\alpha_{2}+\cdots} \frac{(2 h)!}{\alpha_{1}!\alpha_{2}!\cdots \cdot} C_{R_{1}}^{\alpha_{1}}\left(\alpha_{n_{2}}^{\alpha_{2}} \ldots\right. \\
\cdot \sigma_{m}^{\alpha_{1}}(\lambda, x) \sigma_{m}^{\alpha_{2}}(.
\end{array}
$$

$$
\sigma_{m_{R_{1}}}^{\alpha_{1}}\left(\lambda_{R_{1}} x\right) \sigma_{m_{k_{2}}}^{\alpha_{2}}\left(\lambda_{R_{2}} x\right) \cdots
$$

Let q be so large that $h<\frac{1}{2}(q-1)$ and suppose that

$$
(2.18) \quad q m_{k} \lambda_{k}<\lambda_{k+1} .
$$

Then we have

$$
\begin{aligned}
& \text { (2.19) } \int_{-\infty}^{\infty} \sigma_{m_{k_{1}}}^{\alpha_{1}}\left(\lambda_{k_{1}} x\right) \sigma_{m_{k_{1}}}^{\alpha_{2}}\left(\lambda_{k_{2}} x\right) \cdots d \sigma(x) \\
& =\int_{-\infty}^{\infty} \sigma_{m_{k_{1}}}^{\alpha_{1}}\left(\lambda_{k_{1}} x\right) d \sigma(x) \int_{-\infty}^{\infty} \sigma_{m_{k_{2}}}^{\alpha_{2}}\left(\lambda_{k_{2}} x\right) d \sigma(x) \cdots, \\
& \left(k_{1}<k_{2}<\right. \\
& \text { for, for example, it holds that }
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{p_{1}}^{\alpha_{1}}\left(\lambda_{1} x\right) \sigma_{m_{m_{2}}}^{\alpha_{1}}\left(\lambda_{2} x\right) \\
=\left\{\gamma_{0}^{(1)}+\left(\delta_{1}^{(1)} \cos \lambda_{k_{1}} x+\delta_{1}^{(1)} \sin \lambda_{k_{1}} x\right)+\left(\gamma_{2}^{(0)} \cos 2 \lambda_{R_{1}} x+\delta_{2}^{(1)} \sin 2 \lambda_{k_{1}} x\right)+\right. \\
\} \cdot\left\{\gamma_{0}^{(2)}+\left(\delta_{1}^{(2)} \cos \lambda_{k_{2}} x+\right.\right. \\
\\
\left.\left.\delta_{1}^{(2)} \sin \lambda_{k_{2}} x\right)+\left(\gamma_{2}^{(2)} \cos 2 \lambda_{k_{2}} x+\delta_{2}^{(2)} \sin 2 \lambda_{k_{2}} x\right)+\cdots\right\},
\end{gathered}
$$

and the greatest frequency of the first factor is $\alpha, m_{k}, \lambda_{k} / 12 \pi$) which is less than $\lambda_{k_{2}} /(2 \pi)$ in virtue of (2.18). Eence

$$
\begin{aligned}
& \sigma_{m_{k_{1}}}^{\alpha_{1}}\left(\lambda_{k_{1}} x\right) \sigma_{m_{k_{2}}}^{\alpha_{2}}\left(\lambda_{k_{2}} x\right) \\
& \quad=\gamma_{0}^{(1)} \gamma_{0}^{(2)}+\left(\gamma_{1}^{(3)} \cos \nu_{1} x+\delta_{1}^{(3)} \operatorname{smn} v_{1} x\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \sigma_{m_{k_{1}}}^{\alpha_{1}}\left(\lambda_{k_{1}} x\right) \sigma_{m_{k_{2}}}^{\alpha_{2}}\left(\lambda_{k_{2}} x\right) d \sigma(x) \\
& \quad=\int_{-\infty}^{\infty} \gamma_{0}^{(1)} \gamma_{0}^{(2)} d \sigma(x) \\
& \quad=\gamma_{0}^{(1)} \gamma_{0}^{(1)} \\
& \quad=\int_{-\infty}^{\infty} \sigma_{m_{k}}^{\alpha_{1}}\left(\lambda_{k}, x\right) d \sigma(x) \int_{-\infty}^{\infty} \sigma_{m_{k_{2}}}^{\alpha_{2}}\left(\lambda_{k_{2}} x\right) d \sigma(x)
\end{aligned}
$$
\]

In general if,

$$
\begin{gathered}
\text { (2.20) } \alpha_{1} m_{k_{1}} \lambda_{k_{1}}+\alpha_{2} m_{k_{2}} \lambda_{R_{2}}+\cdots<\lambda_{k_{j}}, \\
k_{1}<k_{2}<\cdots<k_{j}
\end{gathered}
$$

then (2.19) holds. But (2.20) is true, since

$$
\begin{gathered}
\alpha, m_{k_{1}} \lambda_{k}+\cdots<2 h\left(\frac{1}{q}+\frac{1}{q^{2}}+\cdots\right) \lambda_{k_{j}} \\
<2 h \cdot \frac{1}{q-1} \lambda_{k_{j}}<\lambda_{k_{j}} .
\end{gathered}
$$

Thus (2.19) is proved.
Now let $\varphi(x)$ be an odd fund-
ion. Then $\quad \sigma_{m}(x)$ is also odd, and so

$$
\int_{-\infty}^{\infty} \sigma_{m}^{\alpha}(x) d \sigma(x)=0,
$$

if α is odd. Therefore the left hand of (2.19) is not zero, only when α, α_{2}, are all even numbers. Thus we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\{\sum_{k=1}^{n} c_{k} \sigma_{m_{k}}\left(d_{k} x\right)\right\}^{2 h} d \sigma(x) \\
&= \sum_{\beta_{1}+\beta_{2}+\cdots}=\frac{(2 h)!}{h\left(2 \beta_{1}\right)!(2 \beta)^{\prime}!}-c_{k}^{2 \beta} c_{1} c_{k_{2}}^{2 \beta_{2}} \ldots \\
& \int_{-\infty}^{\infty} \sigma_{m_{k}}^{\infty} \alpha \beta_{1} \\
&\left(\lambda_{k}, x\right) \alpha \sigma(x) \int_{-\infty}^{\infty} \sigma_{m_{k_{2}}}^{2 \beta_{1}}\left(\lambda_{k_{2}} x\right) d \sigma(x)
\end{aligned}
$$

which is, putting $\quad v_{m}(x) \mid \leqslant M$,
not greater than

$$
\begin{aligned}
& \leqq \sum_{\beta_{1}+\beta_{2}+}=h \frac{(2 h)!\cdot h!}{h^{\prime} 2^{h} \beta_{1}!\beta_{2}!\cdots} c_{k_{1}}^{2 \beta_{1}} c_{k_{2}}^{2 \beta_{2}} \cdots M^{2 h} \\
& (2.21)=C\left(\sum_{k=m 1}^{n} c_{k}^{2}\right)^{h} .
\end{aligned}
$$

If $\varphi(x)$ is an even function, then
we consider

$$
\int_{-\infty}^{\infty} \frac{1}{(\sin x)^{2 h}}\left\{\sum_{k=1}^{n} c_{k} \sin x \cdot \sigma_{m_{k}}\left(d_{k} x\right)\right\}^{2 h} d \sigma(x),
$$

and we can prove (2.21). In general case, by dividing φ ia, into the sum of an even function and an odd funclion, we can prove that

$$
\int_{-\infty}^{\infty}\left\{\sum_{k=1}^{n} c_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}^{2 h} d \sigma(x)
$$

(2.22) $\leqslant C\left(\sum_{k=1}^{n} c_{k}^{l}\right)^{k}$.
where C depends on k.
Now for any $p>0$, we take an integer h such that

$$
2 h-2<p \leqq 2 h .
$$

Then we have by (2.22),

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mid & \left.\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) \\
& \leqq\left\{\int_{-\infty}^{\infty}\left\{\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right\}^{2 h} d \sigma(x)\right\}^{p / 2 k} \\
(2,22) & \leqq C_{k}\left(\sum_{1}^{n} C_{k}^{2}\right)^{n / 2}
\end{aligned}
$$

Next, by Lemma 2, and Holder's ine-
quality, if q is so large that (2.4)
is true, then

$$
\begin{aligned}
& \sum_{1}^{n} c_{k}^{2} \leq \frac{1}{\Delta} \int_{-\infty}^{\infty}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{2} d \sigma(x) \\
& \left.=\frac{1}{\Delta} \int_{-\infty}^{\infty}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{t} \right\rvert\, \sum^{n} c_{k} \\
&\left.\rho\left(\lambda_{k} \lambda\right)\right|^{2-t} d \sigma(x)
\end{aligned}
$$

