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NEVANLINNA THEORY FOR MINIMAL SURFACES

OF PARABOLIC TYPE

HIROTAKA FUJIMOTO

§ 1. Introduction

Consider a minimal surface x=(xlt ••• , xm): M-+Rm in Rm. In the previous
papers [9], [10], [11] and [12], the author gave some value-distribution-theoretic
properties of the Gauss map of M in the case where M is complete (cf., [13]).
On the other hand, under some assumptions, E. F. Beckenbach and his colla-
borators showed that the map x itself has many properties which are similar
to the results in Nevanlinna theory for meromorphic functions on C in their
papers [4], [3], [2] and [6]. They developed their theory for 'meromorphic
minimal surfaces'. Roughly speaking, these are minimal surfaces in Rm with
at worst pole-like singularities which is conformally isomorphic with the complex
plane. The purpose of this paper is to extend some of their results to the case
where M is conformally isomorphic with a Riemann surface of parabolic type.
For brevity, we restrict ourselves to the case of regular minimal surfaces
though our arguments are also available for minimal surfaces with pole-like
singularities.

By definition, a Riemann surface M is of parabolic type if there is a proper
map r: Af-»[0, +00) of class C°° such that ddc\ogτ=Q and ddcτ^Q on M—MS

for some s>0, where Ms :— {αeM; τ(α)<s}. We define the hyperspherical
function by

m\r ; c, Af):=-( log , l . d°τ--\ log , * , dcτ, (<?€=J8W)
r jdMr

 & \x, c\ sjdMs \x, c\

and the order function for Mby T°(r; M):—w°(r; oo, M), where \x, c\ denotes
a half of the chordal distance between tD""1^) and τsf~l(c) for the stereographic
projection τar of the unit sphere in Rm+1 onto Rm:— Rm\J {<*>}. We define also
the counting function and the visibility function by

N(r; c, M):=Γ Σ v,,;.cl(α)4^,JίoeMί ί

H(r; c, M):=Γ~ί i/^ clogU-c|2
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respectively for each ce/2m, where v\x-.c\(a) denotes the multiplicity of zero of
\x-c\ at a. Let G: M-Pm~\C) be the Gauss map of M (cf., [13, §1.2]).
For the pull-back ΩG of the (normalized) Fubini-Study metric on Pm"1(C) we
define the order function of G by

S r _ _
(%(Mt)/f)dt, where Tί(Mt) denotes the Euler

_ s
characteristic of Mt.

We shall give the first main theorem;

T°(r; M)=m°(r; c, M)+#(r; c, M)+Λf(r; c, M),

and the second main theorem which asserts that, for each ε>0,

for all r except in a set E with I (l/t)dt<<χ>. We give also the defect relation
JE

for minimal surfaces which is similar to that for meromorphic functions. In
the last section, we study complete minimal surfaces in Rm with finite total
curvature, and show that the number two of the second main theorem is
sharp.

§2. Some integral formulas

Let M be an open Riemann surface and consider a nonzero complex-valued
function u on a domain D in M possibly with isolated singularities. We call
u a function with admissible singularities if u is of class C°° outside a discrete
subset of D such that, on some neighborhood U of each a&D, we can write

(2.1) \u(z)\ = \g-a\'*u*(z)

with a holomorphic local coordinate z=x-\-iy on U, <τa^R and a nonnegative
continuous function w* satisfying the condition that, for v:~ logw*,

(2.2)

dv_
dy

ddcv is locally integrable.

The number σa in (2.1) is obviously unique. The m a p v M : D —* R defined by
v t t(α):=0 α(αeZ)) for the number σa appearing in (2.1) gives a divisor on D
which we call the divisor of M, where a divisor on D means a map ι>: D -* R
which vanishes outside a discrete set in D. We mean by a pseudo-metric on
M a conformal metric ds2 possibly with isolated singularities which can be
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locally written as ds2= λ\\dz\* by using a nonnegative functions λz with admis-
sible singularities, where z is a holomorphic local coordinate. The divisor of
a pseudometric dsz is defined by vds \—ι>ιz for each local expression ds2=λl\dz\2.
Obviously, vdg is globally well-defined on M. For a nonzero meromorphic form
o) on M we define the divisor of ω by setting Vω'=Vfz for local expressions
ω=fzdz.

