CONFCRMAL MAPPING OF POLYGONAL DOMAIXNS.

By Yiisaku KOMATU

1. Introduction. A function which
maps 8 circular disc or a half=-plane con-
formally onto a rectilinesr polygon 1is,
as 1s well known, given by Schwarz-Chri-
stoffel formula., Let w=F(z) be such a
function, and let the interior angle at
vertex f(a,) (pm=1, -, »m ) of the
image-polygon, having m vertices, be
denoted by «, 7 , the formula may be
written in the form:

(1.1) f(z)..C/ 7]_(0. —z)f° aLz+C

where C and (1 are both constants de-
pending only on position and magnitude of
the image-polygon.

The present author (1) has previously
shown that this formula can be generalized
to the case of analogous mapping of doub-
ly-connected domains. We may ,adopt, as a
standard doubly-connected baslc domain,
an annular domain ¢ < izi< { , -lgg,
being a uniquely determined conformal in~
variant, 1.6, the so-called modulus of
given polygonal ring domaln. Let the
boundary components corresponding to cir-
cumferences |Z|= 1 and jzl= be recti-~
linear polygons with o and /n, vertices
respectively. Let further T and B,
denote the interior angles (dith respect
to each boundary polygon ltself) at ver-
tices $(e“%)and f(9e*¥) respectively.
The mapping function w=f@&) is then
expressed in the form:

F=_C f zz““l{ /jjw( ngz+9’# )"“;1
el ~{ /
+,.ll:(5 (‘;Igzw{g,)ﬁ" }aLZ +C,

where the sigma-functions are those of
Weierstrass with primitive periods pw,=21
and 24 "”2‘1311 and the constant c* 1s
glven 5

(1.2)

(1.3) c*=

/
the constants C ana C having sinilar
meanings as before., It can, moreover,
be shown that the Schwarz-lhristoffel
formula (1.1), for basic domain jz| <1,
may be regerded as being a limiting case
of (1.2) when 33— 0 -

On the other hand, any function W= f)
which maps a circular disc or a half-plane
conformally onto the interior of a cir-
cular polygonal domaln, i.e. the interior
of a polygon having circular arcs as >t
sides, is linear-polymorphic. A differ-
entlal equation of the third order of tre
form:

R (=)

holds good always for such a function
F(x). The left member of this equation
denotes, as usual, Schwarzian derivative
of f(%) with respect te Z, 1.8,

dfm 1
{Feo, z}_‘w jZZ) z ¢z1goc£)

_ 3 f(z))

Fy 2\f)/,
and R (z) is a rational function which
possesses, as poles of order at most
two, the points @, (= 141,---5, m) cor-
responding to the’vertices of image-
polygon. More precisely, 1f we denote
by ol T the interior angle at f(a.)
of the image=-polygon, we have, at the
pole in questicn, the relation:

(1.4) {f(z,)) z} =

. { —or
(1.5) le:vz;(z—-a,)&(z) ____z_-f."_

The above mentioned results (l.1) and
(1.4) are usually derived by making use
of gnalytic continuability of mapring
function, tkrat Is, by performing succe=-
ssive inversions with respect to boundary
arcs. Bub the author of this paper(#)
previously pointed out that schwarz-
Christoffel formula (l.l) can be deduced
immediately from FPolsson integral re-
presentation of functions analytic in a
circular disce. Hel(!) also has derived
the forrula (1.2) by mesns of villat’s
integral representation of functions
analytic in an annular domaine. It will,
however, be shown that the formula (1.2)
can also be derived by the classical
method without particular difficulty.

Ne can,; on the otﬁer hand, consicer
the problem of seneralization of (1.4)
corresponding to that of (l.1) to (l.2).



In the present preliminary Note, we shall
mention, from a more general standpoint,
general relatlons corresponding to (1l:1)
and (l.4) in the case of multiply-con=-
nected domains, and then remark that, by
specifying them to doubly-connected case,
we can obtaln the expression (1l.2) again

ans the result generalizing (l.4) tooe.

Complete paper involving details and
proofs will be published elsewhere.

2, Mapping onto circular polygonal
domaing. . consider, in W =plane, an -l -
ply connected domaln A whose boundar
consists of » circular polygons [

=1, ---, am ), each [T Dbein
formed by m, circular arcs®, We can now
take several types of domains as a
stanfard 2 -ply connected basic domain.
But we shall first take a domain D
bounded by <2 full clrcles, This domain
D 1is uniquely determined for the given
domain A , except possible linear
transformations(?), Such a domain is
defined in general by 37 real para-
meters denoting the coordinates of cen-
ters and the radii of 7 boundary cir-
cles. But, since a linear transforma-
tion depends on 6 real parameters, es=~
sentially 3m. —6 real conformal invari-
ants belong to an 7 =ply connected domain
(with non-degenerating boundary compo-
nents) as moduli, provided m->2, In
an exceptional case m.= 2 , there
exists just one invariant, and In case
m =1 there remains freedom corrsspond-
ing 0 3 real parameters,

