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ON THE ORR-SOMMERFELD TYPE EQUATIONS, II

CONNECTION FORMULAS

BY TOSHIHIKO NlSHIMOTO

§ 1. Introduction

In the previous paper [3], the author studied the asymptotic properties of
solutions of the fourth order ordinary differential equation of the form

(i.i) s2-

in a certain bounded region DM :

DM: |*| <Af, 0<e<e0<l,

where M and ε0 are positive constants, and constructed the asymptotic expansions
of fundamental systems of solutions of (1.1) in several subregions of DM The
above equation is one of the generalized form of the Orr-Sommerfeld equation
which appears in the analysis of the stability problems of viscous fluid, and by
this connection we call the equation (1.1) Orr-Sommerfeld type equations.

To understand the asymptotic nature of a solution in the whole region DM,
we have to obtain the linear relation between two fundamental systems defined
in different subregions of DM> and this is the purpose of this paper.

We assume throughout this paper the following conditions.
(i) The functions pt(x, e) have the asymptotic expansions in power series of

ε with polynomial coefficients :

(1-2) Pi(x,*)=f,pMe", (i=l,2,3)
v=0

uniformly in \x\<M.
ii) All of the turning points are simple, that is, the order of zero of the

polynomial pBO(x) are one, and are contained in DM

We call the following equation the reduced equation of (1.1) :

(1.3) Λ . W - - + Λ . W - - +

This is obtained from (1.1) by letting ε zero.
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234 TOSHIHIKO NISHIMOTO

In the section 2, we summarlize the results of the previous paper [3] and
especially introduce the notion of the regions of admissibility, which are subre-
gions of DM containing no turning point in their interiors. For each region of
admissibility, the asymptotic expansion of a fundamental system is constructed
and characterized. In the section 3, we construct a fundamental system of
solutions in the direct neighborhood of a turning point, the so-called inner solu-
tions. In the last section, the connection matrices between two fundamental
systems are considered. There exist five types of the connection and leading
terms of their connection matrices are calculated.

Acknowledgements: The author wishes to express his heartiest thanks to
Professor W. Wasow for his valuable advice and encouragement in the course
of preparing this paper.

§ 2. Solutions in a region containing no turning point.

As in the previous paper [3], the differential equation (1.1) is equivalent to
the vector equation of the form :

(2.1)

where

Y=
y2

J>4 ,

y

y'

P(x, e)=

0 0 '

o

o

, Pι(x, ε) p*(x, ε) ps(x, ε) 0

The regions of admissibility are conveniently introduced by using the notions
of the canonical regions. The notion of the canonical regions was firstly intro-
duced by Evgrafov and Fedoryuk [1] when they established the existence theorem
of the W-K-B approximation of the second order ordinary differential equations.

In the complex z-plane, we plot the turning points which we denote by alf

QZ, ••• , tfm From each turning point ak, we describe the Stokes curves:

Reζ(ak, *)= dx=Q .

Then the c-plane is divided by these Stokes curves into a finite number of
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simply connected unbounded regions which are called Stokes regions by Wasow
[5]. The canonical region is a union of an appropriate number of adjacent
Stokes regions, which is bounded by the Stokes curves, and contains no turning
point in its interior. The configuration of Stokes curves in the complex t-plane
and the family of canonical regions are all determined by p8Q(x\ Various pro-
perties of the canonical regions or examples are given in [1] and [5].

Let a be one of the turning point. Since the turning point is simple, three
Stokes curves start from a and tend to infinity or another turning point. Let S
be one of these Stokes curves, then there exist at least one canonical regions
C[D] such that the turning point a is on the boundary of C[£)] and the Stokes
curve S is going into the interior of C[D].

Now the region of admissibility with respect to {α, S} is the region DM[X,
a, f } which is defined in [3], section 4. We denote this region simply by Z)̂ [S, α]
in this paper. This region is, roughly speaking, obtained by the following
manner (as an example, see Fig. 1).

