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A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION

AND LINDELOF FUNCTION

BY SHIGERU KIMURA

§ 1. In our previous papers [1, 2], we considered the entire functions which
have only negative zeros and obtained a characterization of the exponential
function. In this paper we consider the entire functions whose zeros are dis-
tributed in a sector and prove the followings.

THEOREM 1. Suppose that f(z) is an entire function of order q=2p-\-l where
p is non-negative integer and having zeros {av} in the sector {z; O^argz—πrg
β<π/(q+l)} and Σ\av\'q< + ̂  Let φ(z*)=f(z)f(-z) and g(z)=φ(-z)/φ(0)
Unless g(z)=l, we assume that g(z) is a canonical product and

(1.1) (-l)Mog|^(r^)|^(-l)*(cos^/2)log|^(r)|+ε(r)(-l)Mog|^(r)|

for all sufficiently large r where k is the genus of g(z), 0<β<π/(q+l) and
0^ε(r)=0(l/r ε°), εo>O. Then f(z)=eP(z) where P(z) is an odd polynomial of
degree q.

As an improvement of Theorem 1 we have

THEOREM 1'. Suppose that f(z) is an entire function of order q—2p+l
where p is non-negative integer and having zeros {av} in the sector {z; O^arg z—π

and Σlf lvh β <+«>. Let φ{z*)=f{z)f(-z\ g(z)=φ(-z)/φ(0)=

eQcz)g0(z) and h(z)=eQ(z)g0(z) where go(z) is a canonical product. We assume that

(1.2) (

and

(1.3) (

for all sufficiently large r where k is the genus of go(z), 0<β<π/(q+l) and
0^ε(r)=0(l/rε°), εo>O. Then f(z)=eP(z) where P(z) is a polynomial of degree q.

Omitting the condition about zeros {av}> we prove the following theorems.
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THEOREM 2. Suppose that f(z) is an entire function of order one and having
zeros in the sector {z; \argz—π\^β<π/4\ such that

(1.4) / ( r ) / ( - r ) = 0 ( l ) (r^oo).

Then f(z)—ΛeBz, where Λ, B are constants, or else

n CN i log M r , /)
(1.5) hm— i-^.=oo.

r-»oo f

THEOREM 3. Suppose that f(z) is an entire function of order q=2p+l where
p is non-negative integer and having zeros in the sector {z; 0^e.τg z—π^
β<π/2(q+l)}. Setting φ(z2)=f(z)f(-z), g(z)=φ(-z)/φ(0), we assume that g(z)
is a canonical product and

(1.6) (-l)k\og\g(reίP)\^(-l)k(cosβq/2)log\g(r)\

for all sufficiently large r where k is the genus of g(z) and 0<β<π/2(qJrl).
Then f(z)=eP(z} where P(z) is an odd polynomial of degree q} or else

These two theorems are the extensions of those in [1] whose functions have
only negative zeros.

As an improvement of Theorem 3 we have

THEOREM 3'. Suppose that f{z) is an entire function of order q=2p+l
where p is non-negative integer and having zeros in the sector {z; O^argz—π^
j8<jr/2to+l)}. Setting φ(z*)=f(z)f(-z), g(z)=φ(-z)/φ(O) = e^^go(z) and h(z) =

eQ(z)g0(z) where gQ(z) is a canonical product, we assume that

(

and

(1.8) (

for all sufficiently large r where k is the genus of go(z) and 0<β<π/2(qJ

rl).
Then f(z) — eP{z) where P(z) is a polynomial of degree q, or else

As a characterization of the entire function and Lindelδf function we prove
the following theorems.

THEOREM 4. Suppose that f(z) is an entire function of order one and having
zeros in the sector {z; |arg2—π\ ^/3<τr/4} such that
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(r-oo)

and

(1.9)

Cε)=Λ£β2, or else n(r, f)~ar where n{r, f) indicates the number of zeros
°f f(z) in \z\<r and a is a constant.