($0<t<p, t<1$)

$$
\begin{aligned}
\leqq \frac{1}{\Delta}\{ & \left.\int_{-\infty}^{\infty}\left|\sum_{1}^{\infty} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x)\right\}^{\frac{t}{p}} \\
& \left\{\int_{-\infty}^{\infty}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{(2-t) \rho / p-t)} d \sigma(x)\right\}^{\frac{p}{p}} \\
\leqq \Delta \mid & \left.\int_{-\infty}^{\infty}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x)\right\}^{t / p} \\
& \left\{\int_{-\infty}^{\infty}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{2 h}\right\}^{\frac{2-t}{2 k}}
\end{aligned}
$$

where $2 h$ is an even function greater than $(2-t) p /(p-t)$,

$$
\leqq \Delta\left\{\int_{-\infty}^{\infty}\left|\sum_{1}^{n} i_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x)\right\}^{t / p}\left(\sum_{Y}^{n} C_{k}^{2}\right)^{\frac{2-t}{x}}
$$

Ne have therefore

$$
\left(\sum_{1}^{n} C_{k}^{2}\right)^{1 / 2} \leqq \Delta^{1 / t}\left\{\int_{-\infty}^{\infty}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) ; 1 /\right.
$$

Thus we have proved (2.11), under the assumptions (2.12), (2.18), (2.4) and hく $\frac{1}{2}(q-1)$

To prove (2,11) generally, we divide $\left\{\lambda_{k}\right\}$ into r sequences of $\left\{\lambda_{k r+s}\right\}$ Since $=0,1,2, \ldots \ldots$, where $s=0,1,2, r-1$.

$$
\frac{\lambda_{(k+1) r+s}}{\lambda_{k r+s}} \geq k^{r c}
$$

If we take r so large that $\sum_{1}^{\infty} k^{-\alpha r c / 2}$ $<\infty$ and then take $m_{k}=k^{r c^{\prime} / 4}$ and further $(r c / 2)^{\alpha}-1>2 A / B$, then by the fact above proved, we have

$$
\begin{aligned}
A_{p}\left(\sum_{k=1}^{n} C_{k r+s}^{2}\right)^{p / 2} & \leq \int_{-\infty}^{\infty}\left|\sum_{k=1}^{n} C_{k r+s} \varphi\left(\lambda_{k r+s} x\right)\right|^{p} d \sigma(x) \\
& \leqq B_{p}\left(\sum_{k=1}^{n} C_{k r+s}^{2}\right)^{p / 2}
\end{aligned}
$$

$$
S=0,1, \quad r-1 \quad \text {. By adding }
$$

these inequalities with respect to S, and using the inequality,

$$
\begin{aligned}
\left(x_{1}+x_{2}\right. & \left.+\cdots+x_{r}\right)^{p} \\
& \leqq c\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{r}\right|^{p}\right) \quad(p>0)
\end{aligned}
$$

($x>0$) where C may depend on r we get the (2.11). Thus we have completely proved the theorem.

Theorem 2. If $a>2 \pi$, and sufficiently large, then there exists consts $A \underset{p>0}{\text { and }} \quad B \frac{\text { which may depend on }}{} p$
(2.23) $\quad A\left(\sum_{1}^{n} \hat{c}_{k}^{2}\right)^{p / 2} \leqq \int_{-a}^{a}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{r} d x$

$$
\leqq B\left(\sum_{1}^{n} C_{R}^{2}\right)^{P / 2}
$$

provided that $\varphi(x)$ and λ_{k} sa= tisfy the conditions in Theorem 1.

This follows from Theorem 1 in the following manner. Since $\sin y^{2} / y^{2} \geq(2 / \pi)^{2}$ for $-\pi / 2 \leqslant y \leqslant \pi / 2$, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mid & \left.\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) \\
& \geqq \int_{-\pi}^{\pi}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) \\
& \geqslant\left(\frac{2}{\pi}\right)^{2} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x .
\end{aligned}
$$

Hence by Theorem 1

$$
B\left(\sum_{1}^{n} C_{k}^{2}\right)^{r / 2} \geqq \int_{-\pi}^{\pi}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x
$$

Generally considering $\sigma(x-y)$ instead of $\sigma(x)$, we have

$$
B\left(\sum_{1}^{n} c_{k}^{2}\right)^{p / 2} \geqq \int_{-\pi+y}^{\pi+y}\left|\sum_{i}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x \text {, }
$$ from which if $a>2 \pi$, then

(2.24) $\quad a \cdot B\left(\sum_{1}^{n} C_{k}^{2}\right)^{p / 2} \underset{\sim}{\geqq} \int_{-a}^{a}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x$ On the other hand

$$
\begin{aligned}
& \int_{|x|>a}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) \\
&=\frac{1}{2 \pi} \int_{|x|>a}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} \frac{\sin ^{2} x / 2}{x^{2} / 2} d x \\
& \leqq \frac{1}{\pi} \int_{|x|>a}\left|\sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} \frac{d x}{x^{2}} \\
&=2 \int_{a}^{\infty} \frac{1}{x^{2}} d\left(\left.\int_{-x}^{x} \sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x\right) \\
& \equiv \frac{2}{a^{2}} \int_{-a}^{a}\left|\sum_{1}^{n}\right|^{p} d x+2 \int_{a}^{\infty} \frac{1}{x^{3}} d x \int_{-1}^{x}\left|\sum_{1}^{n}\right|^{p} d x
\end{aligned}
$$

which does not exceed, using (2.24), by

$$
\begin{gathered}
\frac{2 B}{a}\left(\sum_{1}^{n} C_{n}^{2}\right)^{p / 2}+2 B\left(\sum_{1}^{n} C_{n}^{2}\right)^{p / 2} \int_{a}^{\infty} \frac{d x}{x^{2}} \\
\vdots \frac{B}{a}\left(\sum C_{k}^{2}\right)^{p / 2}
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \int_{a}^{a}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x-\int_{-\infty}^{\infty}-\int_{i x \mid>a} \\
& \quad \geqslant\left|\int_{-\infty}^{\infty}\right|-\left|\int_{|x|>a}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \geqq A\left(\sum_{1}^{n} C_{k}^{2}\right)^{p / 2}-\frac{B}{a}\left(\sum_{1}^{n} C_{k}^{2}\right)^{p / 2} \\
& \geqq\left(A-\frac{Z}{a}\right)\left(\sum_{l}^{n} C_{k}^{2}\right)^{r / 2}
\end{aligned}
$$

provided $A-\frac{B}{a}>0$
(2.24) show the theorem. This and

We mention that it holds

(2,25) $\overline{\lim }_{A \rightarrow \infty} \frac{1}{A} \int_{-A}^{A}\left|\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x \leqslant B\left(\Sigma c_{k}^{2}\right)^{p / 2}$
This is evident by (2.24).
3. The object of this section is to prove the inequality theorems concerning max<a $\Sigma_{1}^{k} C_{k} \Phi\left(\lambda_{k} x\right)$. We get the following theorems.

Theorem 3. If $p>1$, then under the conditions of Theorem 1, We have
(3.1) $\left.\left.\quad \int_{-\infty}^{\infty}\right|_{\substack{\min \lambda \\ 1 \leqslant n \leqslant N}} \sum^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) \leq A\left(\sum_{1}^{N} C_{k}{ }^{2}\right)^{p / 2}$
where A does not depend on N.
Theorem 4. If $p>1$, then under the conditions of Theorem 1 , we have for any $a>0$
(3.2) $\int_{-a}^{a}\left|\max _{1 \leq k \leq h} \sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x \leq A\left(\sum_{1}^{n} C_{k}^{2}\right)^{p / 2}$

Where A is independent of N but may: depend on a.