(i) Let DM[_C^DMΓ\C^D-].
(2) We delete from DM[C~] the neighborhood of a : the domain of influence

Na,

Na={x: \x-a\^Nε2/s, 0<ε^ε0} (N, constant) .

(3) If there exist another turning points on the boundary of C[D], their
small neighborhoods of the form {x : \x—a\^ρ, p const.} are deleted.

Fig. 1.

(4) Lastly, certain neighborhoods of the Stokes curves that bound the ca-
nonical region C[D] are deleted.

By this construction of the region of admissibility, we proved the following
existence Theorem ([3], Theorem 5.2).

THEOREM 2.1. There exists a fundamental system of solutions Y(x, ε) of the
equation (2.1) in the region DMLS, a] whose asymptotic expansion has a form
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Y(X,

1

0

0(ε)

0

1

Pto(x)

0(e)

ι 1 \
ε2 ε2

1 1

1 1
Λ / 2 A / 2

V 2 V 2

/ Γ

, 0

0 ϊ

, a, ε) ,

Here 2 by 2 matrix UQ(x, a) is a fundamental system of solutions of the reduced
equation (1.3) and VQ(x, a, ε) is defined by

(2.3) V0(x, a, e)=r(α)ί»o(*)-T

X

ίβlto -M: r fΛ: ,0

where r(ά) is some constant, and b is such that

To calculate the connection matrix between two fundamental systems of
solutions defined in different regions of admissibility, we have to characterize
more precisely the matrices U0(x, a) and V0(x, a, ε).

(1) U0(x, a) consists of two linearly independent solutions of (1.3) which
have convergent expressions in a neighborhood of a of the form

(2.4)

where dt and eτ are constants.
Here we assume that λ is not an integer in spite of the fact that for Orr-

Sommerfeld equation λ becomes zero and for its adjoint equation λ becomes two.
(2) For V0(x, a, ε), the constant r(a) is determined so that at x=a,

Kα -dx=(x-ay/2{l+0(x-ά)}.

Such a constant r(ά) can be obtained as follows. Let the rational function
p2o(x)/2pBo(x) be of the form

-=9(*)+ Σ
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where Λτ are constants and q(x) is a polynomials. Here we suppose that a=
and Λ1=λ/2. Then r(a) is such that

(«)= {exp -ay

(3) The branch of the ^function ξ (a, x)= \ Vp30(x) dx is determined in
Jα

DM[_S, a] by the condition

dx>Q on S.

We do not specify the branches of other multivalued functions appeared in
f/oU, α) or V0(x, α, ε), but are determined appropriately. We denote by
Y{S, α, C[D]} fundamental systems of solutions thus defined to emphasize that
it is characterized by the turning point α, Stokes curve S and the canonical
region

§ 3. Solutions in the neighborhood of a turning point.

For each canonical region, there corresponds the region of admissibility where
we constructed the asymptotic expansion of the fundamental system of solutions
of (2.1). Now in this section, we obtain asymptotic solutions of (2.1) in the direct
neighborhood of a turning point.

Let a be one of the turning points. By the stretching and shearing trans-
formations

(3.1)

the equation (2.1) becomes

(3.2)

where

A(s, e)=

β(ε)-diag{ε4

dw

0

0

0

:, ε)ε

, — ΛV^ fc>

1

0

0

2/3 p fχ £\

x=sε2/*+a

0 1

0

1

0 J

If we rewrite the functions pi(x, ε) in prower series of ε with coefficients of
polynomials of (x—ά) and put x— a—sε2/3, then the matrix A(s, ε) can be expanded
in power series of ε1/3 with polynomial coefficients of s. We construct the solu-
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tions of (3.2) in the form

(3.3)

TOSHIHIKO NISHIMOTO

W(s, ε)=

Then each Wt(s) must satisfy

/O Λ\ d^V ° Λ(3.4) ds Ac

ΓMY dWl Ί (~\W I '\O,rt) . SΊ.Q\oJ VV l ~ | •*
ds

with

>l»(s)-

^4ι(s)=

0 1 0

0 0 1

0 0 0

,0 pM p30'

' 0 0

0 0

0 0

Pίtffl) Pϊn'(β)s

etc.,

o
0

0

0

0

0

0

The differential system (3.4) is equivalent to the fourth order differential
equation.

