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A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION
AND LINDELOF FUNCTION

By SHIGERU KIMURA

§1. In our previous papers [1, 2], we considered the entire functions which
have only negative zeros and obtained a characterization of the exponential
function. In this paper we consider the entire functions whose zeros are dis-
tributed in a sector and prove the followings.

THEOREM 1. Suppose that f(z) is an entire function of order q=2p+1 where
D is non-negative integer and having zeros {a,} in the sector {z; 0=argz—rn=
B<=/(g+D)} and Ila,|"7<+oco. Let ¢(z))=f(2)f(—2z) and g(z2)=¢(—z)/$(0)
Unless g(2)=1, we assume that g(z) is a canonical product and

(L.1) (—1)*log| g(re*)| =(—1)*(cos Bg/2)log | g(r)| +e(r)(—1)*log | g(r)|

for all sufficiently large r where k is the genus of g(z), 0<pB<z/(g+1) and
0=e(r)=01/r%0), &,>0. Then f(z)=e*® where P(z) is an odd polynomial of
degree q.

As an improvement of Theorem 1 we have

THEOREM 1’. Suppose that f(z) is an entire function of order q=2p+1
where p is non-negative integer and having zeros {a,} in the sector {z; 0=arg z—mx
=B<z/(g+D} and Xla,|"9<+oo. Let ¢(z*)=f(2)f(—2), 8()=¢(—2)/¢(0)=
e?®g(2) and h(z)=e?g,(Z) where g,(2) is a canonical product. We assume that

1.2) (—=1)*log|g(r)| =0
and
1.3 (—1)*log| g(re*?)h(re*F)| =2(—1)*(cos Bq/2)log | g(r)|

+e(r)(—1)*log|g(r)]

for all sufficiently large v where k 1s the genus of g¢(z), 0<B<=/(g-+1) and
0=e(r)=01/7%), €,>0. Then f(z)=e"® where P(z) is a polynomial of degree q.

Omitting the condition about zeros {a,}, we prove the following theorems.
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THEOREM 2. Suppose that f(z) is an entire function of order one and having
zeros in the sector {z; |arg z—r| =B <m/4} such that

(1.4) fOf(=nN=0Q10) (r—o0).
Then f(z)=Ae?*, where A, B are constants, or else

(L5) lim M 1) o

T—=00

THEOREM 3. Suppose that f(z) is an entire function of ovder q=2p-+1 where
p is non-negative integer and having zeros in the sector {z; 0sargz—r<
B<x/2(g+1)}. Setting ¢(z5)=f(2)f(—2), gz)=¢(—2)/$(0), we assume that g(z)
is a canonical product and

(1.6) (—1)*log| g(re)| =(—1)*(cos Bq/2)log | g(r)|

for all sufficiently large r where k is the genus of g(z) and 0< <= /2(q+1).
Then f(z)=eF® where P(z) is an odd polynomial of degree q, or else

log M(r, f) __
r? 0

1.7 lim

T-00

These two theorems are the extensions of those in [1] whose functions have
only negative zeros.

As an improvement of Theorem 3 we have

THEOREM 3’. Suppose that f(z) is an entive function of orvder q=2p+1
where p is non-negative integer and having zevos in the sector {z; 0<argz—n=<
B<m/2(qg+1)}. Setting §(z*)=f(2)f(—2), g(z)=¢(—2)/$(0)=e?®gy(2) and h(z)=
e‘?‘”m where g4(z) is a canonical product, we assume that

(=1)*log|g(r)| =0
and

(1.8) (—D*log| g(re'f)h(re=*#)| <2(—1)*(cos Bg/2)log | g(r)|

for all sufficiently large r where k is the genus of g4z) and 0<B<m/2(qg+1).
Then f(z)=eP® where P(z) is a polynomial of degree q, or else

i 108 M, ) _
re

=200

As a characterization of the entire function and Lindel6f function we prove
the following theorems.

THEOREM 4. Suppose that f(z) is an entire function of order one and having
zeros in the sector {z; |arg z—m|<f<m/4} such that
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fO)f(=n=0Q1)  (r—o0)
and
L9) lim inf 8L/ /I o

700

Then f(z)=Ae®, or else n(r, f)~ar where n(r, f) indicates the number of zeros
of f(2) in |z|<r and a is a constant.