We shall prove Theorem 4. Clearly we may suppose that a is large. Putting

$$
S_{n}(x)=\sum_{k=1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)
$$

we have, for any $x_{0}, N>x$,

$$
\begin{aligned}
& \frac{1}{h} \int_{x_{0}}^{x_{0}+h} S_{N}(x) d x-S_{n}\left(x_{0}\right) \\
& =\sum_{n+1}^{N} C_{k} \frac{1}{n} \int_{x_{0}}^{x_{0}+1} \varphi\left(\lambda_{k} x\right) d x \\
& \quad+\frac{1}{k} \sum_{k=1}^{n} C_{k} \int_{x_{0}}^{x_{0}+h}\left\{\varphi\left(\lambda_{k} x\right)-\varphi\left(\lambda_{k} x_{0}\right)\right\} d x \\
& =J_{1}+J_{2}
\end{aligned}
$$

say. Then we have
$(3,3)$

$$
\left|J_{2}\right| \leq M \sum_{k=1}^{n}\left|C_{k}\right| \lambda_{k}^{\alpha} h^{\alpha+i}
$$

Since

$$
\left|\varphi(x)-\varphi\left(x^{\prime}\right)\right| \leq M\left|x-x^{\prime}\right|^{\alpha}
$$

Next noticing that
(3.4) $\left|\int_{a}^{b} \varphi\left(\lambda_{k} x\right) d x\right|=\left|\frac{1}{\lambda_{k}} \int_{a \lambda_{k}}^{b \lambda_{k}} \varphi(u) d u\right| \leq c \cdot \frac{1}{\lambda_{k}}$
C being independent of a and f, which follows by the assumption
$\int_{0}^{2 \pi} \varphi(x) d x=0$, we have

$$
\left|J_{1}\right| \leqq i h^{-1}\left(\sum_{n+1}^{N} C_{k}^{2}\right)^{1 / 2}\left(\sum_{n+1}^{N} \frac{1}{\lambda_{N}^{2}}\right)^{1 / 2}
$$

$$
\leqq C k^{-1}\left(\sum_{n+1}^{N} c_{n}^{2}\right) \cdot \frac{1}{\lambda_{n}}
$$

Hence combining this with (3.3),

$$
\begin{aligned}
& \left|\frac{1}{h} \int_{x_{0}}^{x_{0}+h} S_{N}(x) d x-\sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x_{0}\right)\right| \\
& \quad \leqq\left(\sum_{k=1}^{N} c_{k}^{2}\right)^{1 / 2}\left(h^{-1} \frac{c}{\lambda_{n}}+M h^{\alpha}\left(\sum_{1}^{n} \lambda_{k}^{2 \alpha}\right)^{1 / 2}\right)
\end{aligned}
$$

Now we take $n=x_{0}=n_{0}\left(x_{0}\right)$ such that

$$
\max _{1 \leqq 1 \leqq N} \sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x_{0}\right)=\sum_{1}^{n_{0}\left(x_{0}\right)} C_{k} \varphi\left(\lambda_{k} x_{0}\right)
$$

and take $h=h\left(x_{0}\right)=\lambda_{n_{0}}^{-7} \quad$. Then the above expression does not exceed

$$
\begin{aligned}
& \left.\left(\sum_{k=1}^{N} C_{k}^{2}\right)^{1 / 2}\left(C+M \left\lvert\, \sum_{i}^{n_{0}}\left(\frac{\lambda_{k}}{\lambda_{x_{0}}}\right)^{2 \alpha}\right.\right\}^{1 / 2}\right) \\
& \quad \leqq C \cdot\left(\sum_{k=1}^{N} C_{k}^{2}\right)^{1 / 2}
\end{aligned}
$$

for there exists $\lambda_{k} \lambda_{i}>i \quad$ such that it holds

$$
\sum_{i}^{n_{0}}\left(\frac{\lambda k}{\lambda_{n_{0}}}\right)^{2 \alpha} \leqq \sum_{i}^{n_{0}} q^{-\left(n_{0}-k\right) 2 \alpha} \leqslant C
$$

Thus we get

$$
\begin{aligned}
& \left|\frac{1}{n_{0}} \int_{x_{0}}^{x_{0}+h_{0}} S_{N}(x) d x-\max _{1 \leq n \leq N} \sum_{1}^{n} c_{k} \varphi\left(\lambda_{k} x_{0}\right)\right| \\
& \quad \leq c\left(\sum_{1}^{n} C_{k}^{z}\right)^{1 / 2}
\end{aligned}
$$

from which follows:

$$
\begin{aligned}
& \left|\max _{1 \leq n \leq N} \sum_{1}^{n} C_{k} \varphi\left(\lambda_{k} x_{0}\right)\right| \\
& \quad \leq \max _{-\lambda_{N}^{-1} \leq h \leq \lambda_{N}^{-}}\left|\frac{1}{k} \int_{x_{0}}^{x_{0}+h} S_{N}(x) d x\right|+C\left(\sum_{1}^{N} c_{k}^{2}\right)^{1 / 2} \\
& \quad \leq \max _{|h| \leq a}\left|\frac{1}{n} j_{x_{0}}^{x_{0}+h_{N}} S_{n}(x) d x\right|+C\left(\sum_{1}^{N} c_{k}^{2}\right)^{1 / 2} .
\end{aligned}
$$

By the well known maximal theorem of Hardy and Littlewood, we have, for $p>1$,

$$
\begin{aligned}
& \int_{-a}^{a} \max _{|h| \leqslant a}\left|\frac{1}{h} \int_{x_{0}}^{x_{0}+h} S_{N}(x) d x\right|^{p} d x_{0} \\
& \quad \leq C \int_{-a}^{a}\left|S_{N}(x)\right|^{p} d x
\end{aligned}
$$

which is not greater, by Theorem 2, than

$$
c\left(\sum c_{k}^{2}\right)^{p / 2}
$$

if a is large. Hence

$$
\int_{-a}^{a} \max _{1 \leqslant n \leqslant N}\left|\sum_{1}^{\pi} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x \leqq c\left(\sum_{1}^{N} c_{k}^{2}\right)^{1 / 2}
$$

Theorem 3 is proved similarly, if we notice that the maximal theorem is true even in the form

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \max _{|n| \leq a}\left|\frac{1}{\sigma\left(E_{x, h}\right)} \int_{x}^{x+h} S_{N}(x) d \sigma(x)\right| d \sigma(x) \\
& \equiv C \int_{-\infty}^{\infty}\left|\delta_{N}(x)\right|^{p} d \sigma(x), \\
& \text { where } E x, h \text { is the set }(x, x+h) \\
& \text { and }
\end{aligned}
$$

$$
\sigma\left(E_{x, h}\right)=\int_{E_{x, h}} d \sigma(x)
$$

Combining Theorems 3 and 4 with Theorems 1 and 2, we can state the following results.

Theorem 5. If the conditions in
Theorem 1 are assumed, then $p>1$,

$$
\begin{align*}
& \int_{-\infty}^{\infty} \max _{1 \leq n \leq N}\left|\sum_{k=1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d \sigma(x) \tag{3,5}\\
& \quad \leq C \int_{-\infty}^{\infty}\left|\sum_{k=1}^{N} \approx_{k} \varphi\left(\lambda_{k} x\right)\right|^{r} d x
\end{align*}
$$

Hhere C is a constant independent of

Theorem 6. If $a>2 \pi$ and the conditions in Theorem 1 are as sumed. then.

$$
\begin{aligned}
& p>1, \\
& \int_{-a}^{a} \max _{I}^{p}=x \leq N \\
&\left.\equiv C \sum_{1}^{N} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x \\
&\left.\equiv \sum_{1}^{N} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x
\end{aligned}
$$

$\frac{\text { where }}{N}$. may depend on a but not on
4. We consider the convergence problem of
(4.1) $\sum_{k=1}^{\infty} c_{k} \varphi\left(\lambda_{k} x\right)$.

As we stated in $\oint I, 1 f$,
(4.2) $\sum_{k=1}^{\infty} c_{k}^{2}<\infty$
then (4.1) converges almost everywhere
provided that $\lambda_{k+1} / \lambda_{k} z q>1$, and
$\varphi(x)$ satisfies the conditions in
Theorem l. We shall first show the converse in the following forms.

Theorem 2. Let $\varphi(x)$ satisfy the conditions in Theorem 1 , and let
has gaps (2.10). Then there exjsts such that
(4.3) $A \int_{E} \alpha \sigma(x) \cdot \sum_{k=k_{0}}^{n} c_{k}^{2} \leq \int_{E}\left|\sum_{k=k_{0}}^{n} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{2} d \sigma(x)$

$$
\leqq B \int_{E} d \sigma(x) \sum_{k=k_{0}}^{n} C_{k}^{2}
$$

Where E is any measurable set of
positive measure, A, B being
independent of n
The following fact follows immediately from Theorem 7.

Theorem 8. Under the conditions of
 \section*{Theorem 7, if}

(4.4)

$$
\sum_{k=1}^{\infty}{\underset{-}{k}}_{2}^{2}=\infty
$$

then the series $\sum_{1}^{\infty} c_{k} \varphi\left(\lambda_{k} x\right)$ diverges almost eyerywhere.

For if $\sum_{1}^{\infty} c_{k} \varphi\left(\lambda_{k} x\right) \quad$ converges on a set of positive measure, then this series uniformly on a subset E of positive measure. And hence by (4.3), there exist M such that $\sum_{1}^{x} C_{k}^{2}<M$ This contradicts to (4.4).

