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ITERATIVE FIXED POINTS OF
NON-LIPSCHITZIAN SELF-MAPPINGS
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Abstract

In this paper, we shall establish iterative fixed points of non-Lipschitzian
continuous self-mappings on Banach spaces with weak uniform normal structure.

1. Introduction

Let C be a nonempty subset of a real Banach space X and let NN be the
set of natural numbers. A mapping T: C—C is said to be Lipschitzian if for
each neN, there exists a real number k(n) such that

IT*x—=T"y|<k(n)|x—y| for all x, yeC.

In particular, T is said to be asymptotically nonexpansive [7] if lim,.. % (n)=1
and it is said to be nonexpansive if 2Z(n)=1 for any n=N. We now consider
a non-Lipschitzian self-mapping on C, that is to say, a mapping of weakly
asymptotically nonexpansive type. We say that a mapping T : C—C is said to
be weakly asymptotically nonexpansive type (simply, w.a.n.t.) on C (see [10])
if, for each x=C and each bounded subset D of C,

lin;iup(sup{EIIT"x—T”yH—IIX—yIIJ: yeD})<0.

Immediately, we can see that all mappings of w.a.n.t. include all mappings
of asymptotically nonexpansive type (see [11]). In particular, if T: C—C is
a Lipschitzian mapping with an additional condition, i.e., lim sup,.. 2(n)<1
(see [12] and [14]), then it is obviously a continuous mapping of w.a.n.t.
Further if C is bounded, then any mapping of w.a.n.t. is asymptotically non-
expansive type.
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In this paper, we first give new sharp expressions of the weak convergent
sequence coefficient WCS(X) of a non-Schur space X according to G.L. Zhang
[16]. Finally, we shall present an iterative fixed point of a non-Lipschitzian
continuous self-mapping on a Banach space X with weak uniform normal struc-
ture (see Theorem 3.3), which improves the result due to T.D. Benavides, G.L.
Acedo and H.K. Xu [2].

2. Expressions of the WCS(X)

Let X be a Banach space which is not Schur and let {x,} be a sequence
of X. For xeX, set r(x, {x,})=limsup,_.llx,—x]|. A({x,})=lim sup,..{|x:—
x;) 4, 7=n} and r({x,})=inf {r(x, {x,}): x=co({x,})} are called the asymptotic
diameter of {x,} and the Chebyshev radius of {x,} relative to co({x,}), res-
pectively, where co({x,}) denotes the closed convex hull of {x,}. The weakly
convergent sequence coefficient of X, denoted by WCS(X), is the supremum of
the set of all numbers M with the property that for each weakly convergent
sequence {x,} with asymptotic diameter A({x,}), there is some yeco({x.})
such that M-lim sup,_.)|x,—y|<A({x,}). Equivalently,

WCS(X)=inf {A({xa})/r({x})},

where the first infimum is taken over all sequences {x,} in X which are weakly
(not strongly) convergent (see [3] and [13]). It is well-known (see [3]) that
if WCS(X)>1, then X has weak normal structure. This means that any weakly
compact convex subset C of X with diam(C)>0 has a nondiametral point, i.e.,
an x=C such that

sup{[[x—y| : yeC} <diam(C).

The coefficients WCS(X) play important roles in fixed point theory (cf. [4],
[9], [15]). A space X such that WCS(X)>1 is said to have weak uniform
normal structure.

Recently, G.L. Zhang [16] has proved the following improvement of ex-
pression of the WCS(X):

2.1) WCS(X)=sup{M: xneuz)M-limnsupH Xo—ul| SA{xa})},

where “ — ” means the weak convergence.
For a sequence {x,} of a Banach space X, we set

D({x,}) :=lim sup (lim sup|| x,— x| .
We easily see that D({x,})<A({x,}). However, D({x,})#*A({x,}) in general.

For example, consider the James’ quasi-reflexive space J consisting of all real
sequences X := {x,}=2%=1%¢, for which lim,..x,=0 and ||x|;<co, where
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I xlls=sup{[(xp,— % p )2+ +(Xp ;= X pp P (X — X5, )" 1%}

and the supremum is taken over all choices of m and p,<p,<---<pm. Then
J is a Banach space with the norm |-|; and the sequence {e,} given by e,=
©, ---,0,1,0, ---) where the 1 is in the nth position, is a Schauder basis for J
(see [5]).

