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1. Introduction

The set of surfaces with parallel mean curvature vector in Riemannian
manifold, which includes all minimal surfaces in the manifold, has been studied
by many geometers. Especially, Chen [1] and Yau [7] studied them in the case

that the ambient space is an rc-dimensional real space form Mn(c) of constant

sectional curvature c. They proved that if x:M-+Mn(c) is an isometric
immersion with parallel mean curvature vector of a two-dimensional Riemannian

manifold M into Mn(c), then x(M) is one of the following surfaces: (1) a

minimal surface in Mn(c}} (2) a minimal surface of a small hypersphere of Mn(c),

and (3) a surface with constant mean curvature in a 3-sphere of Mn(c}. This

shows that the study of surfaces in Mn(c} with parallel mean curvature vector
is reduced to that of minimal surfaces except the case (3).

On the other hand, concerning the surfaces with parallel mean curvature
vector in a complex space form, we know several minimal surfaces in the
n-dimensional complex projective space Pn(C) with the Fubini-Study metric of
constant holomorphic sectional curvature 4^. Moreover, many results character-
izing them have been obtained (cf. [2], [3], [4], [5], [6]). However, when we
concern with non-minimal surfaces in Pn(C) with parallel mean curvature
vector, not many such examples are known so far, even for n=2.

In Sections 1 and 2 of the previous paper [5], we developed a local theory
of surfaces in Pn(C} by using the Kaehler function. By applying it, in this
paper we shall study non-minimal immersions x:M-»Pz(C) with parallel mean
curvature vector. In fact, in Section 2 we obtain basic formulas for such
surfaces in a 2-dimensional Kaehler manifold of constant holomorphic sectional
curvature 4ρ. Then, in Sections 3 and 4, we show a method of the local
construction of such immersions. Finally, in Section 5 we determine isometric
immersions with parallel mean curvature vector field of a Riemannian 2-manifold
with constant Gaussian curvature into P\C}. Theorem 5.2 generalizes a
theorem by Ludden, Okumura and Yano [4].
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2. The fundamental theorem of surfaces in a Kaehler manifold

Let X be a complex 2-dimensional Kaehler manifold of constant holomorphic
sectional curvature 4ρ. We consider some basic properties of immersed surfaces
in X. Let {ωa} be a local field of unitary coframes on X, so that the Kaehler
metric is represented by ^ωaωa. Here and in what follows, we will agree on
the following range of indices: l^a, β, γ<2. We denote by ωaβ the unitary
connection forms with respect to {ωa}. The structure equations of X are
given by

^ 0 ,

(2.1) dωaβ— Σ ωaΐ/\ωrβ+Ωa

Let (M, ds2) be an oriented connected 2-dimensional Riemannian manifold.
The tangent bundles of M and X are denoted by TM and TX, respectively.
Let x : M-^X be an isometric immersion of M into X. By means of the differ-
ential dx we may consider TM as a subbundle of the induced bundle x*TX
over M, so that we get the orthogonal decomposition x*TX=TM@NM, where
NM denotes the normal bundle of x.

Let {elf e2} be an oriented orthonormal local frame on M. Let < , > denote
the Riemannian metric of X induced by the Kaehler metric Σωαωα and / the
complex structure of X. The Kaehler function cos(α) on M is defined by

which is independent of the choice of oriented orthonormal frames on M. The
immersion is said to be holomorphic if cos(α)=l on M, anti-holomorphic if
cos(a)=— 1 on M, and totally real if cos(α)— 0 on M.

Recall that in Sections 1 and 2 of [5], it was assumed that x is neither
holomorphic nor anti-holomorphic at a neighbourhood of any point of M. In
this paper, we also assume the same conditions on x, and use the some formulas
obtained in Sections 1 and 2 of [5]. Let H be the mean curvature vector field
of xt which is defined by

where Λ^/s are the components of the second fundamental form of x (cf.
Section 1 [5]), and e-l and eχ are the adapted frames along x. The immersion
x is called minimal if jGΓ=0 on M. Let DL denote the connection of the normal
bundle NM. If
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on M, then H is called the parallel mean curvature vector field.
We assume that jfiΓ^O, D±H=0 on M, and the Kaehler function is cos(α).