We now prove Theorem 7. Let $|E|>0$.
latitine ${ }^{R_{0}}$ is any number temporary-

$$
\begin{aligned}
& \text { By (2.,14) } \\
& \begin{aligned}
\left|\gamma_{2}\right|= & 2\left\{\int_{-\infty}^{\infty}\left[\sum_{k_{0}}^{n} c_{k}\left(\varphi\left(\lambda_{k} x\right)-\sigma_{m_{k}}\left(\lambda_{k} x\right)\right)\right]^{2} d \sigma(x)\right\}^{\frac{1}{2}} \\
& \cdot\left\{\int_{-\infty}^{\infty}\left[\sum_{k=k_{0}}^{n} c_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right]^{2} d \sigma(x)\right\}^{1 / 2}
\end{aligned}
\end{aligned}
$$

$$
(4,6) \leqslant C\left(\sum_{k=k_{0}}^{n} C_{k}^{2}\right)\left(\sum_{k=k_{0}}^{\infty} \frac{1}{m_{k}^{2 \alpha}}\right)^{1 / 2}
$$

And

$$
\begin{aligned}
\left|\gamma_{3}\right| \leqq\left|\int_{k}\right| \leqq & \int_{-\infty}^{\infty}\left[\sum_{k=k_{0}}^{n} c_{k}\left(\varphi\left(\lambda_{k} x\right)-\sigma_{m_{k}}\left(\lambda_{k} x\right)\right)\right]^{2} \\
& \cdot d \sigma(x) \\
\leqq & \sum_{k=k_{0}}^{n} c_{k}^{2} \sum_{k=k_{0}}^{\infty} \frac{1}{m_{k}^{2 \alpha}}
\end{aligned}
$$

we have

$$
\begin{aligned}
\int_{E}\{ & \left.\sum C_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}^{2} d \sigma(x) \\
& \left.=\int_{E} \sum_{k=k_{0}}^{n_{k}} c_{k}^{2} \sigma_{m_{k}}^{2}\left\{\lambda_{k} x\right)\right\}^{*} d \sigma(x) \\
& +2 \int_{E} \sum_{k>j} c_{k} C_{j} \sigma_{m_{k}}\left(\lambda_{k} x\right) \sigma_{m_{j}}\left(\lambda_{j} x\right) d \sigma(x)
\end{aligned}
$$

Now the sequence $\frac{1}{\beta_{k y}} \sigma_{m_{k}}\left(\lambda_{k} x\right) \sigma_{k j}\left(\lambda_{j} x\right)$
$k \neq j$
forms as normal orthogonal sequence, where

$$
\beta_{k j}^{2}=\int_{-\infty}^{\infty} \sigma_{m_{k}}^{2}\left(\lambda_{k} x\right) \sigma_{m_{j}}^{2}\left(\lambda_{\gamma} x\right) d \sigma(x)
$$

Hence
where blu is the Fourier coefficient (with respect to σ d of a

$$
\begin{aligned}
& 2 \int_{E} \sum_{k>j} C_{R_{0}} C_{k} C_{j} \sigma_{m_{k}}\left(A_{k} x\right) \sigma_{m_{j}}\left(\lambda_{j} x\right) d \sigma(x) \\
& \leqq 2\left(\sum_{\mu \geqslant j} z k_{k} C_{k} C_{j}^{2}\right)^{1 / 2} \\
& \cdot\left\{\sum_{k>j} 2 k_{0}\left(\int_{E} \sigma_{m_{k}}\left(\lambda_{k} x\right) \sigma_{m_{j}}\left(\lambda_{j} x\right) d \sigma(x)\right)\right\}^{1 / 2} \\
& \text { (4.7) } \\
& \leqq 2\left(\sum_{k>j 2 k_{0}} c_{k}^{2} c_{j}^{2}\right)^{1 / 2}\left(\sum_{k \geqslant j 2 k_{0}} \beta_{k j}^{2} \cdot b_{k j}^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& f\left\{\sum_{k=k_{0}}^{n} \hat{C}_{k} \varphi\left(\lambda_{k} x\right)\right\}^{2} d \sigma(x) \\
& =\int_{E}\left\{\sum_{k=k_{1}}^{n} \mathcal{C}_{k}\left(\varphi\left(\lambda_{k} \lambda\right)-\sigma_{m_{k}}\left(\lambda_{k} x\right)\right)\right. \\
& \left.+\sum_{k=k_{0}}^{n} C_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}^{2} d \sigma(x) \\
& =\int_{E}\left\{\sum_{k=k_{0}}^{n} C_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}^{2} d \sigma(x) \\
& +2 \int_{E} \sum_{k=R_{0}}^{n} C_{k}\left(\varphi\left(\lambda_{k} x\right)-\sigma_{m_{k}}\left(\lambda_{k} x\right)\right. \\
& \text { - } \sum_{k=k_{0}}^{n} C_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right) d \sigma(x) \\
& +\int_{E}\left\{\sum_{k=k_{0}}^{n} C_{k}\left(\varphi\left(\lambda_{k} x\right)-\sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}^{2} d \sigma(x ;\right. \\
& (A, \xi)=J_{1}+J_{2}+J_{3}
\end{aligned}
$$

characteristic function of the set F
Since $\left|\beta_{k j}\right| \leq M^{2}$ (putting $\varphi \mid \leq M$
as before) the right side of (4.7) is
(4.8) $\leq C\left(\sum_{k=k_{0}}^{n} c_{k}^{2}\right)\left(\sum_{k=k_{0}}^{\infty} b_{k_{i j}}^{=}\right)^{1 / 2}$
the last series being convergent by Bessel inequality.
Now we take k_{0} so large that the last expression is less than
(4.9) $\leq \frac{1}{2} \int_{E} d \sigma(x)\left(\sum_{k=k_{0}}^{n} c_{k}^{2}\right)$.

Now we have

$$
\begin{aligned}
& \int_{E} \sum_{k=k_{0}}^{n} C_{k}^{2} \sigma_{m_{k}}^{2}\left(\lambda_{k} x\right) d \sigma^{-}(x) \\
& =\sum_{k=k_{0}}^{n} C_{k}^{2} \int_{E} \sigma_{m_{k}}^{2}\left(\lambda_{k} x\right) d \sigma(x) \\
& =\sum_{k=k_{0}}^{n} c_{k}^{2} \int_{E}\left\{\sum _ { \nu = 1 } ^ { m m _ { k } } (1 - \frac { \nu } { m _ { k } }) \left(a_{\nu} \operatorname{cov} \lambda_{k} \nu x\right.\right. \\
& \left.\quad+b_{\nu} \sin \lambda_{k} \mu(x)\right\}^{2} d \sigma(x)
\end{aligned}
$$

which is, denoting $\left(1-\frac{k}{m_{k}}\right)=\alpha_{v, k}$, $a_{r} \cos \nu x+b_{y} \sin \nu x=A_{\nu}(x)$,

$$
=\sum_{k=k_{0}}^{n} C_{k}^{2}\left[\int_{E} \sum_{\nu=1}^{m_{k}} d_{\nu, k}^{2} A_{j}^{2}\left(\lambda_{k} \chi\right) d \sigma(x)\right.
$$

$(4.10)+\frac{1}{2} \int_{E} \sum_{V, \mu, 1}^{m_{k}} d_{\nu, k} d_{\mu, k} A_{\nu}\left(\lambda_{k} x\right) A_{\mu}\left(\lambda_{k} x\right)$
$\cdot d \sigma(x)]$

$$
\cdot d \sigma(x)]
$$

Here

$$
\begin{aligned}
& \int_{E} \sum_{V=1}^{m m_{k}} \alpha_{\nu, k}^{2} A_{\nu}^{2}\left(\lambda_{k} x\right) d \sigma(x) \\
& =\sum_{\nu=1}^{m_{k}} d_{\nu, k}^{2} \int_{E}\left(a_{\nu}^{2} \cos ^{2} \lambda_{k} \nu x+b_{\nu}^{2} \sin ^{2} \lambda_{k} \nu x\right. \\
& \left.\quad+2 a_{\nu} b_{\nu} \cos \lambda_{k} \nu x \sin \lambda_{k} \nu x\right) d \sigma(x) \\
& =\frac{1}{2} \sum_{\nu=1}^{m_{k}} d_{\nu, k}^{2}\left(a_{\nu}^{2}+b_{\nu}^{2}\right) \int_{E} d \sigma(x) \\
& \quad+\frac{1}{2} \sum_{\nu=1}^{m_{k}} d_{\nu, k}^{2}\left(a_{\nu}^{2} \int_{E} \cos 2 \lambda_{k} \nu x d \sigma(x)\right. \\
& \left.\quad-b_{\nu}^{2} \int_{E} \cos 2 \lambda_{k} \nu x d \sigma(x)\right) \\
& \quad+2 \sum_{\nu=1}^{m_{k}} d_{\nu, k}^{2} a_{\nu} b_{\nu} \int_{E} \cos \lambda_{k} \nu x \sin \lambda_{k} \nu x d \sigma(x)
\end{aligned}
$$