/ Q £ - \ I* M/ \ . t / \ d W , . / ^ CLW

If we put

then (3.5) becomes

(3.6)

z—t

dz4 dz2

dw

~dz
}=0.

The differential equation (3.6) can be solved easily by the Laplace integral.
Let us define Wj(z) by

(3.7) Wι(Z) = -

0 = 1,2, ...,6)
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Where the contour C3 are as in the Fig. 2. By the same analyses as for the
well known Airy function, we can calculate their convergent expressions in the
neighborhood of z=Q as well as the asymptotic expansions for large absolute
values of z.

Fig. 2.

The asymptotic properties of w3(z) are as follows (for details, see Nishimoto
[4]):

Wl(z)——-

e~λrΛ JL~ J_
0 /— ̂ ^ "2Vττ

, | a rgz |<τr ,

2 j_] r __ L 1 TT 7π
~

Γ 2 j_] r __ L 1 TT
expj-— z z \\l+Q(z~ 2 ) k -̂

I 3 J I J o

2 _
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The sets of functions {1, wβ(z\ w*(z), wM»K {1, w6(z), w2(z), w*(z)} and
{1, w4(z), Wι(z\ w2(z)} are fundamental systems of solutions of (3.6).

We construct WP(s) from {1, wύ(z), wt(z), w^z)} by

0 wβ' WB' wi

0 WQ W% Wι '

and analogously Wf\ Wf from {1, w5(z), w2(z), WQ(Z)}, {1, w4(z), wλ(z}, w2(z)}
respectively. Clearly Wtf\s) (z=l, 2, 3) are fundamental systems of differential
system (3.4). Let Πlf Π2 and 773 be connection matrices defined by

(3.8)

then we have

(3.9)

' 1

0

0

0

Ί

0

0

,0

0

1

0

l-ω^

0

1

0

l-ω-3λ

1

0

0

1

0

0

0

1

0

ω3*

-1 .

0 '

1

j^

-a)-32 ,

Ί 0

0 ω~3λ

0 0

0 l-ω-3*

0 0 x

0 1

0 -1

1 -1,

Once the global solutions of the homogeneous equation (3.4) are obtained as
above, the nonhomogeneous equation (3.4)7 can be globally analyzed, and, in
particular, we can obtain the growth order of solutions as s tends to infinity.
By using these results, we can construct, as for more general equation in Nishi-
moto [2], the inner solutions in a certain region of s-plane, which overlaps in
the t-plane with a region of admissibility DMLS, a] for all sufficiently small e.
We can prove the following theorem as in [2].

THEOREM 3.1. Let Σ™ (ϊ=l, 2, 3) be the sectors defined by
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Then there exist fundamental systems of solutions W^(s, ε) of the differential
system (3.2) such that W^(s, ε) have the asymptotic expansions in the regions

\ a\ depending on ε (Fig. 3) :

>, α]={s: Is l^SoHs: s0^ |

(δ, positive constant),

such that

, W$>{E+0(ε)} for \s\^s0,
(3.10) W«\s, e)={

1 '1'8)} for s0^|

Fig. 3. Z?[ΣC<), α]

The region D[Σ^, a] are neighborhood of x=a in the t-plane which shrink
to a as ε tends to zero, but overlap with some DMLs, α] We denote the solu-
tion Y(x, e)=β(e)TΓci)(s, ε) of (2.1) by Y{Σ«\ a}.