Take x,=e,—e,,, for each n&N. Since ||x,];=+6 for each n€N, we
have x,=J and we now show that

D({xa})=2v 3 <A({x,})=2'5 .

Indeed, for each fixed nE N, it is obvious that |x,—x.|s=2+3 for all m=n+3
and so D({x,})=lim SUPm-c (liM SUPp el Xn — X mlls/)=2+"3. On the other hand,
for each k=N, if we take n=~k and m=n-+1=k, then [x,—xnls,=2+5 and
)
sup{|x,—xnlls: n, m=k}=2v5  for each kEN,
which gives A({x,})=2+5.
We now give a sharp expression of WCS(X) which improves the result

due to G.H. Zhang [16; Theorem 1].
We begin with the following easy lemma.

LEMMA 2.1, If z,=y./|yzl, a:=lim,_.||v,]|#0, then
1
D({Zn}):ED({yn})-

Proof. For each n, meN, we easily get

uzn—zm||=|l§<yn—ym>+(wy—lm—%)yn—(ﬁ,—,—i—)ym

S 2 Un=yall+ [ = ] Wl = ] ol
Taking at first lim sup,.. and next lim sup,... in both sides, we obtain
D({zah)< 5 D({3a).
The converse inequality is similarly obtained.
LEMMA 2.2. Let M>0. Then the following statements are equivalent :
(a) M-liryrtlﬁiupllx,,—xlléA({x,,}) for any x,—x (not strongly comvergent).

(b) M-lim supl|x;,—x’[|£D({x3}) for any xp~x’' (not strongly convergent).

Proof. Since D({x,})<A({x,}), it is obvious that (b) = (a).
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To show (a) = (b), let x,—x’ (not strongly convergent) and « :=lim sup,_..
lxrn—x’||#0. Then we can choose a subsequence {x,} of {x} such that a=
lim ol xf—x’)l. Setting z,:=(xh—x’)/a, we have z,—0 and |z.[—1, by
using a diagonal method as in [1], we can choose a subsequence {zn,} of {zn}
such that 1imy ;e z41lZm,—2m,]| exists. Then (a) and Lemma 2.1 yield that

M=M-lim|zn | < A{zn })=D{zn })

< D(fen})=1 D({xah)= = D({x4))

and hence M-lim SUPmn-.|Xn—x'|=Ma<D({x;}), which completes the proof.
As a direct consequence of Lemma 2.2 and (2.1), we can obtain the following
THEOREM 2.3.

WCS(X)=sup{M: x,—u=M- lim sup|x,—ul|<D({x,})}.

As a direct consequence of Theorem 2.3, by using a similar method as in
G. H. Zhang [16], we can easily obtain the following expressions of WCS(X).

WCS(X):inf{KDu({%: {x,} weakly (not strongly) converges to u}

=inf {D({x,}): {x.}CS(X) and x,—0}

=inf {D({x,} : x,—0 and lim|x,| =1},

where S(X) denotes the unit sphere of X, ie., S(X)={xeX: ||x|=1}.

3. Iterative fixed points of non-Lipschitzian mappings

Let C be a nonempty subset of a Banach space X. In this section, we
recall that a mapping 7 : C—C is said to be weakly asymptotically nonexpansive
type (simply, w.a.n.t.) on C (see [10]) if, for each x=C and each bounded
subset D of C,

ligljup(sup{[llT”x—T”yH—l|x~yll]: yE€D})Z0.

Here we give an example of a continuous mapping which is of w.a.n.t. and
not Lipschitz.

Example. Let X=R, C=[0, =) and let |k|<1. For each n€N,=NU {0},
we define
.1 . .
sm—ml, if xeC—2Z(T™);
0, if xezZ(T").