(4.11) $\begin{aligned} &=\frac{1}{2} \sum_{\nu=1}^{m_{n}} d_{\nu k}^{2}\left(a_{\nu}^{2}+b_{\nu}^{2}\right) \int_{E} d \sigma(x)+J_{k}, \\ &\end{aligned}$

say. Then

$$
\begin{aligned}
& \sum_{k=n_{0}}^{n} c_{k}^{2}\left|J_{4}\right| \leqslant c \sum_{\nu=1}^{m_{n}}\left(a_{\nu}^{2}+2\left|a_{\nu} b_{\nu}\right|+b_{\nu}^{2}\right) \\
& \cdot \sum_{k=k_{0}}^{n} c_{k}^{2}\left(1 \int_{e} \cos 2 \lambda_{k} \nu x d \sigma(x) \mid\right. \\
&\left.+\left|\int_{e} \sin 2 \lambda_{k} \nu x \cos 2 \lambda_{k} \nu x d \sigma(x)\right|\right) \\
& \leqslant c \sum_{\nu=1}^{\infty}\left(a_{l}^{2}+b_{\nu}^{2}\right)\left(\sum_{k=k_{0}}^{n} c_{k}^{4}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sum_{k=x_{0}}^{n}\left(\int_{E} \cos 2 \lambda_{k} \nu x d \sigma(x)\right)^{2}\right. \\
& \left.+\left(\int_{E} \sin 2 \lambda_{k} \nu x \cos 2 \lambda_{k} \nu x d \sigma(x)\right)^{2}\right)^{1 / 2} \\
\leqq & c\left(\sum_{k=k_{0}}^{n} c_{k}^{2}\right)\left(\sum_{k=k_{0}}^{\infty}\left(\int_{E} \cos 2 \lambda_{y} \nu x d \sigma(x)\right)^{2}\right. \\
+ & \left.\left(\int_{E} \sin 2 \lambda_{k} \nu x \cos 2 \lambda_{k} \nu x d \sigma(x)\right)^{2}\right\}^{1 / 2}
\end{aligned}
$$

Further we assume that k_{0} is so large that the last series is less than

$$
B \cdot \sigma(E)
$$

where ${ }^{2}$ shall be determined soon later. This is possible by Bessel insquality. The same is also true for the second term in the inner bracket of (4.10). Hence we get, for sufficiently large k_{0}, by above facts and (4.11)

$$
\begin{aligned}
& i_{E} \sum_{k=k_{0}}^{n} \hat{c}_{k}^{2} \sigma_{m_{k}}^{=}\left(\lambda_{k} x\right) d \sigma(x) \\
& \vdots \frac{1}{2} \sum_{k=k_{0}}^{n} c_{k}^{2} \sum_{\nu=1}^{n_{k}} a_{r, k}^{2}\left(a_{\nu}^{2}+b_{\nu}^{2}\right) \int_{E} d \sigma(x) \\
& -2 \beta \cdot \sum_{k=k}^{n} c_{k}^{2} \cdot \int_{E} d \sigma(x) \\
& \geqq \frac{1}{2} \sum_{k=i_{0}}^{n} c_{k}^{2} \sum_{\nu=1}^{n k / 2} d_{1, k}^{2}\left(a_{l}^{2}+b_{l}^{2}\right) \int_{E} d \sigma(x) \\
& -2 \beta \cdot \sum_{k=k_{0}}^{n} c_{k}^{z} j_{E} \alpha \sigma(x) \\
& \geq-\frac{1}{4} \sum_{k=k_{0}}^{n} i_{k}^{2} \sum_{\nu=1}^{m / 2}\left(a_{\nu}^{2}+b_{\nu}^{2}\right) \int_{E} d \sigma(x) \\
& -2 B \sum_{k=k_{0}}^{n} c_{k}^{2} \int_{E} d \sigma(x)
\end{aligned}
$$

Now clearly we can take B and k, so that the last expression

$$
\Rightarrow \int_{E} d \sigma(x) \cdot \sum_{k=k_{0}}^{n} c_{k}^{2}
$$

for some constanc A. Thus we get the left side inequality of (4.3), where k_{0} may depend on E.

That the right hand side of (4.3) is true, is implied in the above proof. Hence the theorem is proved.

We shall now give the consequences of theorems obtained. We have already stated that (4.2) implies the almost everywhere convergence of (4,1) under rather more general condition (1.3), which was gotten by M.Kac, M. Udagawa and the author - But if we assume (2.10), then we get the following theorem which is an immediate consequence of Theorem 3 or 4 .

Theorem $9_{\text {e }}$ Let $\varphi(x)$ be conditioned as in theorem and let (2.10) be assumed. If.
(4.12)

$$
\sum_{k=1}^{\infty \infty} c_{k}^{2}<\infty
$$

then $\sum_{k} C_{k} \varphi\left(\lambda_{k} x\right) \quad$ 1s convergent
aimost everywhere in ($-\infty, \infty)$ and
the limit function belongs to Lp
for every $p>1$

The following theorems are also consequences of Theorem 3 and 4, and analogous theorems for independent functions were proved by S.Karlin Proofs of the theorems are completely analogous.

Theorem 10. Conditions in Theorem 1 are assumed. Then $\sum_{1}^{\infty} \mathcal{C}_{k} \varphi(\lambda k x)$ converges almost everywhere to a function of $L p(p>1)$ in every finite interval. It is necessary and sufficient that

$$
(4,13) \quad \int_{-a}^{a}\left|\sum_{k=1}^{m} c_{k} \varphi\left(\lambda_{k} x\right)\right|^{p} d x \leq \gamma_{p}
$$

for every a, γ_{p} being dependent on a and, p

Theorem 11e conditions in Theorem 1 are assumed. Then if $\Sigma c_{k} \varphi\left(\lambda_{k} x\right)$ converges almost everywhere to a function which belongs to Lp in every finite interval, then the series converges in mean Lup with respect to $\sigma(x)$
5. We shall consider, in this section the absolute convergence of

$$
(5.1) \quad \sum_{k=1}^{\infty} c_{k} \varphi\left(\lambda_{k} x\right)
$$

Theorem 12 below is an analogous theorem in a sense to the well known theorem of S.Sidon concerning Fourier series with gap.

Theorem 12 Let the conditions in Theorem 1 are assumed.

If

$(5,2) \quad\left|\sum_{1}^{x} c_{k} \varphi\left(\lambda_{k} x\right)\right| \leqslant c$,

$$
C \text { being independent of } n \text {, then }
$$

(5:3)

By (5.2) and Theorem 7, $\sum c_{k}^{2}<\infty$.
Letting

$$
S_{n}(x)=\sum_{k=1}^{n} c_{k} \varphi\left(\lambda_{k} x\right)
$$

$$
S_{n}(x)=\sum_{k=1}^{n} C_{k}\left(\varphi\left(\lambda_{k} x\right)-\sigma_{k=1}\left(\lambda_{k} x\right)\right)
$$

$$
+\sum_{k=1}^{n} c_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right)
$$

$$
=J_{1}+J_{2}
$$

say. If (2.18) is true, then $\left\{\sigma_{m_{k}}\left(\lambda_{k} x\right)\right\}$ farms the orthogonal system. Denoting

$$
\int_{-\infty}^{\infty} \sigma_{m_{k}}^{2}\left(\lambda_{k} x\right) d \sigma(x)=\beta_{k}^{2},
$$

we have

$$
\int_{-\infty}^{\infty} J_{2} \cdot \sigma_{m_{k}}\left(\lambda_{k} x\right) d \sigma(x)=C_{k} \beta k .
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{n}\left|C_{k}\right| & =\sum_{k=1}^{n} C_{k} \varepsilon_{k} \quad\left(\varepsilon_{k}=\operatorname{sgn} C_{k}\right) \\
& =\int_{-\infty}^{\infty} \sum_{k=1}^{n} J_{2} \cdot \sigma_{m_{k}}\left(\lambda_{k} x\right) \frac{\varepsilon_{k}}{\beta_{k}} d \sigma(x) \\
& =\frac{M}{L} \int_{-\infty}^{\infty} \sum_{k=1}^{n} J_{2} \cdot \sigma_{m_{k}}\left(\lambda_{k} x\right) \frac{L \varepsilon_{k}}{M \beta_{k}} d \sigma(x)=J_{3}
\end{aligned}
$$

say, where $\left|\sigma_{m}(x)\right| \leqslant M$ and L is a positive constant such that
$(5,5) \quad \beta_{j} \geqq L$

The existence of Δ in (5.4) is implied in the proof of Theorem 7 (4.10).