THEOREM 5. Suppose that f(z) is an entire function of order q=2p+1 where
D is non-negative integer and having zeros in the sector {z; 0=arg z—n=<x/2(g+1)}.
Setting ¢(2%)=f(2)f(—2), g(z2)=¢(—2)/P(0), we assume that g(z) is a canonical
product and

(—1)*log| g(re*?)<(—1)*(cos Bq/2)log|g(r)|

for all sufficiently large v where k is the genus of g(z) and 0<B<xm/2(q+1).
Further we assume that

lim inf

T—00

Iloglf(irr)f(—zr)ll<oo_

Then f(z)=eF® where P(z) is an odd polynomial of degree q, or else n(r, f)~ar?
where n(r, f) indicates the number of zeros of f(z) in |z|<r and « 1s a constant.

As an improvement of Theorem 5 we have

THEOREM 5’. Suppose that f(z) 1s an entire function of order q=2p+1 where
p is non-negative integer and having zeros in the sector {z; 0=arg z—nw=<x/2(qg+1)}.

Setting §(z)=f(2)f(—2), g@)=¢(—2)/p(0)=e?"go(z) and h(z)=e®?g\(2) where
go(2) is a canonical product, we assume that

(—=1)*log|g(r)| =0
and

(—1)*log| g(re*f)h(re*F)| =(—1)*2(cos Bq/2)log| g(r)|

for all sufficiently large v where k is the genus of g(z) and 0<B<m/2(qg+1).
Further we assume that

lim inf | log If(l'rr)qf(—ir)l |

T-00

< o0

Then f(z)=eP® where P(z) 1s a polynomual of degree q, or else n(r, f)~ar?
where n(r, f) indicates the number of zeros of f(z) in |z|<r and a is a constant.

The proofs of our theorems depends on those of theorems in [1] and the
following lemma.
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LEMMA 1 [3]. Let
d(x, y)=01/2)log(1+2y cos x+ y?)+ ]é (—1)(y?/j)cos jx .

Then (—1)*¢(x, y) is monotone decreasing for 0= x=z/(k+1), y=0.

§2. Proof of Theorem 1 and Theorem 1’. Let f(z) be an entire function
satisfying the hypotheses in Theorem 1. We can write

f@=er® 11 B(z/a,, g—1)

where P(z) is a polynomial of degree at most ¢ and E is the Weierstrass primary
factor. Defining

fH@=e" I E(=2/1a,, ¢—1)

and ¢*(z%)=f*(z)f*(—z), we have
log M(r?, ¢*)=0(r9).

Hence g*(z)=¢*(—=z)/¢(0) satisfies

*
@1 lim 18 M, 8%
r

700

If g(z)=1, then f(z)=eF® where P(z) is a polynomial of degree ¢, which
is the desired result.
Now we assume that g(z) is a canonical product of genus k. Since

o(x, r/1b,)=log| E(=re**/|b,|, R,

by the definition of ¢ in Lemma 1, we have
E‘ﬁ(x» r/1b.|)=log|g*(re**)|

where {b,} are zeros of g(z).
Since {b,} are distributed in the sector {z; 0<arg z—n=<28<2x/(¢+1)} and

k=(q—1)/2, we can easily see that
(—=D*log|g(r)| =(—1)*log| g*()|

and
(—D)*log | g*(re*?)| =(—1)*log| g(re'?)|

by Lemma 1.
Thus we have from (1.1)
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(=D*log|g*(re'?)| <(—1)*(cos Bg/2)log | g*(r)| +e(r)(—1)*log| g*(r)|.
From this inequality we can induce

* * *
c, loglg*m)l| _ - log M(2s, g¥) _ . |log|g*(r)||

rq/2 (Zs)qlz == 7,((1/2)+£0

by proceeding as in §4 of [1], for a sequence of r={r,} tending to infinity
with n where C,, C,, C are positive constants which do not depend on ». Hence
we arrive at an impossible inequality from (2.1) and ¢,>0. This completes the
proof of Theorem 1.

In order to prove Theorem 1/, firstly we consider the case deg(Re Q(r))=0
and g,(z)=1. Then we deduce f(z)=ef® where P(z) is a polynomial of degree
g, which is the desired result.

Secondly we assume that (1.2) and (1.3) hold. Then we can prove the
following inequality by Lemma 1, the definition of A(z) and (1.3),

(—D)*log| g*(re'f)g*(re-*)| <2(—1)*(cos Bq/2)log | g*(r) | +e(r)log | g*(r)|,

where g*(2)=e?“g¥(z). Therefore, proceeding as in the proof of Theorem 1,
we can prove Theorem 1’.

§3. Proof of Theorem 2. Let f(z) be an entire function satisfying the
hypotheses in Theorem 2. We suppose that (1.5) is false, i.e.,

log M(r, f)

rl/2

3.1 lim inf <o,

Let ¢(2°)=f(2)f(—2), g()=¢(—2)/¢(0). If g(z) is constant, then we have
f(z)=Ae® where A, B are constants, which is the desired result. In order to
complete the proof of Theorem 2, we may thus confine ourselves to the case
when g(z) is not constant. We shall show that this will contradict (3.1), so
that (1.5) must hold as required.