New, let the boundary circle of D
corresponding to I; be

(201) C}Z

and the mapping function be, as before,
w = F(z). Let further the points
corresponding to vertices of [; be
Qi (=1, -+, ™., ) and the irterior
afgle of [; at fts vertex F(,u) with
respect to® A Dbe ol T o The func-
tion #(%) remains, of course, regular
even on each interior part of C; divided
by aJ e .if we denote the inversion

(Z——cjl-,:t} (}21’..., m,)’

v Z,; with respsct to C} by
* g
L= A = C. —_—
T = A0 = ¢ T
then A,(Z) Dbeing all linear in z s

the composed functions

(2.2) KJA(Z)E)\}.(,\,‘(z,)) G, %=1, n)

are alsoc linear with reszaect to % .,

The transformation % 2 (Z2) 1s com=
posed of successive inversions with re-
spect first to and next to C;
Since operation of inversion ls 5.nv911!.u-
tory, l.e, the ldentical relation A; (z)
= x}(z) holds, we have E#(fz,)z 7z *?and

-1 -1, -1
%ﬂ () = g (&, () =2, (A (2)= Kﬂj(z).

The aggregate of all linear transforma-
tions corresponding to Inversions repeated
even times with respect to boundary cir-
cles (2,1) (and their successive trans-
forms) forms a group generated thus
by (%) linear transfofmations x | lji(")
(3 < R) e

After these preparatory considera=-
tions, we shall now state a result gene-
ralizing (1.4):

Theorem 1., Let w=F(%) denote a
mapping function from [ onto A .
Then
(243) {F, 2} dz*
1s an automorphic differential belonging
to the group s whose fundamental
domain may be domposed of basic domain D
and 1ts Inverse with respect to any one
of boundary circles of % (speaking more
exactly, the fundamental domain must be
the open kernel of closure of the above
mentloned one). The function {fx), 2} ,
being meromorphic in D= D +20 . Cyp s
1s regular everywhere except pdssibly at
a,‘:-;w (,«L=1}...,mw '.;1,.,.),,,,) »
where a pole of order at most two appears
as shows the following relation:

. - 2 1— o
(2.4) Ji%%,‘(z—@jﬂ){f(z),z}~-i—éﬁ'—-

In a particular case, m.== | , that
is, when is simply-connectsd, de=
generates to a trivial group compoSed of
a unique element, the identical transfor-
mation. In virtue of this degeneration,
the automorphic property of (2,3) vani-
shes out, and the Schwarzian derivative
{#£Cx>, z} Tbecomes an analytic func=-
tion possessing Ay (= Qg Hpo=1,
.-+, m ) as 1ts poles of orc'[;r at most two,
and hence bYecomes a rational function.

If the image~domaln /\ is particularly
bousded by rectilinear polygons, mm}:e
concrete properties of the mappingixunc-
tion F£(z) can be derived. In fact, we
have the following theorem:



Theorem 2. If, in the theorem 1, the
boundary components of are all
poctilinear polysons, then the differen-

tisl expression
- _ (Z) Ay Z
(2.5) go(f(Z) JC(Z) ctzd.l )oﬂ

possesses an automorphic property, cL1
and d, both denoting differentiation
operators., The function F"(z)/f7%z)
reromorphic in D is regular except at
the points aa which are poles of order
one with residue %W'_ 1 .

In the particular case m= 1 , ’@F
consists of the identical transformation
alone, The automorphic ppopeesy of (2.5)
thus vanishes out, and +%%z)/ £ (%)
becomes an analytic function in the en-
tire plane possessing a (=a3) (p=1,---,m)
as poles of order one, Purghermore,
since f£(z) remains evidently regular
at % = oo (= a/)““) » we have

Floy _ 4t
- b
Fz) =i Z-—-CL,L
which, by integration, leads us to the
Schwarz-Christoffel formula (1l.1).

3. Specialization to doubly=-connected
domains, In case of doubly-connected

domains, we can take the annular domaln
D ¢ <Izi<{ as a standard basic
domain of modulus —l¢ 4, .« Two general
theorems of the last section then take
more clear and concrete forms. In the
first place, by specializing theorem 1,
we obtain the following result:

Theorem 3, Any function W= f(z),
mapping the annular domain confor=-
mally onto a ring domain bounded by
two circular polygons, satisfiles the
differential equation of the third oraer:

(3.1) {f(z)) Z} —_ E(;’{gz) ,

E (7)) being an elliptic function with
primitive periods 2 and —241

(or bein5 a constant). If we now denote
bye, n(#-i -+, ) and e,‘%

(v =1, ~_ ) the boundary
points of 1) correspoqding to vertices of
boundary polygons [ and [; of A
respectively, and further by «,T and«
the interior angles of [ and ' [; at
vertices f (%) and F (ge¥%)
respectively, then the function EC(QZ)
possesses at = — &, and at
=-4,+ilgq 1ts primitive poles of order at
most two, and further

An (ZegTEE) =iz,

302 f~
©2) lim (Zay-idgg E(7) =
- +ilgg

As was already stated in the seciion
L, if the boundary of doubly-connected
domalin consists of two rectilinear
pelygons, the explicit integral repre-
sentation (1l.2) is valld. This resfit
hasg previously been obtained by the fpre-
sent author by means of Villat’s fobrmula,
but the general theorem £ may also be
specified in this case to derive the same
result which is stated as follows:

Theorem 4. Any function which maps
the annular domain < izi< { con=
formally onto a ring domaln bounded by
rectilinear polygons, 1ls expressed by
formula (1.2), the constant ¢* belng
given by (1.3).