We can construct a unique system of global orthonormal vector fields {elf e2, e3, £4}
along M such that §ι and e2 are tangent to M by the following : First we put
βs=—H/\\H\\, then the normal vector field £4 of NM is uniquely determined by
choosing it to be compatible with the fixed orientations of M and X. The
system of vectors {e3, e*, Jez, Je4} is linearly independent, because x is neither
holomorphic nor anti-holomorphic. We have the identity

which is easily proved by using the fact that cos(α) is independent of the
choice of the oriented orthonormal frame on M. By using the Schmidt ortho-
normalization, we get a new frame {elf e2} on M, which is explicitly represented
as follows

8— cosec(α)/£4 ,

It is easy to see that {e1} e2, $3, e±} is an adapted frame on M in X, that is, el

and e2 are sections on TM and ez and e4 are sections on NM. Moreover, we
define vector fields el and e3 as follows:

and put
ez=Jel and e4=^Jes.

Then {^, ^2, βs, #4} is a /-canonical frame along x (cf. Section 1 [5]). We
extend {eA} and \eA} to a neighbourhood of M in JSΓ, where A, B and C run
from 1 through 4.

Let {ΘA\ and {#4} be the dual coframes of {eA\ and {eA} respectively. Let
ΘAB and ΘAB be the Riemannian connection forms with respect to the canonical
1-forms {9 A} and {ΘA}, respectively and put

. . ί =

Then we have the following relations (cf. [5]):

(2.2) ^i2
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We denote the restriction of {ΘA} to M by the same letters and put

By the assumptions, ez is a parallel vector field along M, hence so is £4. This
implies

(2.3) 034=0.

Then it is proved that there exist a positive number b, complex-valued smooth
functions a and c defined locally on M, which satisfy the followings (cf. (2.1)
and (2.2) in [5]) :

#12=ίcot(α){(fl — b)φ— (a— b}φ],

da

(2.4) (dα

The third and fourth formulas of (2.4) are the Codazzi equations of x.
Denoting by K the Gaussian curvature of M, the Gauss equation is written as

(2.5) K=6p cos2(α)-4( | a \ 2-b2) .

Let KN be the normal curvature of x defined by

By taking the exterior derivative of the second formula of (2.2) and using the
formula (2.1) in [5], we have

Since now the normal curvature vanishes, we get

(2.6)

Combining formulas (2.5) and (2.6), we get

(2.7) /iΓ
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For a neighbourhood U of a point of M, there exists an isothermal coordinate

z=u+iv such that ds*=λ*\dz\2,

w ere λ is a positive function defined on U, and we have

0—λdz.

Then the set of the first three formulas of (2.4) is rewritten as the following
system of differential equations:

•3—

(2.8)

~psin(2ά)\.
4 J

By using (2.8), we have that

(2.9) -̂ -̂ r— - Λ - if and only if a —a.
dzdz dzdz

Therefore a is a real-valued function defined locally on M. This implies that
λ, a and a are functions of single variable, and (2.8) is seen to be a system of
ordinary differential equations. Consequently, if M is a non-minimal surface
with parallel mean curvature in X, then there exists a positive number b and
real-valued smooth functions of single variable λ, a and a which are defined
locally on M and satisfy the system of ordinary differential equations (cf. 3.1).

Remark. The fourth formula of (2.4) is equivalent to the equation

(2.10) ^-=0.

In the next section, we shall consider a converse problem to the result
obtained above, that is, a local existence problem for non-minimal surface in
X with parallel mean curvature vector. To this end, we need the fundamental
theorem of surfaces theory in X. When X is a real space form, the funda-
mental theorem of submanifolds is well-known. On the other hand, for a
surface in a complex 2-dimensional Kaehler manifold of constant holomorphic
sectional curvature 4p, the following fundamental theorem is proved by
Eschenburg et al. [2], which is in essential use in this paper:

THEOREM 2.1 ([2J). Let (M, ds2) be a connected, simply connected 2-dimen-
sional Riemannian manifold. Given complex-valued l-forms ωl7 ω2, ωll9 ft>22 and
ύ>i2 defined on M satisfying the structure equations (2.1) and
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there exist an isometric immersion x : M—*X and a unitary frame {Eι, E2} along
x such that {ωίt o)2} is the unitary coframe of {Eίf E2} and α>n, ω22 and ωί2 are
the unitary connection forms with respect to [ωlf ω2] .