We denote by g>p>q the space of all C°° differential (p, #)-forms on M with
compact supports. For a C°° (p, #)-form Ω on M we can define a (£, ^-current

[β] by [£?](^)=\ £?Λ^> (φ^^i.p^.q) and, for a locally integrable function u
Jjf

on M, the (0, 0)-current [u~\ is defined by \u](ψ)=\ uφ (φ<=£)ltl). They are
J M

simply denoted by Ω and u respectively if we have no confusion. Moreover,
with each divisor v we can associate the (1, l)-current [>] defined by [y~](ψ)=
*Σaeχv(ά)φ(ά) (φ^£)o,o) As usual, we define the differentials of (p, ^-current
T by

and

dT:=(d+3)T, dcT :=
4ττ v

For later use, we give the following Stokes theorem for currents.

(2.3) Let T be a 1-current on a Riemann surface M and D a relatively com-
pact domain in M with smooth boundary. If T is equal to a C°° one form on
some neighborhood of dD, then

Γ Γ

= T.

To see this, we write T—[17]+T7 with a C°° one form -η on M and a
current T' which vanishes on a neighborhood of dD. We know that (2.3) holds
for T=[ιy], and we easily have

3D

for every φ<=£)0>0 with φ=l on Supp (TO. These give (2.3).
For a function u with admissible singularities, we can prove the following:

PROPOSITION 2.4. d<

The proof is similar to that of [13, Proposition 4.1.4]. We omit the details.
Consider a relatively compact domain D in M with smooth real analytic

boundary. We say that a meromorphic form ω on D is purely imaginary on
dD if ω has a continuous extension to dD satisfying the condition that Re ω=Q
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and ft) has no zero or pole. We note here that, by the principle of reflection,
such a meromorphic form can be extended to a meromorphic form on an open
neighborhood of D.

PROPOSITION 2.5. Let D be a relatively compact domain in M with smooth
real analytic boundary and ω a meromorphic form on D which is purely imaginary
on dD. Then,

(2.6) Σ*β(β)= -*(£)•
αeZ)

Proof. Take the double ΐ) of D, namely, the welding of the domain D
and the conjugate surface of D along dD (cf., [1, p. 119]). Then, D is a
compact Riemann surface with X(D}—2K,(D) and the meromorphic form ω is
extended to a meromorphic form ώ on D satisfying the identity Σαe^fa^
2Σαez>iΌ>(0) By the well-known theorem for a meromorphic form on a compact
Riemann surface (e.g., see [8, Theorem 17.12]), we have the desired identity
(2.6).

PROPOSITION 2.7. In the same situation as in Proposition 2.5, consider a
pseudo-metric ds2 on a neighborhood of D which has no singularities on dD. Then,
for the nonnegative function λ with ds2=λ2\ω 2, it holds that

dD

Proof. Since [vd«] = [̂ ] + [vα>], we have

( [^ΊogΛ2>( ^<[log;i
2]-( [̂ ] = f

JD JD JD JdD a<ΞD

by using Proposition 2.4, (2.3) and (2.6). This gives Proposition 2.7.

By using Proposition 2.7, we can give another proof for the following
version of the classical Gauss-Bonnet theorem.

THEOREM 2.8. Let D be a relatively compact domain in M with real analytic
smooth boundary and dsz a pseudo-metric on a neighborhood of D which has no
singularities on 3D. Then,

(2.9) χ(#)_ * f *=-Λ-f KΩ^~ Σ vds(a),
άπjdD άπjD a<=D

where tc, K and Ωds* denote the geodesic curvature form of the curve 3D, the
Gaussian curvature and the area form of ds2 respectively.

Proof. We write ds2=λ2

2\dz\2 in terms of a holomorphic local coordinate
z. Then, the Gaussian curvature is locally given by K:— — (l/λ2

z)A\ogλz outside
the singularities of ds2, so that KΩds*—— 2πddclogλ2. On the other hand, on
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a sufficiently small neighborhood of each a^dD, if we write ds2=λl\dζ\2 with
a holomorphic local coordinate ζ with Re(ζ)—const on 3D, the geodesic cur-
vature form is given by κ=2πdc logΛζ(cf., [18, pp. 27~28]).