If we put
$(5,6) \quad P_{n}(x)=\prod_{k=1}^{n}\left(1+\frac{L}{M} \frac{\varepsilon_{k}}{\beta_{k}} \sigma_{m_{k}}\left(\lambda_{R} x\right)\right)$,
then, by (5.4)

$$
\left|\frac{L}{M} \frac{\varepsilon_{k}}{\beta_{k}} \sigma_{m_{k}}\left(\lambda_{k} x\right)\right| \leq 1
$$

and hence

$$
(5,7) \quad P_{n}(x) \geq 0
$$

Now by (2.18) $\sigma_{m i}\left(\lambda_{i}, x\right) \quad \cdots \sigma_{m_{i_{s}}}\left(\lambda_{i_{s}} x\right)$ have no terms with same frequencies (iv<iz< - is) and $(5,8) Q_{1,2, \cdots, 5}(x)=\sigma_{m_{i},}\left(\lambda_{1}, x\right) \cdot \sigma_{m_{s}}\left(\lambda_{i s} x\right)$
has maximum frequency ($1 / 2 \pi$) ($m_{\text {is }} \lambda_{\text {is }}$ $+m_{i_{s-1}} \lambda_{i_{s-1}}+\cdots+m_{i,} \lambda_{i_{1}}$) and minimum frequency $(1 / 2 \pi)\left(m_{i s} \lambda_{1 s}-m_{i s-1} \lambda_{i s}-1\right.$ Less than $\left.m_{i,} \lambda_{i}\right)^{\prime}$. The former is

$$
\frac{1}{2 \pi}\left(1+\frac{1}{q}+\frac{1}{q^{2}}+\cdots\right) m_{i_{s}} \lambda_{v_{s}}=\frac{1}{2 \pi}\left(1+\frac{1}{q-1}\right) m_{i_{s}} \lambda_{v_{s}}
$$

and the latter is greater than

$$
\frac{1}{2 \pi}\left(1-\frac{1}{q}-\frac{1}{q^{2}}-\cdots\right) \lambda_{i_{s}}=\frac{1}{2 \pi}\left(1-\frac{1}{q-1}\right) \lambda_{i_{s}}
$$

Hence if q is sufficiently large, then we see that

$$
\int_{-\infty}^{\infty} J_{2} Q_{1,2,},{ }_{5}(x) d \sigma(x)=0
$$

except when $Q_{1,2}, \ldots s(x)$ consist of a single factor $\sigma_{m j}\left(\lambda_{j} x\right)$. Thus multiplying out $P_{n}(x)$
(6.9) $J_{3}=\left|\frac{M}{L} \int_{-\infty}^{\infty} J_{2} D_{\text {in }}(x) d \sigma(x)\right|$.
since $J_{2}=S_{m}(x)-J_{1}$ and

$$
\left|J_{1}\right| \leq\left(\Sigma c_{k}^{2}\right)^{1 / 2}\left(\Sigma \frac{1}{m_{k}^{2 \alpha}}\right)^{1 / 2} \leq C
$$

providing $\sum \frac{1}{m^{2 \alpha}}<\infty,\left|J_{2}\right| \leqslant c+c-c$ (5.9) we get, noticing (5.7)
$(5,10) \quad\left|J_{3}\right| \leq \frac{C M}{L} \int_{-\infty}^{\infty} P_{n}(x) d \sigma(x)=\frac{C M}{L}$
Hence by (5.4)

$$
\sum_{n=1}^{n}\left|C_{k}\right| \leq \frac{C M}{L}
$$

Which proves theorem when q is sufficientiy large and $\sum_{\text {in }} m_{k}^{-2 \alpha}<\infty$ hypoEven in general case under the hypo-
thesis (2.10), we can prove the theorem in similar manner in the proof of theorem 1.
the 6. We consider the distribution of

$$
\begin{aligned}
& \text { (6.1) } \sum_{k=1}^{n} C_{k} \varphi\left(\lambda_{k} x\right) \\
& \text { as } n \rightarrow \infty \quad \text {. For the series }
\end{aligned}
$$

$$
(6,2) \quad \sum_{k=1}^{n}\left(a_{k} \cos \lambda_{k} x+b_{k} \sin \lambda_{k} x\right)
$$

$$
\frac{\lambda_{k-1}}{\lambda_{k}} \geq q>1
$$

R.Salem and A.Zygmund have proved
that if $\alpha_{n} / C_{n} \rightarrow 0 \quad, \quad C_{n} \rightarrow \infty$
where

$$
c_{k}=\left(a_{k}^{2}+b_{k}^{2}\right)^{1 / 2}, \quad c_{n n}=\frac{1}{2}\left(c_{1}^{2}+\cdots+c_{n}^{2}\right)^{1 / 2}
$$

then for every bounded set $S,|s|>0$
(6.3) $\lim _{x \rightarrow \infty} \frac{\left|E\left(\frac{s_{x}}{C_{x}} \leq y\right)_{n} s\right|}{|s|}=\bar{\Phi}(y)$

$$
\Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-t^{2} / 2} d t
$$

Moreover they remarked that if

$$
\begin{gathered}
f(x)=a_{l} \cos l x+\cdots+c_{m} \cos m x \\
S_{n}(x)=a_{1} f_{1}\left(\lambda_{l} x\right)+a_{2} f\left(\lambda_{2}, x\right)+\cdots+a_{n} f\left(\lambda_{n} x\right) \\
\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \text { being integers, and we write } \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{2} d x=\frac{1}{2}\left(c_{l}^{2}+\cdots+c_{m}^{2}\right)=1 / 2 c \\
A_{n}=\left\{\frac{1}{2} C\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\right\}^{1 / 2},
\end{gathered}
$$

then under the conditions that

$$
\begin{aligned}
& (6.4) \quad A_{n} \rightarrow \infty, \quad \lambda n / A_{n} \rightarrow \infty \\
& (6,5) \quad \lambda_{k+1} / \lambda_{k} \geq q>m / l \\
& \left|E\left(\frac{s_{n}}{A_{n}} \leq y\right)_{n} s\right| /|s| \\
& \rightarrow \Phi(y) \quad(|s|>0)
\end{aligned}
$$

$>$ Deing any set in ($0,2 \pi$) .
We shall show that analogous theorems holds for a series (6.1), under some assumptions. $\frac{\text { Theorem } 13 .}{\text { Let }} \underset{\text { ner }}{\varphi(x)} \frac{\text { be a }}{2 \pi}$ be-
$(6,6) \quad \int_{0}^{2 \pi} \varphi(x) d x=0$
Put

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi^{2}(x) d x=\frac{1}{2} C \\
& S_{n}(x)=\sum_{k=1}^{n} C_{k} \varphi\left(\lambda_{k} x\right)
\end{aligned}
$$

and $A_{n}=\left\{\frac{1}{2} \subset\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{n}^{2}\right)\right\}^{1 / 2}$
Durther we assume that $C_{n} / A_{n} \rightarrow 0$, An $\cdots \infty$ and
(6.7) $\quad \frac{\lambda_{k+1}}{\lambda_{k}}>m_{k}>0, \quad \sum_{k=1}^{\infty} \frac{1}{m_{k}^{2 \alpha}}<\infty$

Then for every bounded set

in, 8$) \frac{\left|E\left(\frac{\sin (x)}{A n} \leq y\right)_{n} s\right|}{|s|} \rightarrow \Phi(y)$
We can first prove, under the assumptions in Theorem 13,
$(6,9) \quad \sigma_{n}\left(E\left(S_{n}(x) / A_{n} \leq y\right), S\right) / \sigma_{n}(E) \rightarrow \Phi(y)$,
where $\sigma_{h}(E)=\frac{1}{\pi} \int_{E} \frac{\sin ^{2} h x / 2}{h x^{2} / 2} d x \quad(h>0)$
This can be proved by similar way as in Salem and Zygmund's paper if we make use the following Lemma 3.

That (6.8) holds if (6.9) is true for every $h>0$, is shown as follows.