3. Local construction of surfaces in P2(C)

It was B. Y. Chen who constructed surfaces with constant mean curvature
in a 3-dimensional real space form (cf. [1], p. 121). In Theorem 3.11 of [2],
Eschenburg et al. proved a local existence theorem for minimal surface in
P2(C). In this section, we consider a method of the local construction of a
non-minimal surface with parallel mean curvature vector in a complex 2-dimen-
sional Kaehler manifold.

THEOREM 3.1. Let b and p be real numbers (&>0), and λ, a and a be real-
valued smooth functions of single variable u defined on an interval I, which satisfy
the following system of ordinary differential equations :

dλ

du

(3 1} £
d a [ 3 . 1

Let M be an open domain of (u, v)-plane contained in /X(—1, 1). Define

on M. Suppose that for any constants kλ ana k2, λ, a. and a satisfy

(3.2) l

Then we can construct an isometric immersion x : M—>X of M into a complex
2-dimensional Kaehler manifold X which satisfies the following :

(1) x has a non-zero parallel mean curvature vector field whose length is 2b,
(2) the Kaehler function of x is cos(α),
(3) the second fundamental form of x is explicitly written in terms of a, b,

λ and a.

Proof. Let (r, s, t) be the standard coordinate of R* and D a domain in Rz

such that r>0 and 0<s<π. We define a 723-valued function f(r, s, t) on D by
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-r2cot(s)(ί-/?)

r(t+b)

r {2 cot(s)(f- b)t+3p sin(2s)/4}

/(r, s, ί)=

/(r, s, ί) has continuous partial derivatives on D, so that it satisfies Lipschitz
condition on D. Hence, a solution of the system (3.1) exists and is unique under
preassigned initial conditions.

Let (λ, a, a) be a solution of (3.1) which satisfy (3.2) and we put

z—u-\-ιv and φ—λάz.

We define a complex-valued function c on M by

(3.3) c=Aeχp(-|.(M _/„))

where β is a complex constant. Then it is proved that λ2c is anti-holomorphic,
which is equivalent to (2.10) and \ c \ 2 satisfies (2.6). We define ωίf ω2, ωllf ω22

and o>i2 on M as follows :

OL\-

(3.4)

Note that these satisfy (2.1) because of (3.1). Therefore, by Theorem 2.1, we
have an isometric immersion x : M-^X which has a non-zero, parallel mean
curvature vector field and cos(α) the Kaehler function. The second fundamental
form of x is explicitly written in terms of α, b, λ and a by (2.2) of [5].

q. e.d.

4. Associated family of isometric immersion

It is well known that there exists a one-parameter family of isometric
surfaces in R3 with the same constant mean curvature. The following theorem
shows that an analogous property holds in the case that the ambiant space is a
2-dimensional complex space form X and that the mean curvature vector field
H of an immersed surface is parallel. Note that Eschenburg et al. [2] have
proved that there exists a one-parameter family of isometric minimal immersions
of a simply connected surface into P\C) with the same normal curvature and
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Kaehler function. Theorem 4.1 is an extension of Theorem B in [2] stated
above.

THEOREM 4.1. Let (Mt dsz) be a simply connected oriented 2-dimensional
Riemannian manifold, x : M-+X an isometric immersion with non-zero parallel
mean curvature vector field H and cos(α) the Kaehler function. Assume that the
immersion x is neither holomorphic nor anti-holomorphic. Then there exists
a one-parameter family of isometric immersions xt:M—>X, t^(—π,π), which
satisfies the following properties :

(1) X0=X,

(2) xt is isometric to x for each t,
(3) ||#t|| — HiΓII^O, where Ht denotes the mean curvature vector field of xt,
(4) DtHt—§, where Di is the normal connection of xt,
(5) cosOί)— cos(α),
(6) xt is not congruent to each other.