Consider first the case that D is an open disk in C and uds=Q. As a holo-
morphic local coordinate ζ with Re ζ=const on 3D we take a branch of log(z—•
α) locally, where a is the center of D. Srnce λζ=λβ\dz/dζ\=λg\z—a\, we have

(2.10) ( dclogλl=( de\ogλ*+( dc\og\z-a\*=[ ddclogλl+l.
JdD JdD JdD JD

This gives (2.9) for this particular case, because X(J9)=1. For the general
domain D we may assume that 3D is not connected, because, otherwise, we
may replace D by the domain D' removed one or two sufficiently small closed
disks from D and add the formulas (2.9) applied for Ώf and for the removed
disks. Then, we can choose a meromorphic form ω on D which is purely
imaginary on 3D. In fact, as a solution of Dirichlet problem there is a non-
constant continuous function h on D which is harmonic and a constant on each
connected component of 3D. It is easily seen that ω\—dh is holomorphic and
purely imaginary on 3D. For each a^dD take a holomorphic local coordinate
ζ around a such that Reζ^const on 3D and dζ\2= \ω\2. We have κ=2πdc \ogλ2

for a function λ with ds2=λ2\ω\2. The formula (2.9) is a direct result of Pro-
position 2.7.

§3. Sum to product estimates

Let x=(xι, •••, xm): M-*Rm be a regular minimal surface in Rm. With
each positively oriented isothermal coordinates (u, v) associating a holomorphic

local coordinate z—u + V^ΐv, we can regard M as a Riemann surface with
conformal metric, and the functions xt(l<i^m) are harmonic on M. We first
note the following:

PROPOSITION 3.1. For each c<=Rm, hc(z) := \ x(z)—c \ is a function with admis-
sbiίe singularities on M.

Proof. The function hc(z) is obviously of class C°° on {αeM; x(a)Φc}.

For a point a with x(a)=c, take a holomorphic local coordinate z=u + V—\v~
a+reiθ on a neighborhood of a. Since */s are harmonic functions in z, we
can expand x(u, v) as

CO

x(u, v)=c+ * Σ j r J ( d j C θ s j θ + e j S m j θ ) ,
j=n

where dj9 ej<=Rm, dn=£Q or en^Q. Here, by the assumption of the regularity
of M, we have n—1. Since u, v are isothermal coordinates, we have

(3.2) \Xu\= χ9\, (Xu, Xv)=o
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and so

where xu, xv, xr and xθ denote the partial derivatives of x with respect to u,
v, r and θ respectively. This gives 1^1 = 1^1 and (d1} 00=0. Then, we can
write

|*(2r)-c|2= z-a\*u*(z],

where w* is a function written as

u*(z)= I dί 1 2+ Σ P/COS0, sin0)r>
.7 = 1

with some polynomials Pj(X, Y). We can easily check that v :=log|w* satisfies
the condition (2.2), and so hc has an admissible singularity around a.

Take a holomorphic local coordinate ζ—u + v^v and set ds*=λ2\dζ\2.
Then, by (3.2) λ—\xu\ — \xυ\ and the vector-valued functions

/o o\ -^M -^υ(3.3) βι:=_, «2:=χ

give an orthonormal basis of the tangent plane of M at each point of M.

PROPOSITION 3.4 ([4]). For each c^Rm it holds that

Δ\<>g\χ-c\*=^^^^^I x c I

Proof. Since Δ% = Λ:MW+Λ:OT=O, we have

On the other hand, if we take vectors et (3<i<m) such that eίf ez, ••• , em give
an orthonormal basis of Rm, then

which completes the proof of Proposition 3.4.

Remark 3.5. In the case m=3, we consider the angle θ between the vector
x(ά)— c and the normal vector of M at each point αeM. By Proposition 3.4,
we have

2 2 , Λ ,
- du/\dv.

C I
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By the same calculations as the above, we obtain also

(3.6)

Now, we regard the space Rm as a subspace of Rm+1 by identifying a
point (ci, •••, cm)^Rm with the point (cίf •••, cm, 0)e/2m+1. Consider the one
point compactification Rm:=Rm^j{oo} and the streographic projection Tΰ: Sm-+
Rm, namely, the map which maps TV:—(0, •••, 0, 1) to oo and each C(^N)^Sm

to the point c^Rm such that C, c and N are collinear, where Sm is the unit
sphere in Rm+1 with center at the origin. For c, d^Rm we denote a half of
the distance between ω~l(c) and ω~l(d) by | c, d \. By elementary calculations,
we have

and |c, oo| :=l/Vl+\c\\
We give the following analogue to [13, Proposition 2.5.1].