By (3.1) and log M(»%, ¢)<2log M(r, f), we have
(3.2) lim inf 18001 <o

T—00

Since the genus of g(z) is zero, we can write

g@)=1II(1+2/b), |argh|<26<n/2.

Setting

&*2)=111+z/]b.1),

v=1

we see that
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loglg*®)l _ .

1/2

3.3) lim inf

o0 v

In fact, by Lemma 1

) © n(x) x cos 2B+r
1oglg(r)lgloglg*(re“'9)l27’50 SC }’2+r2+2x€c052ﬁ

©n(x) dx
0

ngOSZﬁS . x+r=(cosz,8)log|g*(r)|.

Hence we have (3.3) in view of (3.2).
Since (1.4) is equivalent to g(—r)=0(1) and | g*(—7)| =|g(—7)| by Lemma 1,
we have g*(—»)=0(1). Now we may assume that

3.4) log|g*(—7)| =0.
Arguing as in §5 of [1], we have

Ss 10g]g"‘(——t)]dt>c1 log]g*(r)l_c log | g*(2s)| 0<r<s<—+oo)

e yl/2 2 (23)1/2

3.5)

where C,, C, are positive constants which do not depend on r.

K
Case (1). B=lim sup%zw. From (3.3) we can find arbitrarily

large values of » and s, with »<s, such that the right-hand side of (3.5) is
positive. Thus it follows that the inequality

log|g*(—1t)| >0

holds for some ¢>» and this contradicts (3.4).
Case (2). B=0. In any case, we have (log|g(»)])/r**>0 for »>0. For
each fixed » the right-hand side of (3.5) is positive for sufficiently large s, and

again we have a contradiction.
Case (3). 0<B<+co. Arguing as in §5 of [1], we have

log | g*(r)| = log | g*®))Q(r, ndt

where Q(r, t)=2rn-*(r*—t*)'log »t-*. Thus, proceeding as in §5 of [1], we
arrive at

*
lim 818200 _p o,

Hence, by Valiron’s Tauberian Theorem [4], we have

n(r, 0, g¥)~(B/m)r'/*

and
n(r, 0, f¥)~(B/x)r,
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where f*(z) is the entire function such that if f(z) is represented as

f2)=Ae" f__‘i1 E(—ai 1>=Ae32fo(z)
then

H@=Ae T E(— 2y, 1)=Ae™f§(2).
Therefore we have (0, f¥)=1 and so
(3.6) o0, f*=1.
Now we can show that

—_ ES
3.7 lim inf——k%um <o,

Let z=re'?, a,=|a,|e'?, y,=r/|a,|. Look at values of ¢(0—¢,, »,) in 0<6=
n/4—p. By the assumption |¢,|=f. Then by Lemma I,

¢(0_¢v; yv)=*¢(_0+¢w yu);_¢(0+l¢vly yv)°

Hence we have

—log| f¥(re'?)| = —log| fi(re' +F)|.
Let ¢ a sufficiently small positive number such that e<zx/4—pB. Then for
0=0=m/4—B—¢

= n(x) x cos2(0+p)+r cos(6+B)

o x? x*+r24-2xr cos(f+B) dx

—log| fi(re o) | =r*|

;—cos(-’z-r——Ze) log| f¥(r)l.

Thus, setting 6,=x/4—p—e, we have

o, 1 _ [ 0
[/ 1og e 0= | "oglfre )i

=~ "tog | fitre 02| 46z — 0, cos( 5 —2¢) ) og | £E()1.

Therefore we have (3.7) from (3.1) and log M(r, fo)<log M(r, e~3%)+log M(r, f).
Proceeding as in §4 of [1] from (3.6) and (3.7), we have B=0, which is
impossible.

8§4. Proof of Theorem 3 and Theorem 3’. In order to prove Theorem 3
and Theorem 3/, we prove the following lemma.

LEMMA 2. Let g(z) be a canonical product of genus k and having zeros
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{—b,} in the sector {z; 0=arg z—m =28} where B is a positive number such that
2B(k+1)<m/2. Let g*(z) be a canonical product of genus k and having only
negative zeros {—|b,|}. Then we have

4.1) (—1*log|g(r)| =(—1)*(cos 28(k+1))log | g*(r)|
and especially (—1)*log|g(»)| >0.