Proof. By the assumptions, we can use results in Section 2. The first
formula in (2.4) implies

This shows that the real valued function a is uniquely determined by the
Riemannian metric ds2, the mean curvature vector H and cos(α). By (2.6), | c | 2

is also uniquely determined by ds2, H and cos(α). We put

c = c e t

where τ is a real-valued function on M. Then (3.3) shows that τ is uniquely
determined by ds2, Hand cos(α), up to additive constants. Hence, if we put

ct=ceu for some te(— π, π),

then Ct also satisfies the fourth formula in (2.4). We put

and the other connection forms are defined similarly as in (3.4). Then ωίf ωz,
o)n} <*>22 and ω12 satisfy (2.1) for each t. Hence, by Theorem 2.1, for each t we
have an isometric immersion xt : M-*X for which the adapted frame

{WO, e2(t), ez(t}, e,(t)}
along xt satisfies

Ht=-2b8i(t), DiHt=0,

and cos(α) is the Kaehler function of xt for each t. q. e. d.

COROLLARY 4.2. Let xτ : M—>X (i=l, 2) be an isometric immersion with
non-zero, parallel mean curvature vector field Hτ and the Kaehler function cos(#t).
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Assume that xτ are neither holomorphic nor anti-holomorphic, and that xl is
isometric to x2. Then Xι is congruent to xz if and only if

cos(αO—cos(#2)> || fli || = Hft || and cl~c2.

5. Complete flat surface with parallel mean curvature vector

In this section we apply the results obtained in this paper for the case that
(Mt ds2) is a Riemannian manifold of constant Gaussian curvature. As a result,
we determine all isometric immersions of the (My ds2) into P2(C) with parallel
mean curvature vector field. We put ρ=l for simplicity.

Let M*\_K~\ denote an oriented connected 2-dimensional Riemannian mani-
fold of constant Gaussian curvature K and x: M2[K^-+P2(C) be an isometric
immersion whose mean curvature vector field H is parallel but non-vanishing.
Differentiating (2.5) and using ά~ay we have

(5.1) 2α~^Γ+3 cos(α) ̂ ^^H0'

Since the system (3.1) is valid for the immersion x, the formulas (5.1) and (3.1)
give

or

2a+b '

It follows from these formulas and the Gauss equation (2.5) that a is constant,
a—π/2 and hence K—0. Note that we have kι—Q in (3.2). In consequence, we
obtain the following.

PROPOSITION 5.1. Let M*\_K~] be an oriented 2-dimensional Riemannian
manifold of constant Gaussian curvature K and x: J/2[/f]-+P2(C) an isometric
immersion such that the mean curvature vector field is parallel and not zero.
Then x is totally real and K— 0.

Now we are going to determine isometric immersions with parallel mean
curvature vector field of a complete flat surface into P\C). Let R2 be the
Euclidean 2-ρlane with the standard flat metric ds2=du2-}-dv2. We put

φ=dz and z—u+iv.

Let x: R2—*P2(C) be an isometric immersion with non-zero parallel mean
curvature vector field. It follows from Proposition 5.1 that the x must be
totally real and a=π/2. By (2.4), we have a = -b. By (2.6) and (3.2), c is a
complex constant with
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|c | '=ft'+γ.

On account of Theorem 4.1, we may assume that c is real. Therefore we have

__ 1 -

(5.2)

where ft and c are real constants such that ft>0 and c~ Vft 2+l/2.
We can solve the system (5.2) in the same way as in Kenmotsu [3, p.p.

679-681] : Let λly i—ΰ, 1, 2, be the eigenvalues of the matrix A defined by

(5.3) Λ= 0

It is easy to see that, if necessary renumbering λl} λQ is a non-zero real number
which is not rational, λl is a complex number which is not real and λ2 is the
complex conjugate of λι. Put

G={(exp(λίz—λlz)δiJ) .z=u+iv, (u, v)^R2}.

Then x(R2) is an orbit of the abelian Lie subgroup G of the unitary group
£7(3). We remark that G is homeomorphic to the cylinder SlxRl.

Summarizing our results of this section, we obtain the following.

THEOREM 5.2. Let x:Rz-*P\C) be an isometric immersion with non-zero
parallel mean curvature vector field H. Then x(R2) is an orbit of the abelian
Lie subgroup G of £7(3) and G is algebraically determined by the constant b,
where 2ft is the length of H.

It should be remarked that when x is minimal and totally real, this theorem
was proved in [4].
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