PROPOSITION 3.7. For each ε>0 there exists a constant dQ depending only
on ε such that, for every c^Rm and <5^><50,

Proof. For δ>e set φ : — — loglog(<5/| x> c\2). By direct calculations, we
have

9

/ (X, Xu) (X — C, Xu)γ / (X, XΌ) (X-C, X»)
"

\l+\x\* x-c 2 / " V l + l ^ l * I x ~

We can rewrite this as

"v logwu,
where

, *u _ — g, A : t t γ / (x, ^p _ (x-c,
|^:|2 |Λ:-C 2 / " ^ Vϊ+ |* | 2 |x-+|

Take 50>^ such that l/log30 + l/log2^0<ε. Then, for every δ^δ0 the first term
is nonnegative and the second term is not less than — εΔlog(l-f|;t|2). Choose
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βi, ••* , 0m as in the proof of Proposition 3.4, and set xt :=(#, et) and ct :=(c, 0t)
By using (3.3), Proposition 3.4 and (3.6), we obtain

(l-f|*|2)Δlog(l+|*l2)

-^-^Δlog(l+|*|2).

These give Proposition 3.7.

Take mutually distinct points cίt •••, cq^Rm and set L :=mmτ<j\cl, GJ\.

(3.8) For every w^Rm it holds that \w, cj ^L/2 /or α// * but at most one.

In fact, if there are two distinct i and j such that |M;, cJ<L/2, then we
have an absurd conclusion L^\cl} C j \ ^ \ c l r w\ + \wt C j \ < L .

We can give the following:

PROPOSITION 3.9. Let c l f •-•, cq be mutually distinct points in Rm. For an
arbitrarily given ε>0 take some δ0(>ez) with l/logsδ0 + l/log^0<ε/^ Then there
is a positive constant C>0 depending only on c l f •••, cq such that

Proof. By Proposition 3.7, we can find a positive constant C such that

9 1
—— =εΛlog(l+|#|2)+ SΔlog-
~<i I ) ^=1

1

For an arbitrarily fixed point aQ^M we change the indices of c/s so that

I Λτ(α0), Ci I ̂  I Λr(flo), ^2 1 ̂  ^ I x(a*\ cq \ .

Then, for ;^2, we have \x, Cj\^L/2 by (3.8). Since the function h(u}: —
wlog2(δ0/w) in u is increasing on (0,1], \x, Cj\2 Iog2(30/|^, c/Γ) O'^2) are

bounded from below by a positive constant depending only on L. Therefore,
we can easily find a positive constant C' such that



NEVANLINNA THEORY FOR MINIMAL SURFACES 385

«

Σ

= I x, c, \ 2 log W \x,cι 1 2 ) = AA I *, c, 1 2 Iog2(30/1 x, c, 2 ) '

This gives Proposition 3.9.

COROLLARY 3.10. In the same situation as in Proposition 3.9, for each ε>0
there exists positive constants d and C such that

ΊTJ l
(1+UI2)2 ,=ι 1%, cj\*log\δ/\x, c,IV

This is an immediate consequence of Proposition 3.9 and (3.6).

§4. The first main theorem for minimal surfaces

Let M be an open Riemann surface. By an exhaustion τ of M we mean
that τ is a continuous map of M into [0, + (X0 which is proper, namely, whose
inverse image of every compact set is compact. For an exhaustion τ of M we
set Mr\— { x ; τ(x)<r} and Ms>r:=Mr—Ms. We call τ a parabolic exhaustion of
M if it is an exhaustion of M satisfying the condition that τ2 is of class C°°
on M and that ddc\ogτ=0 on an open neighborhood of Ms>+00 for some fixed
s^O and ddcτ^Q. For example, the function τ(z):=\z\ (zeC) is a parabolic
exhaustion of C, where we may take s=0. If an open Riemann surface M
is of finite type, namely, biholomorphic to a compact Riemann surface M with
finitely many points a l f ••• , ak removed, then M has a parabolic exhaustion.
In fact, as a parabolic exhaustion we can take a C°° function τ on M which
equals 1/|^| on some neighborhood of each at, where zt is a holomorphic local
coordinate with zι(aι)=Q. It is known that an open Riemann surface M has a
parabolic exhaustion if and only if M is of type OG, or there is no nonconstant
negative subharmonic function on M (cf., [17, Theorem 10.12] and [16]).