Tn+1x= kT"x
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We denote by Z(T™") the set of all zeros of 7" and by T° the identy mapp-
ing I on C. We see that Z(T)={1l/mr: meN}\J{0}, Z(T")=Z(T" "HYWJ{zeC:
T"'z=(1/mr) for some meN} for nN, and {Z(T"): neN} is nondecreasing.
Since {T”x} converges uniformly to zero on any closed bounded interval of C,
T=T': C—C is really a continuous mapping of w.a.n.t. Indeed, for each xC
and each bounded subset D of C, there is a closed bounded interval I, contain-
ing D. For each n&N, the map h,(y)=|T"x—T"y|—|x—y| achieves its max-
imum on Ip, say y,=Ip. Then,

limsup{|T"x—T"y|—|x—y|: ylp}

n—>00

=limsup(|T"x—T"y,| —|x—y.|)
N—->00

<lim|T"x—T"y,|—lim inf|x—y,|

>0 n-»00

=—liminf|x—y,| 0.

n—0

Therefore T: C—C is of w.a.n.t. However, it is obviously not Lipschitz.

Recall that T': C—C is said to be asymptotically regular on C if
lim||T"x—T"*x|=0 VxeC.

Moo
DEFINITION 3.1. A mapping T: C—X is said to be weakly demicompact if
whenever {x,}CC is a bounded sequence and {x,—7T=x,} is a convergent se-
quence, then there exists a subsegence {x,,} of {x,} which is weakly con-
vergent.
It is clear that every demicompact mappings are weakly demicompact, and
also that if C is weakly compact, then T : C—X is weakly demicompact.

LEMMA 3.2. Let C be a nonempty closed convex separable subset of a Banach
space X and let T : C—C be a mapping of w.ant. Let x,&C such that {T"x,}
is bounded. If T is weakly demicompact and asymptotically regular on C, then
there exists a subsequence {n;} of positive integers such that

{T™x} converges weakly for every x&C.

Proof. Since T is a mapping of w.a.n.t., it is obvious that for each x&C,
{T™x} is bounded. For each x=C, we set x,=T"x for n&N. Since T is
asymptotically regular on C, by the weak demicompactness of T, there exists
a subsequence {x,,} of {x;} which converges weakly.

Let E be a countable dense subset of C. By using a usual diagonal method,
we can choose a subsequence {n;} of N such that {T™z} converges weakly to
u,=C for every z€E. Given ¢>0, x&C and x*(#0)&X*, where X* is a dual
space of X, there is a z&FE such that |[x—z| <e/3||x*|. Since T is a mapping
of w.a.n.t., it follows that, for each x, z&C and for any subsequence {n;} of N,
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limsup| T™x—T™z|<||x—2z|,
100
in particular, there exists j;&N such that

€ 2¢e
sup||TMx—T™z| S| x—z|+ 5 < 5.
Sur TP TP
On the other hand, since {T™z} converges weakly to u,=C, there also exists
74N such that

| Tmz—u)l < for jzji,

By taking j,—max{;;, 4}, we obtain that, for j=j,,
Ix¥(Tmox—u SN e* T mox—T 2|+ x (T z—u,)| <e.

which completes the proof.

If C is a closed convex subset of a Banach space X and if T: C—C is a
mapping, we can easily construct a separable subspace X, of X and a closed
convex subset C. of X. which is T-invariant. This shows that in many cases,
i.e., when the other assumptions on C are inherited by C., it suffices to for-
mulate fixed point problems in a separable setting (see [7; pp. 35-36]).

By using an iterative method, we show a fixed point theorem of a continuous
self-mapping of w.a.n.t. on a Banach space X with weak uniform normal struc-
ture, i.e., WCS(X)>1. We employ the method of the proof of [2].

THEOREM 3.3. Suppose X is a Banach space such that WCS(X)>1, C is a
nonempty closed convex subset of X, and a continuous mapping T: C— C of
w.a.n.t. is weakly demicompact. Suppose in addition that T is asymptotically
regular on C and {T"x,} is bounded for some x,C. Then T has an iterative
fixed point in C.