Let z=re**, y,=r/|b,|. Then we have X ¢(x, v,)=log|g*(re*)|, and so
by Lemma 1 we have

(=D*log|g(r)| =(—1)*log| g*(re*?)|

© n(x) xcos2B(k+1)4rcos2Bk
o xkH x%+r*2rx cos 28

=(—1)*(cos 2B(k+1))log | g*(r)].

dx

:(_1)2krk+1S

In order to prove Theorem 3, let f(z) be an entire function satisfying the
hypotheses in Theorem 3. We assume that (1.7) is false, i.e.,

4.2) lim inf l"—gﬂéﬁ—fl <oo.

If g(z) is constant, then we have f(2)=e® where P(z) is a polynomial of
degree ¢, which is the desired result. Hence we may assume that g(z) is not
constant. Since 2k=<¢—1 and 2B8(g+1)<x, we have 28(k+1)<z/2. Therefore
we can show that

—1\* *

(=D*loglg (r)|<oo.

7«-‘1/2

4.3) lim inf

If % is even, then (4.1) and (4.2) imply (4.3). If % is odd, then we have
8, 1 T
[, 108 ey 40= 0, (cos( 5 —e(k-+1) og | g*(r)

where 6,=x/2(k+1)—2B—¢ for a sufficiently small positive ¢ such that
e<m/2(k+1)—28, and hence we have (4.3) from (4.2).
On the other hand we have from (1.6) and Lemma 1,

4.4) (—1)*log| g*(re*f)| <(—1)*(cos Bg/2)log| g*(r)!.
Arguing as in §5 of [1], we have
S=2(—1)”loglg*(te"ﬂ)l—(—D"(cos Ba/2)loglg*®)] .

t1+q/2

4.5)

(=D*loglg*n)| _ . (=D)*log|g*@2s)|
72 2 (25)0/2

>C, O<r<s<+400).
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Let
B=lim sup((—1)*log| g*(z)|)/rv/%

If Bis +oo or 0, then we have a contradiction from (4.3), (4.4) and (4.5). If
0<B<+o0, then

(—1)* log | g*()| < (1-+cos Ba/2)(—1)*(log | g5 N, Byt

where y=p/#. Hence
oDt loglg* @] _ 5

yra/z

Therefore 8(0, f*)=1. Now we can show that

— *
(4.6) lim inf _ﬂ;_rqui)l <

In fact, setting 6,=n/2(¢+1)—B—e for a sufficiently small positive ¢ such that
e<x/2(g+1)—p, we have

)
So ol°g+U‘W1<e_in df= -t%(cos(% —e(q+1))) log | f¥()1,

where f,(z) is the canonical product formed with the zeros of f(z). Hence we
have (4.6) from (4.2). Proceeding as in §4 of [1], we have B=0, from §(0, f*)=1
and (4.6), which is impossible.

In order to prove Theorem 3’, it is necessary to prove (4.3), the inequality
corresponding to (4.4) and (4.6) in our case. The proof of (4.6) in our case is
quite similar to that of (4.6) in Theorem 3. The proof of (4.3) in our case
follows from the similar arguments to those in the proof of Theorem 3,
observing that g*(z)=e®®g¥(z) where g¥(z) is the canonical product formed
with the zeros of g*(z) and Q(z) is a polynomial with deg Q(z)<p. Now by
Lemma 1, (1.8) and the definition of h(z), we have the following inequality
corresponding to (4.4),

(—1)*log | g*(re*f)g*(re-'%)| =2(—1)*(cos Bg/2)log | g*(r)|.

Thus proceeding as in the proof of Theorem 3, we can prove Theorem 3/,
observing that g*(z) satisfies the hypotheses of g(z) in Theorem of [2].

§5. Proof of Theorem 4. Let ¢(z*)=f(2)f(—2), gl@)=¢(—2)/¢(0). If g(z)
is constant, then we have f(z)=Ae?* where A, B are constants, which is the
desired result. Thus we may assume that g(z) is not constant. Since
far)f(—ir)/ f(0)>=g(r?), where » is real, we have

lim int 81801 < o0

T



360 SHIGERU KIMURA

by (1.9). Hence we have by (4.1)

log | g*(v)|

<00
yl/z

A=lim inf
T-00
where g*(z) is the canonical product with the only negative zeros which have
the same absolute values as the zeros of g(z) have. Let
. 1 *
B=Ilim sup —Q—g—Ir‘lgT(m.
If B is +oco or 0, then we have a contradiction from g*(—r)=0(1), by the same
arguments as those in §3. If 0<B<-+4co, then we have A=B and so

n(r, f)~ar, a=B/x.

by Valiron’s Tauberian Theorem [4].

We remark that f(z)=1/zI"(z) satisfies the hypotheses of Theorem 4.

We can prove Theorem 5 and Theorem 5 by the similar arguments to
those in proof of Theorem 4 and so we omit their proofs.
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