Let M be an open Riemann surface on which a fixed parabolic exhaustion
τ is defined. For brevity, we assume that s>0 and 3MS is smooth in the fol-
lowing. We note that, on MSt+00,

τddcτ=τ2ddc logr+dτΛ dcτ= dτ/\ dcτ= \ dτ/dz \ \^~=ϊ/2π)

Moreover, since logτ is harmonic, dτ vanishes only on a discrete subset of

Ms>+00. For each r>s set C=\ dclogτ2. The constant C is independent of r,
JdM r

because

f dclogτz-{ dclogr2=:f ddc Iogτ2=0 (s<rl<r2).
}dMr2 )dMTι

 & ^Mr1,r2

On the other hand,
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C=(2/r){ dcτ=(2/r)( ddcτ>Q.
J d Mr J Mr

After replacing r by τa for a suitable σ>0, we assume that C = l in the
following.

Let v be a divisor on M. We define the counting function of v by

ΛΓ(r,v):=ΓΣ*z)-^.

We give here the following version of famous Jensen's formula (cf., [13,
Proposition 3.1.3], or [15, p. 128]).

PROPOSITION 4.1. Let u be a function with admissible singularities on M.
Then, for r>s>0,

= — ί log|tt dcτ-- —
r JdMr S

The first identity is due to Proposition 2.4. To see the second, we first

use (2.3) to see \ rfί/c[log|w|2]— \ d c l o g | w | 2 for the case where dMt are
JMt JdMt

smooth and u has no singularity on 3Mt. Since d \ogτ/\dc log| u\z~d log| u \ 2 / \
ί/clogτ— J(log|w|2Λ<iclogr), we have

logτ

in the case where u has no singularities on Mrι>r2(s^r1<r2). For general cases,
take numbers r,, with r0(: — s)<rι< <r* :=r such that w has no singularities
on the interior of Mr<,r<+1. For all s', rr with r ί<s/<r/<r l+ι we have

This remains valid for s x— rτ and r'—rl+l because both sides of (4.2) are con-
tinuous as functions in s and r. These conclude that
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Mt t = 0 j r t t JMt

= *Σ— f log\u\dcτ — — f l o g | w |
tti rz+ί }dMTι+ι

 B l rt Ja j f r t

= — f log |w |d c τ~ — f log|tt d cτ.
T JdMr S ]dMs

Now, we consider a regular minimal surface x=(xίf •••, xm): M—*Rm and
assume that the surface M, considered as a Riemann surface with conformal
metric, has a parabolic exhaustion τ. We regard M as a surface immersed in
Rm. We define the hyperspherical proximity function for M by

m\r\ c, M):= —I log -~άcτ \ log Γd
cτ

r jdMr X , C\ S jdMs X, C\

for each c^Rm. For the particular case c=oo, we see

ι°(r oo, M)- - f log(l+ | x \ *Y/2dcτ- - f log(l+1 x \ 2Y/2dcτ
r JdMr S J d M s

= \^-\dd<\og(l+ x

(4.3)

We also define the counting function and the visibility function by

N(r; c, M):=N(r, v , ,_ e ι ) ,

H(r; c, M) :=('-,-( [rf<ίclog|x-c 2]
JS ί J3f{

respectively for each c^Rm, and set JV(r; oo, M)=//(r; oo, M)=0.
For geometric meanings of //(r c, M), see Remark 3.5.
Moreover, we define the hyperspherical affinity of c(<=Rm) by

A\r; c, M):=m°(r; c, M)+N(r; c, M)+H(r; c, M)

and the order function of M by

T°(r; M):=A(r; oo, M)(=m°(r; °°, AO)

We can prove the following :

PROPOSITION 4.4. T/z^ function T°(r M) /s increasing and convex with res-
pect to logr and tends to oo as r^oo.

Proof. To see the first assertion, consider the fcnction /i with ddclog(l +
\x\2)—hdlogτ/\dc\ogτ and observe the identities
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Λ T V ; M ) = r T V ; M ) f
d logr dr JMT

d2T\r; M) d C'dt Γ , .c I f , ,c ̂/ j ι N2 = r"T~\ -s~ Ad cτ= — I hdcτ>Q.(αlogr)2 d r J o r

To see the latter, take some ί0>s with /f:= dd c log(l+|*l 2)>0. We then

have

ddclog(l+\x 2)=Klog~ -- > oo (as r-oo).
0 to

Now, we give the first main theorem for minimal surfaces, which was given
by E. F. Beckenbach and T. A. Cootz in [3] for the case where M is conformally
isomorphic with C.