Proof. By above argument, we may assume that C is separable. By
Lemma 3.2, we can choose a subsequence {n;} of positive integers such that

{T™x} converges weakly for every xC.
Now we can construct a sequence {x,} in C in the following way:
x,&C arbitrary
xm_—_w—ljiiroloT"fxm_,, VYm=1.
Note that the asymptotic regularity of 7" on C ensures that
xm=w—£1r£.}T"f+me_l, Vp=0.

We now show that {x,} converges strongly to a fixed point of 7. To this
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end, for each integer m=0,

B :=limsup|T™ X n— X1l -
Joo

Then, by Theorem 2.3, we have

1
< n
"= ES) DT xn}).
Since T is a mapping of w.a.n.t.,, for each fixed meN and bounded subset
Dn={T"%xy: neN} of C

@.1 B

(3.2) lirr} sgp{sup[lIT"fxm—T"JZH—llxm—ZHJ 1 2€D,} <0,

and by asymptotic regularity of 7" on C, it follows that, for each j=N and
pgo)

3.3 l'lrrll_’smupllT"i*Pu—T":vn:lin;xiupﬂT"lu—T"wH Yu, veC.
Replacing p and u, v in (3.3) by 7, and x, respectively, it follows that
D({T":xm}):lirrjliup(lirﬂesoupllT”lxm—T":xm||)
=1inj1ﬁ§°up (lirrllaiupll Tritmx , —T™x ).
Noting also that, for each jEN,
lirrzlqiupllT"i"":xm——’l‘"fxm[l
SSUpT 1% =TT % )| = X n—T ™% ] ]
+lirgﬂ§°upllxm—T "X ]
SSUD[|I T2 m—T"s2] — || ¥ m—2]
+Hlim SUp| £ — T %
it follows from (3.2) that

DUT™xn})=1im supllxn—T"1x ]

On the other hand, by the w—I[.s.c. of the norm of X and with the same method
as before, we easily obtain

(3.4) lim sup|| £, — T ™ % o [| <lim sup (lim inf|| T e % —T ™% 1 |])
1-00 1-00 oo
<lim sup (lim sup|| T "+ x ,, — T "™ x  _4|)
1-00 PR

<limsupl|xn—T"1%xp_1|=Bn_i,
oo
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which immediately gives that D({T™x,})<Bn-,. Hence, by (3.1),

1
n= W[Y—)Bm—l )

and since WCS(X)>1, we have lim,_.B,=0. Now using the w—I[.s.c. of the
norm of X and (3.4) again, we deduce that

B

1% m— 2 [ HM SUPJ Xy —T "0 | +-1im SUP| T X 30— X |
<Ban+Bn,
which implies that {x,} is Cauchy. Let v:=lim,_..x,. Then, for each j=N,
lv=T"wl|SNv—Xmaal N Xn =T xnl| T 2% m—T 0]
Since T is of w.a.n.t.,, by taking the lim sup;.. in both sides we obtain that
linjl*iupllv—T"fvlléllv—meIHBmHIxm—vll -0

as m—oo. Hence T™w—v and Tv=v by the continuity and asymptotic regularity
of T at v. This completes the proof.

COROLLARY 3.4. Suppose X is a Banach space such that WCS(X)>1, C is
a nonempty weakly compact convex subset of X, and T : C—C is a continuous
mapping of asymptotically nonexpansive type. Suppose in addition that T is
asymptotically regular on C. Then T has an iterative fixed point in C.

Finally, as a direct consequence of Corollary 3.4, we give an iterative fixed
point for a nonexpansive mappng on a Banach space. Let 7': C—C be a nonex-
pansive mapping. For a fixed 1€(0, 1), we set

Sy:=1+1-)T,

where I is the identity operator of X. Then it is obvious that S,: C—C is
also nonexpansive with the same fixed point set of T. Moreover, it is well-
known (see [6]) that S; is asymptotically regular on C. Therefore, we obtain
the following result due to T.D. Benavides, G.L. Acedo and H. K. Xu [2].

COROLLARY 3.5. Suppose X is a Banach space such that WCS(X)>1, C is a
nonempty weakly compact convex subset of X, and T : C—C is a nonexpansive
mapping. Then T has an iterative fixed point in C.
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