§ 4. Connection formulas

In this section, we calculate the leading terms of connection matrices between
two fundamental systems defined in the section 2 and 3. According to Evgrafov
and Fedoryuk [1], it is sufficient if we can obtain the following four types of
connection matrices to know asymptotic behavior of Y{S, a, C[Z)]} in the region
DM except neighborhoods of turning points :

(1) Y {5, α2, CM} - FES, al9

(2) Y{S2, a2, CLD1} = Y{S19 al9
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where ξ(alf x) and ξ(az, x) have the same branch in the canonical region C[D],

(3) Y{S, a, C<«>[ίr]} = y{S, a,

(4) F{S2, α/C«>[β]} = r{S1, α,

(lateral connection matrix).
We add to these the central connection matrix in order to know asymptotic

expansions at turning points

(5) Y{S, a, \ a} A for some i.

These connection matrices do not depend on x but may depend on ε. The
lateral connection matrices are determined after the calculation of the central
connection matrices.

Let the 2 by 2 matrix C(alf α2) be the connection matrix between two funda-
mental systems of solutions of the reduced equation (1.3) defined by (2.4) at
regular singular points aλ and a2. And we introduce the quantity η(a, x, ε) by

r*rVjί>3oW , ίsiW
2, *, e)=l \ ^~^~/r=Γ'J α l ε 2vp3o(x

Then the calculations of the connection matrices Ωlf Ω2 and Ω3 are straight
forward by using asymptotic expressions of fundamental systems.

(1) Connection of type 1 (for an example, see Fig. 4):

(4.1) γ{s, az,
Here both of the regions of admissibility DM[S, aj and DM[_S, α2] are almost
the same, but different a little bit in the neighborhoods of aλ and α2 (Fig. 4).

Fig. 4. Real curve DM[_S, aa], dotted curve DM\_S~jLz~]
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Now we can assume that there exist positive constants σ - and σ+ such that

1, x)<σ+

for all x in DMLS, aJr^DMLS, <22], and let σ be min {a., σ+}. From the defini-
tion of Y{S, a, C[Z)]}, the branches of ξ(alf x) and ξ(a2, x) differ in sign. Then
if we change the branch of ξ(a2, x\ the third column and the fourth column of
Y{S, a2, C[jD]} must be exchanged, or it must be rewritten as

Y{S, a2, C[_D~]}Γ with Γ=

ri o o 01
0 1 0 0

0 0 0 1

0 0 1 OJ

, fli,

V*(x, a,Γ 0

0 V0(x, αi,

C(fl!, α2)(£2+0(ε))

V0(x, fli, ε)~1Uo(x, fl2)

If the branches of other multivalued functions in both fundamental systems are
taken identical, we have

,U, fl2) 0

0 VΌU, 02, e)

r, α2, e)O(e)

)F0(^ fl8, ε)

-, r
CE+0(ε))

-1 J L

V0(x, aίf

where E is the 4 by 4 unit matrix and E2 is the 2 by 2 unit matrix, and more
over

V0(x, alf

X
exp C-gy

O(ε) exp

Ό(x, az, έ)=r(al) V(α2)

0(ε)exp {— η(

ΐ, ε)} exp [^(G!, <22,

, ε)}

In this case we have η(alf x, ε)=η(a2, x, ε) since the branches of ξ(alf x) and
ξ(a2, x) were made identical. Since Ω1 does not depend on x, we can take as x
in the above expressions an appropriate point of the intersection DM[_S, βJπ
DM[_S, α2] Thus we have established

(4.2)

where

02[ε exp(—y

Λίflj, 02, ε)
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Γ / 2σ1 ε expίθ

{exp [7(fll, flί,

{exp [-7(fll, α2,

θ β

Here and hereafter 02[g (ε)] means 2 by 2 matrix whose entries are of the order
g(ε} as ε tends to zero.

(2) Connection of type 2 (Fig. 5):

(4.3) Y{S2, a*,

Here the branches ξ(alf x) and ξ(a2, x) are the same (Fig. 5). Let σ be the
positive constant defined by

σ— min

where σ+ and σ_ are such that

for all x in Z)M[Sι,

Fig. 5.