THEOREM 4.5 (cf.f [3], [6]). T°(r M)=A(r; c, M) for all

Proof. Apply Proposition 4.1 to the function u:=l/\x, c\ to see

T\r M)- Γ-^ ( dd< log(l+ | x \ 2)
Js t JMt

S
r ήl Γ Γr /// Γ

^ rfoίc[logM2] + ̂ - rfί/c
s if jMt Js i JJί t

= — f \og\u\dcτ--( log\u\d
r JdMr S JdMs

=m\r; c, M)+H(r\ c, M)+N(r; c, M).

Thus we obtain Theorem 4.5.

As is stated in the previous section, we identify the extended euclidean
space Rm with the unit sphere Sm in Rm+1 by the stereographic projection and
denote by dV the volume form on Rm induced from the standard volume form
on Sm which is normalized so as the total volume is 1. We can prove the
following :

THEOREM 4.6. It holds that

T°(r; M)=f _JV(r; c, M)dV+{ —H(r; c, M)dV .
jceR™ JceRm

Proof. To see this, consider the function u(x, c):—l/\x,c of x^M and
c<=Rm. Then, by Theorem 4.5 we have
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T°(r; M)-N(r; c, M)-#(r; c, M)

= - ( log I u(x(a\ c} I dcτ- - f log I u(x(a\ c) \ dcτ.
r Ja&dMr S J α e d Λ f j

Consider each term of these identities as a function in c and integrate it with

respect to dV. The function G(a)=\ u(x(a), c)dV in a is a constant because
Jc&R™

\ log\x,c\dV does not depend on the choice of a vector x. Since the
Jcefim

volume of the total space with respect to dV is 1, we can easily obtain the
desired conclusion by using Fubini's theorem.

§ 5. The second main theorem for minimal surfaces

The purpose of this section is to give the second main theorem for minimal
surfaces which is a generalization of the result given by E. F. Beckenbach and
collaborators to the case where minimal surfaces are of parabolic type.

Let #=(#!, •••, xm): M->Rm be a regular minimal surface in Rm and assume
that the surface M considered as a Riemann surface with a conformal metric
has a parabolic exhaustion r. We consider the Gauss map G: M-^Pm~\C) of
M, which is locally written as

where we denote by ( w i i : wm) homogeneous coordinates on Pm \C). The
(normalized) Fubini-Study metric form on Pm~\C) is given by ddc log(| wt\

2+
| w > 2 | 2 _ | \-\wm\2). We denote by ΩG the pull-back of the Fubini-Study metric
form on Pm~\C) via G, which is locally given by

We define the order function of the Gauss map of G by

TG(T} : = \ —7-1 ΏG,

and the function

We now state the second main theorem for minimal surfaces.

THEOREM 5.1 (cf., [3], [6]). Let M be a regular minimal surface in RΏ

which has a parabolic exhaustion τ. For mutually distinct points clf ••• ,

and a positive number ε there is a set Eε with \ dp/p<-}-^ such that
JEε
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(5.2) Σ>m°(r; c,, M)+TG(r)^2(l + ε)T°(r M)-l
.7 = 1

for all rφ.E£.

For the proof of Theorem 5.1, we use the following:

PROPOSITION 5.3. Let h be a locally summable nonnegative function on M
and set

dt_
t

where ω:=3 logr. Then, there is a positive constant C such that

r j d Mr

for each r except in a set with finite logarithmic measure.

This is proved by minor changes of the proof of [13, Proposition 3.2.4].
By the same argument as in the proof of Proposition 4.4, we can show that
Th(r) is an increasing function in r. Moreover, we have

d2Th

=λ\r JdMr(d logr)2

Using the concavity of the logarithm, we get

2

hdcτ.

-f
^ J a (d logr)2

On the other hand, as in the proof of [13, Proposition 3.2.4], by the use of [13,
Lemma 3.2.5] we can show that, for each ε>0

(dlogr)2 =

for all r except in a set E with \ (l/t)dt< + oo. From these facts, we easily
JE

conclude Proposition 5.3.