Let the characteristic function of the set $E\left(S_{n}(x) / A_{n} \leqslant y\right)$ be $g_{x}(y)$ Then

$$
\begin{aligned}
& \sigma_{n}\left(E\left(s_{n}(x) / A_{n} \leqslant y\right) \cap S\right) / \sigma_{h}(s) \\
& =\frac{\int_{S} g_{n}(y) \frac{\sin ^{2} h t}{h^{2} t^{2}} d t}{\int_{S} \frac{\sin ^{2} h t}{h^{2} t} d t}
\end{aligned}
$$

where S is any bounded set. Since

$$
\lim _{h \rightarrow 0} \int_{S} \frac{\sin ^{2} h t}{h^{2} t^{2}} d t=\int_{S} d t=|S|
$$

if (6.9) is assumed then
(6.10) $\frac{1}{|s|} \int_{S} g_{n}(y) \frac{\sin ^{2} h t}{h^{2} t^{2}} d t \rightarrow \Phi(y)$

Now

$$
\begin{aligned}
F_{n}(y) & \equiv \frac{1}{|S|}\left|E\left(S_{n}(x) / A_{n} \leq y\right)_{n} S\right| \\
& =\frac{1}{|S|} \int_{S} g_{n}(y) d y \geqq \frac{1}{|S|} \int_{g S} g_{n}(y) \frac{\operatorname{in}^{2} h t}{h^{2} t^{2}} d t
\end{aligned}
$$

for $\sin ^{2} h t /\left(h^{2} t^{2}\right) \leq 1$. By (6.10)

$$
\begin{aligned}
& (6,11) \quad \lim _{n \rightarrow \infty} F_{n}(y) \geq \Phi(y) . \\
& \text { If we consider the set } E\left(S_{n}(x) / A_{n}>2\right) \\
& n^{S}, \text { then } \\
& \sigma_{n}\left(E\left(S_{n}(x) / A n \vee y\right)_{n} S\right) / \sigma_{n}(s) \rightarrow 1-\Phi(y)
\end{aligned}
$$

Then similarly as (6.11), we have

$$
\lim \left(1-F_{n}(y)\right) \geq 1-\Phi(y)
$$

which means

$$
(6,12) \quad \overline{\operatorname{sim}} F_{n}(y) \leq \Phi(y)
$$

(6.11) and (6.12) proves

$$
\lim _{n \rightarrow \infty} F_{n}(y)=\Phi(y)
$$

Hence for the proof of the theorem, it is sufficient to show (6.9) for every $h>0$
 Lemma 3. Let S be a bounded set.
 $$
\frac{\sigma_{n}\left(E\left(Y_{n}(t) \leq y\right) n S\right)}{\sigma_{n}(S)}
$$
 converge to a non-decreasing function $G(y)$ $(G(-\infty)=0, G(\infty)=1)$ at continuity points of the latter function. and suppose that

(6.13) $\quad \sigma_{n}\left(E\left(\left|X_{n}(t)\right|>\varepsilon\right)_{n} S\right) \rightarrow 0$
for every $\varepsilon>0$

Then

$$
\lim _{n \rightarrow \infty} \frac{\sigma_{n}\left(E\left(x_{n}(t)+Y_{n}(t) \leq y\right)_{n} s\right)}{\sigma_{n}(s)}=G(y)
$$

holds at continulty points $G(y)$
For $\sigma_{h}\left(E\left(X_{n}(t)+Y_{m}(t) \leq j\right) \wedge s\right)$

$$
\begin{aligned}
& =\sigma_{n}\left(E\left(X_{n}(t)+Y_{n}(t) \leq y\right)_{n} E\left(\left|X_{n}(t)\right|<\varepsilon\right)\right) \\
& +\sigma_{n}\left(E\left(X_{n}(t)+Y_{n}(t \leq y)_{n} S_{n} E\left(\left|X_{n}(t)\right|<\leqslant\right)\right)\right. \\
& \leqq \sigma_{h}\left(E\left(\left|X_{n}(t)\right|>\varepsilon\right)_{n} S\right)+\sigma_{n}\left(E\left(Y_{n}(t) \leq y+\varepsilon\right)_{n} S\right)
\end{aligned}
$$

Hence

(6.14) $\frac{\left.\overline{\lim } \sigma_{h}\left(E\left(x_{n}(t)+Y_{n}(t) \leq y\right)\right)_{n} \delta\right)}{\sigma_{h}(s)}$

$$
\leqq \lim _{n \rightarrow \infty} \frac{\sigma_{n}\left(E\left(Y_{n}(t) \leqslant y+\varepsilon\right)_{n} S\right)}{\sigma_{n}(S)}=G(y+\varepsilon) .
$$

Here it is assumed that $y+\varepsilon$ is a continuity point of G.

Next since

$$
\begin{aligned}
& \sigma_{h}(E\left.\left(\left|X_{n}(t)\right|<\varepsilon, Y_{n}(t) \leq y-\varepsilon\right)_{n} S\right) \\
& \leq \sigma_{h}\left(E\left(X_{n}(t)+Y_{n}(t) \leq y\right) n S\right), \\
& \sigma_{h}\left(E\left(Y_{n} \leq y-\varepsilon\right)_{n} S\right) \\
& \leq \sigma_{h}\left(E\left(X_{n}(t)+Y_{m}(t) \leq y\right)_{n} S\right) \\
&\left.+\sigma_{h}\left(E\left|X_{n}(t)\right|>\varepsilon\right)_{n} S\right)
\end{aligned}
$$

from which it results
$(6,15) \quad G(y-\varepsilon)=\lim _{n \rightarrow \infty} \frac{\sigma_{n}\left(E\left(Y_{n}(t) \leq y-\varepsilon\right)_{n} S\right)}{\sigma_{h}(S)}$

$$
\leq \sin \frac{\sigma_{n}\left(E\left(X_{n}(t)+Y_{n}(t)\langle y)_{n} S\right)\right.}{\sigma_{n}(s)}
$$

where $y-\varepsilon$ is a continuity point of G (6.14) and (6.15) shows our assertion.

We now prove Theorem 13. Write

$$
\begin{aligned}
S_{n}(x)= & \sum_{k=1}^{n} c_{k}\left(\varphi\left(\lambda_{k} x\right) \cdots \sigma_{m_{k}}\left(\lambda_{k} x\right)\right) \\
& +\sum_{k=1}^{n} c_{k} \sigma_{m_{k}}\left(\lambda_{k} x\right) \\
(6,16)= & X_{m}(x)+Y_{n}(x)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \frac{1}{A n^{2}} \int_{-\infty}^{\infty}\left|x_{n}(x)\right|^{2} d \sigma_{k}(x) \\
= & \frac{1}{A_{n}^{2}} \int_{-\infty}^{\infty}\left\{\sum_{k=1}^{n} c_{k}\left(\varphi\left(\lambda_{k} x\right)-\sigma_{m_{k}}\left(\lambda_{k} x\right)^{2}\right\} d \sigma_{k}(x)\right. \\
\leq & \frac{1}{A_{n}^{2}} \int_{-\infty}^{\infty}\left\{\sum_{k=1}^{n_{0}}+\sum_{n_{0}+1}^{n}\right\}^{2} d \sigma_{h}(x) \\
\leq & \left.C \frac{1}{A_{n}^{2}} \sum_{k=1}^{n_{0}} c_{k}^{2}+C \cdot \frac{1}{A_{n}^{2}}\right\}\left(\sum_{-\infty}^{\infty} \sum_{0}^{n} c_{k}^{2}\right)^{1 / 2}\left(\sum_{n_{0}+1}^{\infty} \frac{1}{m_{k}^{2+2}}\right)^{1 / 2} d \sigma_{k}(x)
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{2}} \int_{-\infty}^{\infty}\left|X_{n}(x)\right|^{2} \alpha \sigma_{h}(x) \leq c\left(\sum_{n_{0}+1}^{\infty} \frac{1}{m_{k}^{2 \alpha}}\right)^{1 / 2}
$$

Since x_{0} can be arbitrarily chosen, we have

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \frac{x_{m}^{2}(x)}{A_{n}^{2}} d \sigma_{n}(x)=0
$$

from which $\sigma_{h}\left(E\left(\left|\frac{X_{n}(x)}{A_{n}{ }^{4}}\right|>\varepsilon\right)\right) \rightarrow 0$.
Hence by Lemma 3 for the proof of $(0,1 \eta) \sigma_{h}\left(E\left(\frac{Y_{n}(t)}{A_{m}} \leqslant y\right)_{n} S\right) / \sigma_{h}(s) \rightarrow \Phi(y)$, where $\quad Y_{n}(t)=\sum_{k=1}^{n} c_{k} \tau_{m_{k}}\left(\lambda_{k} t\right)$
But (6.17) can be shown a quite analogous way as in the paper of Salem and Zygmund

The characteristic function of the distribution of $Y_{n}(t)$ is

$$
\text { (6.18) } \begin{aligned}
& \frac{1}{\sigma_{h}(s)} \int_{S} e^{i \lambda Y_{n}(t) / A_{n}} d \sigma_{k}(t) \\
&= \sigma_{h}^{-1}(s) \int_{S} \exp \left\{i \lambda A_{n}^{-1} \sum_{k=1}^{n} C_{k} \tau_{m_{k}}\left(\lambda_{k} t\right) d \sigma_{n}(t)\right. \\
&= \sigma_{n}^{-1}(s) \int_{s} e^{o(1)} \prod_{k=1}^{n}\left(1+\frac{i \lambda c_{k}}{A_{n}} \tau_{m_{k}}\left(\lambda_{k} t\right)\right) \\
& \quad \exp \left\{\frac{-1}{2} \frac{\lambda^{2} C_{k}^{2} \tau_{m_{k}}^{2}\left(\lambda_{k} t\right)}{A_{n}^{2}}\right\} d \sigma_{k}(t)
\end{aligned}
$$

where $o(1)$ means to converge to 0 uniformly in t, λ being assumed

$$
\begin{aligned}
& \left|\prod_{k=1}^{n}\left(1+\frac{i \lambda c_{k}}{A_{n}} \tau_{m_{k}}^{2}\left(\lambda_{k} t\right)\right)\right| \\
& \quad \leqq \prod_{k=1}^{n}\left(1+\frac{\lambda^{2} c_{k}^{2}}{A_{k}^{2}} \tau_{m_{k}}^{2}\left(\lambda_{k} t\right)\right)^{1 / 2} \leq e^{=},
\end{aligned}
$$

Since $\quad \tau_{m_{k}}$ is uniformly bounded.