4. Another basic domaing. A4s a
standard multiply-connected basic domain,

we can take any one of varlous possidle
types other than that used in the sec-
tion 2, For instance, as 1s often used,
parallel slit domaln obtained from entire
plane by cutting along parallel segments,
circuler slit domain or radlal slit do=-
main which is obtained from either entire
plane, circular disc or annular ring by
cutting a&ong circular arcs or radial
segments (%),  For such a baslc domain; a
group with analogous fundamental
domain tan also be constructed in quite
similar manner as in theorems 1 and 2.,
These theorems themselves remain to hold
in almost the same form. e have only

to carry out a few modifications by con-
sldering that the regularity of boundary
curves 1s lost at end polnts of the slits.

Theorem 5, In any case of such a
basic domain of above-montioned type, the
conclusion of thecrem 1 remains to hold
with followling modificaticns. If an end
point of a slit coincides with a point
, the relation (2.4) is replaced by

}F’ ]
oL
(4.1) hmw(z 4 (e, 1= 250,
and if an end point, say s of a slit
coincides with none of a, » the 5che-

warzian derivative possesses 1t as g pole

of the second order and satisfies the rele-
tion :

(4.2) hn1 (2 - p) {02} = i}-

Theorem ¢, If /A 1is bounded merely
by rectilinear polygons, the conclusion
of theorem 2 remains to be true, in any
case of the above-mentioned basic cdomains,
with following modifilcationse. If an end
point of a slit coincides with 4? 9
the residue of ” (=7 at this
point becomes £ (z>//jf(z)



o ol -2
ij)f,(;")- = _4.-3-&:9:‘_ ,
and if an end point 4 of a slit coin;
cides with none of & . , then Fi=/F(2)
has the point $ as a pcle also of the
first order with residue —1/2 ; that is,

(4.3) Iim (z-
y X

. flo 1
(4.4) 113;; (2= P Fy="%

In conclusion, we remarl that a circu-
lar disc with 7 sheets may also be taken
as 8 standard type of 7 -ply connected
domains($), The group considered in
theorem 1 then consists ‘of a unique trans-~
formation Z|%Z , all inversions 2 ]Aj(z)
referring to a cormon clrcumference,
Hence, the group degenerates to a trivial
one, while the mapping function becomes
m-valued one on the disc. In this case
a corresponding theorem may be stated as
follows:

Theorem 7. Let W =f(Z) be a funce
tion which maps a circular disc D with
m sheets covering a circle D° on Z-
plane conformally onto an 71-ply con-
nected circular polygonal domain A .
Then, each branch f (z) (=14, ---, m)
of F(z) satisfies?a differential equa=
tion of the third order of the form:

{0, 2} =M =,

where M, (xz) 1s a one-valued meromor-
phic fundtion. Denoting by [; a bound-
ary polygon of /| mapped from’ boundary
circle C, of D gy vz’-—-—f(z), 1.2.11)3{

T = and ; a point lying
g;‘zf Cﬁagﬁ)carrespogding}/%’o a vertex of

ﬂ the function M, (2) possesses at

ac; a pole of orderat most two and
satisfies the relation:

(4,5)

a

4 6 b 2 _ 1 — ol
(4.6) ZI_J;T (“' a‘;,&} MJ(Z) "2‘1‘&/
where o denotes, as before, the

interior }&gle at ;F-(a.a ) with respect

to A o Let furtder ¥ f, be a branch
point of D of order T, —1 , then,

for all the branches £ (z) relating to
this branch point, the function M, (=)
possesses there a pole of order at‘most
two and satisfies the relation

2z 1
(407) 1 — > N = _'"_——I_—‘
11—7123 (2=t Ajl; = 2Ty

Excepting those points, M (%) 1is
regular everywhere, 4

10

Thecrem 8, 1If, in the previous theorem,
/\ 1is brunded particularly by rectilinear
polygons, then, we have, for each branch
of the mapping function, an explicit exw
pression of the forms

x z ya
{4.8) 3?(1.)1 Cf (%XFINJ(ZMLZ)O& +C/,

where /V.(z) is a one-valued meromorphic
functions Jorresponding to {(4.6) and
(4,7), we have, et its pole @&,. and a
branch point ¥, , the relatidns

(4.9) lm (z-a, - o, 1
z-»a.w( ﬁ,}f‘>N}(z>’ dal“ ”
(4.10) Iiz? (z— LN, () = L‘TT“
Z-> x
respectivel§° N; (%) 1s, except those

points, regular everywhere,

™)
(1)
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