Proof of Theorem 5.1. The form α>:=3logr is holomorphic on M—MS and
purely imaginary on each smooth 9Mr. Consider the functions gτ with dxt =
giO) (l^i^m), which are meromorphic onM s > + 0o. Set |G| :—( | < gΊ | 2 H h gm\2)1/2

Then ds2^2|G|2 |ω|2([13, §1.1]). Therefore, v{Gl^ω=vds=Q and so vω=-vιcι.
For a given ε>0 take some ^>0 such that the inequality in Corollary 3.10
holds, and set h:=(l+\x\2γ/ΐlq

jssίlog(δ/\cjf x 2). Consider the function h* such

that ddc lQgh = h*\/—lω/\ω. As a consequence of Corollary 3.10 we get

\G\2h2
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for some C>0. By the monotonicity of the integral, we have

-f log |G </cτ+i]-f log-— — - --dcτ+-{ loghd'τ
r}dMr

 6 j = ι r j d M r

 & \x, Cj\ r)dMr

 &

T J d M r r JdM

for every r>s. On the other hand, by Proposition 4.1 we obtain

ddc[\og\Gn-N(r,
j

= -[ log|G|ίί':τ--( l
T J d M r S jdMf

Here, we may .replace N(r, vω) by —E(r) owing to Proposition 2.5. Since

ίjm°(r; c,, M)^ Σ- log
j=ι j=ι r

we have

Tσ(r)+Σmβ(r; c,, M)

— f
r j 3 3

We apply Proposition 5.3 to find some constant C>0 such that

- logh*dcτ< C
r JdMr

for all r except in a set Eε with \ (l/p)dp<oo. On the other hand, by using

Proposition 4.1,

ddc log/i^log ~ log hdcτ+const .
I JMi \ΓjdMr

Since O(log((2/r)f log hdcτ)^(2/r)( log hdcτ+0(l),
JdMr JdMr

T0(r)+ hm\r c,, M)
J = l

^— f log/ι*ίίcτ-— f log/z^c

Γ J 3 Λf r Γ J d Mr

r, Af)-£(r)+0(l)
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for all r except in a set with finite logarithmic measure. This gives Theorem 5.1.

Now, we define the defect of c for M by

m°(r - c M")
δ(c, M) :=lim inf ̂  . '̂  ; (gl) .

We note here that the defect for minimal surfaces is defined by an analogy of
that of meromorphic functions in the classical Nevanlinna theory. However, the
geometric meanings are something different. Indeed, it does not always hold
that δ(c, Af)=l if cφM.

Moreover, we consider the quantites

We have the following defect relation for minimal surfaces:

THEOREM 5.4. Let M be a regular minimal surface which have a parabolic
exhaustion. Then, for arbitrarily given distinct points c ί f ••• , cq in Rm, it holds
that

Proof. Divide each term of (5.2) by T°(r M) and observe the limit as r
and ε tend to +00 and 0 respectively. We then have the desired conclusion.

§ 6. Complete minimal surfaces with finite total curvature

The purpose of this section is to observe some geometric meanings of (5.2)
for a particular case of complete minimal surfaces with finite total curvature
and to show that the number two of the right hand side of (5.2) is best-possible.
We first note the following:

(6.1) Let M be an open Riemann surface with a parabolic exhaustion. Con-
sider a nonnegative (1, l)-current Ω on M and set

Then, it holds that

lim^r-oo logr

We consider a complete minimal surface M in Rm which is of finite type
as an open Riemann surface, namely which is biholomorphic to a compact
Riemann surface M with finitely many points alf •••, ak removed. As is men-
tioned in §4, if we take a C°° function r on M which equals l / \ z ι \ 1 / k on some
neighborhood of each at for a holomorphic local coordinate zt with
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then τ is a parabolic exhaustion of M. Here, the exponent 1/k is added so

that C=\dMrd
clogτ2=l. In what follows, τ means such a parabolic exhaustion

of M.

PROPOSITION 6.2. Let M be a complete minimal surface in Rm which is of
finite type as an open Riemann surface. If limr^ooT°(r; M)/logr<+oo, then the
(normalized) total curvature C(M) of M is finite.