Then we have from the same calculation as we did for Ωίt

C(al9 α2)CE2+(9(ε)) 0J ε exp (— —

(4.4)

exp —
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where

Γ2(aίf az, e)=r(α1)"1r(α2)

{exp [— η(dι, az, ε)]}(l+0(e)), 0\ε expf —

245

X

{exp lη(alf fl8,

(3) Connection of type 3 (Fig. 6)

(4.5) Y{S, a, C(2)DD]} = Y{S, a,

Fig. 6-1. DMW[S9 a] Fig. 6-2. DM™\_S, a]

We define positive constant σ as before

σ=min(σ+, σ_)

where σ+ and σ_ are constants such that

— σ.<Reξ(a, x)<σ+

for all x in JV^DS, α]π^(2)[5, a]. Then we have

(4.6)

ε] 02[ε exp(

02[eexp(—f)] Γ,(ε)

where
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Λ(e)=
=•<—)]

θ[eexp(—y^

(4) Central connection :

(4.7) F{S,, α, C«> (i=l, 2, 3),

where the Stokes curves Si, S2 and 53 start from a in the direction arg z=
arg/>so'(α)1/8(*— α)=τr/3, TT and — ττ/3 respectively (Fig. 7). Since the two regions
#Sr [St, β] and D[J?cί), α] are overlapped for all sufficiently small ε, we can
apply the matching method to obtain Λ"\ι=l, 2, 3) (Fig. 8).

Nέ

Fig. 7.

Let us denote the entries of the first row of Y{Sι, α, C(1)[Z)]} by ya\ y^\
3/(3) and yu\ From the asymptotic expansions of Y{Slf α, C(1)[D]} defined in
the section 2, these functions have expressions in the neighborhood of x=a,

x

X
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On the other hand, from the Theorem 3.1, the entries of the first row of
yίJ?α), a} which we denote by j>(1), ;y(2), j>(3) and j?(4) have asymptotic expres-
sions for large absolute values of z

Zπi

where z—\ip^f(d)~]~is.

From the general theory, we know that Λ ( 1 ) is asymptotically diagonal.
Then putting x—a=ηε1/12 or $=ηε~1/12, which belongs to both regions D£Slt a]
and D[Σ^\ a], into the above expressions and comparing jy ( ΐ ) with jα), we have

where

Analogously we have

4 2 λ

(4- 8V /ία )—Hiaσ •!>—Γ P—ϊ-c^+Dr ω P-τ\rt OJΐ /A U.ldg |C 0 , 0 <> v _ / 2 2 ί ^ ^

v / 77_l_/ry ί >ι/8M /'i 9 Q^
/N \jZy~T"v>/^c y j , ^i — £/, O^

where
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C/ί+5)

^"

. _
C4°?=- V2ττ β^ao'fo)

We remark that the terms 0(ε1/8) in the above expressions comes from the terms
O[_(x— α)~3/2ε] in the expressions of y^\ but more delicate analyses may give us
as in [2] these terms are 0(ε1/3) in place of 0(ε1/8).

(5) Lateral connection at a simple turning point :

(4.9)

Y{Slf a, Cα)[β]} = F{S2, α,

2, α, C(2)[Z)]} - F {S3, a,

, α,

(ΐ=l, 2, 3),

Since we have from (4.7) and (3.10)

f α,

then

but this equation and (3.8) give us

Similarly we have

From the formulas (3.9) and (4.8), and since Y{St, a, Ccι)[£)]} have asymptotic
expansions in power series of ε, we have following formulas for the lateral
connection matrices:

0

-1

Ί

0

0

,0

0

1

0

e-J-ι/V.J»y

0

0

0

3 -1



(4.10) β<2)=

π
o
o
o

ri
o
o

[o
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0 0 0

e-*λθl Q

0 0

0 0 0

1 0 e*+1/2G

0 0 z>

iB 1 1

249

where 3 = V2π
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