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{c_{k}^{2}}{A_{m}^{2}} \tau_{m_{k}}^{2}\left(\lambda_{k} t\right)=\frac{1}{A_{n}^{2}} \sum_{k=1}^{n} c_{k}^{2} \\
& \quad\left[\sum_{\mu=1}^{m}\left(1-\frac{\mu}{m_{k}}\right)\left(\alpha_{\mu} \cos \mu \lambda_{k} t+\beta_{\mu} \sin \mu \lambda_{k} t\right)\right]^{2} \\
& =\frac{1}{A_{n}^{2}} \sum_{k=1}^{n} c_{k}^{2}\left\{\sum _ { \mu = 1 } ^ { m _ { k } } (1 - \frac { \mu } { m _ { k } }) ^ { 2 } \left(\alpha_{\mu}^{2} \cos ^{2} \mu \lambda_{\mu} t\right.\right. \\
& \left.\quad \quad+\beta_{\mu}^{2} \sin ^{2} \mu \lambda_{k} t+2 \alpha_{\mu} \beta_{\mu} \sin \mu \lambda_{k} t \cos \mu \lambda_{k} t\right) \\
& \quad+2 \sum_{\mu>\nu}\left(1-\frac{\mu}{m_{k}}\right)\left(1-\frac{\nu}{m_{k}}\right)\left(\alpha_{\mu} \cos \lambda_{k} \mu t+\beta_{\mu} A_{i} \lambda_{k} \mu t\right) \\
& \left.\quad \cdot\left(\alpha_{\nu} \cos \lambda_{k} \nu t+\beta_{\nu} \beta_{n} \lambda_{k} \nu t\right)\right\} \\
& =\frac{1}{A_{n}^{2}} \sum_{k=1}^{n} c_{k}^{2} \frac{1}{2} \sum_{\mu=1}^{m}\left(1-\frac{\mu}{m_{k}}\right)^{2}\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right) \tag{6.19}
\end{align*}
$$

$+\xi_{n}(t)$
say. Then

$$
\begin{aligned}
& \xi_{m}(t)=\frac{1}{A_{m}^{2}} \sum_{k=1}^{n} c_{k}^{2}\left\{\sum_{\mu=1}^{m_{k}}\left(1-\frac{\mu}{m_{k}^{2}}\right)\right. \\
& \quad\left[\frac{1}{2} \cos 2 \mu \lambda_{k} t\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right)+\alpha_{\mu} \beta_{\mu} \sin 2 \mu \lambda_{k} t\right] \\
& +\frac{1}{2} \sum_{\mu \nu \nu}\left(1-\frac{\mu}{m_{k}}\right)\left(1-\frac{\nu}{m_{k}}\right) \\
& \quad\left(\alpha_{\mu} \cos \mu \lambda_{k} t+\beta_{\mu} \sin \mu \lambda_{k} t\right) \\
& \quad\left(\alpha_{\nu} \cos \gamma \lambda_{k} t+\beta_{\nu} \sin \nu \lambda_{k} t\right)
\end{aligned}
$$

Since $m_{k} \lambda_{k}<\lambda_{k+1} \quad$, we can
easily prove

$$
\begin{aligned}
\int_{-\infty}^{\infty} \xi_{n}^{2}(t) d \sigma_{k}(t) & \leqq \frac{C}{A_{n}} \sum_{k=1}^{n} \epsilon_{k}^{+} \sum_{\mu=1}^{\infty}\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right)^{2} \\
& \leqq C \frac{1}{A_{n}^{4}} \sum_{k=1}^{n} c_{k}{ }^{4}
\end{aligned}
$$

which tends to zero on account of $\mathrm{Cn} / \mathrm{A}_{n} \rightarrow 0$. Hence the set of measure of the set
tends to zero for any but fixed positive constant δ.

Further the first term of (6.18) is equal to

$$
\begin{gathered}
(6,20) \quad 1+\frac{1}{A_{\mu}^{2}} \sum_{k=1}^{n} C_{k}^{2}\left(\frac{1}{2} \sum_{\mu=1}^{m}\left\{\left(1-\frac{\mu}{m_{k}}\right)^{2}-1\right\}\right. \\
\cdot\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right) . \\
\sum_{\mu=1}^{m_{k}}\left\{\left(1-\frac{\mu}{m_{k}}\right)^{2}-1\right\}\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right) \\
=-\frac{2}{m_{k}} \sum_{\mu=1}^{m_{k}} \mu\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right) \\
+\frac{1}{m_{k}^{2}} \sum_{\mu=1}^{m_{k}} \mu^{2}\left(\alpha_{\mu}^{2}+\beta_{\mu}^{2}\right)
\end{gathered}
$$

is clearly tends to zero as $m_{k} \rightarrow \infty$. Therefore by (6.19) and (6.20), writing

$$
\sum_{n=1}^{n} \frac{C_{n}^{2}}{A_{n}^{2}} \tau_{m_{k}}^{2}\left(\lambda_{k} t\right)=1+y_{n}(t)
$$

the measure of the set

$$
\left|\eta_{n}(t)\right|>\delta
$$

tends to zero. Hence we get the limit of the left hand side of (6.18) is the iimit of
(6.21) $\quad \sigma_{k}(s) e^{-\lambda^{2} / 2} \int_{S} \prod_{k=1}^{n}\left(1+\frac{i \lambda C_{k}}{A_{n}} \tau_{m_{k}}\left(\lambda_{k} t\right)\right) d \sigma_{k}(t)$

But in virtue of (2.20), не can write

$$
\prod_{k=1}^{n}\left(1+\frac{i \lambda c_{k}}{\lambda_{n}} \tau_{m_{k}}\left(\lambda_{k} t\right)\right)=1+\sum_{1} \gamma_{k}^{(n)} a_{0} \theta_{k} t
$$

where $\theta_{k}>1$ and $\theta_{k+1}-\theta_{k}>1$.
Thus the integral of (6.21) is
$(6,22)$

$$
\sigma_{n}(s)+\sum \gamma_{k}^{(n)} h_{k}
$$

h_{k} being the Fourier coefficient
with respect to $\sigma_{\mu}(t)$ of the characteristic function of the set S. It is easy to see that $\gamma_{k}{ }^{(n)}$ tends to zero as $n \rightarrow \infty$ since $\mathrm{C}_{n} / \mathrm{A}_{n} \rightarrow 0$. and the second twerm tends to zero as $n \rightarrow \lambda^{\infty} / 2$. Thus (6.21) converges to convergence of distributions shows (6.17).
(*) Received 13th April, 1950 .
(To be continued to p. 40)
(1) M.Kac, Convergence of certain gap series, Ann. of Math., 44 (1943).
(2) M.Kac, Convergence and divergence of non-harmonic gap series,
Duke Math. Journ., 8 (1941)
(3) M. Kac, ibid. Duke Math. Journ.
(4) P.Hartman, Divergence of nonharmonic gap theorems. Duke Math. Journ. 9 (1942).
(5) T.Kawata and M. Ddagawa, Some gap theorems, Kodai Math. Sem. Nos. 5-6' (1949).
(6) M, Kac, ibid., (1).
(7) T.Kawata and M. Udagawa, ibid.
(8) Corresponding theorem concerning the sequence of independent functions, and related theorems, see, S.Karlin, Orthog onal properties of independent functions, Trans. Amer. Math. Soc. 66 (1949).
(9) T.Kawata and M.Udagawa, ibid.

10 S.Karlin, ibid.
(11) R.Salem and A.Zygmund, on lacunary trigonometric series (I), (II), Proc. Nat. Acad. U.S.A. 33 No.11, (1947), 34, No.2, (1948).

Tokyo Institute of Technology.

[^0]: where $1<\nu_{1}<\nu_{2}<$. . , and thus