Proof. Taking arbitray mutually distinct points Cι, ••• , cq^Rm (q>ϊ) and
£>0, we apply Theorem 5.1 to see

for all r except in a set with finite logarithmic measure. By the assumption,
we have

=lim inf nm -
logr r-oor-»oo

which gives the desired conclusion

as a result of (6.1).

=- ΩG>-oo
J M

Now, we restrict ourselves to the study of a complete regular minimal
surface x=(xlf •••, xm): M-*Rm with finite total curvature. As is shown in
[7], M is biholomorphic to a compact Riemann surface M with finitely many
points αi, •••, a*, removed, and each form ωi:—d}cl (!<^'<Jra) is extended to a
meromorphic form &i (cf , [13, Theorem 5.1.3]). Then, we can define the divisor
ι>ds of ύfs2 on M by setting i^^mi

DEFINITION 6.3. For each end aι we define the multiplicity of M at aι by

PROPOSITION 6.4 ([7, Lemma 2]). Each multiplicity It is a positive integer.

For the proof, refer to the original paper [7] or [13, Proposition 5.1.8].
We can show also the following:

PROPOSITION 6.5. Let {Dv; v=l, 2, •••} be a sequence of simply connected
open neighborhoods of an end at of M such that they have real analytic smooth
boundary and Γ\ΐ=ιDv={aι}. Then,

κds,
v

where κds denotes the geodesic curvature of dDv.
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Proof. Taking a holomorphic local coordinate z on a neighborhood of at

with z(at)—Q, we consider discs Av:={z-, \z\<d»} such that DV1)AV and limbec
5P=0. Then, by (2.9) we have

the right hand side of which tends to zero as v tends to °o because M has
finite total curvature. Therefore, we get

~— K .

It suffices to show that Iι—\imv^(— l/2π)\ K. By definition, we can write
JdJy

ds2=\z\~2(ill+1>υ(z)\dz\2 for some positive function v(z). In view of (2.10), we
have

^de\ogv(z)+l,

which tends to — Iι as v tends to oo.

We now prove the following:

THEOREM 6.6. // a complete regular minimal surface M in Rm with finite
total curvature C(M) has k ends with multiplicites Iι(l^l^k), then

(6.7) C(Af)=Z(M)- Σ/I .

Proof. For each end_ at choose a holomorphic local coordinate zι with
zι(aι)=Q and set Dδ:—M—\Jι=ιA| for a sufficiently small <5>0, where Δl

δ: =
{zι\ \zι\<δ}. By applying (2.9) to the domain D§, we obtain

~-
Zπ JD§

As δ—>Q, we have the desired results by the use of Proposition 6.5.

Remark 6.8. For a complete regular minimal surface M in Λ3 with ends
fli, •••, ak, it is shown that the multiplicities Iι as in Definition 6.3 coincide
with the multiplicities mi appearing in [14, Theorem 1]. The formula (6.7) is
nothing but the result given in [14, §4].

Now, taking q—1 mutually distinct points clf •••, <Vι m Rm and setting,
cq:=co, we apply (5.2) to show that, for a given ε>0, there exists a set Eε

with finite logarithmic measure such that

(6.9) Σ?mβ(r; c
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First, we shall study the term T°(r; M). For each end α z(l^/^&) taking
a holomorphic local coordinate zι—teiθ with zι(dι)—Q, we have an expression

dx
7,- = Σ atf foeC™)
OZ j t n i

around α z, where nι=vds(aι)(<— 2). Therefore, we have

x=Re(a_1 logz)+ Σ W, cos/0+0, sin/0),
. / S Λ J + I

where d,, e}^Rm

t dnι+l=£θ or βm+i^O. Then, by the argument in the proof of
[7, Lemma 2] we can show that α_ι is a real vector. Since Uι—— h— 1 by
Definition 6.3, we can write

with a function v satisfying the condition (2.2). Using (4.3), (6.1), (2.3) and
Proposition 2.4, we have

lim—j—' —lim\ dd°\og(l +

k p

= -lim Σ \ c
s-*0 1 = 1 J \zι\=ε

k p

lim Σ I c
ε-O Z = l J | 2 i i ^ ε

——lim

On the other hand, by (6.1) we have

lim-T-^— — \ ΩG—
r-»oo logr }M

Since \\mr^m(c r;, M)/logr^O(l^;^<7— 1), we can conclude that

and hence, as s—»0,

which is nothing but one half of (6.7). This shows that the number two of
(5.2) is sharp.
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