THEOREM 5. Suppose that f(z) is an entire function of order q=2pJrl where
p is non-negative integer and having zeros in the sector {z O^arg z—π^π/2(qJrl)}.
Setting φ(z2)=f(z)f(—z), g(z)—φ(—z)/φ(0)f we assume that g(z) is a canonical
product and

for all sufficiently large r where k is the genus of g(z) and 0<β<π/2(q-{-l).
Further we assume that

Then f(z) — eP{z) where P(z) is an odd polynomial of degree q, or else n{r, f)^arq

where n(r, f) indicates the number of zeros of f{z) in \z\ <r and a is a constant.

As an improvement of Theorem 5 we have

THEOREM 5'. Suppose that f(z) is an entire function of order q=2p-{-l where
p is non-negative integer and having zeros in the sector {z O^Ξarg z—π^π/2(qJrl)}.

Setting φ(z2)=f(z)f(-z), g(z)=φ(-z)/φ(0) = e^^go(z) and h(z) = e^z)]?M where
go(z) is a canonical product, we assume that

and

(-l)klog\g(reίP)h(re-iβ)\^(-l)k2(cosβq/2)\og\g(r)\

for all sufficiently large r where k is the genus of g(z) and 0<β<π/2(q+l).
Further we assume that

| lo g !/(*>)/(Wr) | |
q

Then f(z) = ePCz) where P(z) is a polynomial of degree q, or else n{r, f)^arq

where n(r, f) indicates the number of zeros of f(z) in \z\<r and a is a constant.

The proofs of our theorems depends on those of theorems in [1] and the
following lemma.
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LEMMA 1 [3]. Let

ψ(x, ;y)=(l/2)log(l+2;y cosx+y2)+ Σ (~iy(yJ/j)cosjx .

Then (—l)kψ(x, y) is monotone decreasing for O^x^π/(k+l), y^O.

§2. Proof of Theorem 1 and Theorem 1'. Let f(z) be an entire function
satisfying the hypotheses in Theorem 1. We can write

where P(z) is a polynomial of degree at most q and E is the Weierstrass primary
factor. Defining

and φ*(z2)=f*(z)f*(-z), we have

logM(r2, φ*)=o(rq).

Hence g*(z)=φ*(—z)/φ(0) satisfies

(2.1, S JS^^M).

If g(z) = l, then f{z)—eP{z) where P(z) is a polynomial of degree q, which
is the desired result.

Now we assume that g(z) is a canonical product of genus k. Since

ψ(x,r/\K\)=\og\E(-re™/\b»\, k)\,

by the definition of φ in Lemma 1, we have

where {bv} are zeros of g(z).
Since {bv} are distributed in the sector {z; O^argz—π^2β<2π/(q+l)} and

k^(q—l)/2y we can easily see that

and

(-D
by Lemma 1.

Thus we have from (1.1)
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(-l)klog\g*(re^)\^(-l)k(cosβq/2)ϊog\g*(r)\+ε(r)(-l)klog\g*(r)\.

From this inequality we can induce

r Iloglg*(r)|| n logM(2s, g*) ^

by proceeding as in §4 of [1], for a sequence of r={rn\ tending to infinity
with n where Clf C2, C are positive constants which do not depend on r. Hence
we arrive at an impossible inequality from (2.1) and εo>O. This completes the
proof of Theorem 1.

In order to prove Theorem 1', firstly we consider the case deg(Re ζ?(r))=0
and £o(s)=l. Then we deduce f(z) = eP{z) where P(z) is a polynomial of degree
q> which is the desired result.

Secondly we assume that (1.2) and (1.3) hold. Then we can prove the
following inequality by Lemma 1, the definition of h(z) and (1.3),

( - l ) M o g l ^ ( r e V ( r ^

where g*(z)=eQ(z)gt(z). Therefore, proceeding as in the proof of Theorem 1,
we can prove Theorem V.

§3. Proof of Theorem 2. Let f{z) be an entire function satisfying the
hypotheses in Theorem 2. We suppose that (1.5) is false, i.e.,

(3.1) H m i n f i 2 S ^ )

Let φ(z2)=f(z)f(—z), g(z)=φ(—z)/φ(Q). If g(z) is constant, then we have
f{z)—AeBz where A, B are constants, which is the desired result. In order to
complete the proof of Theorem 2, we may thus confine ourselves to the case
when g(z) is not constant. We shall show that this will contradict (3.1), so
that (1.5) must hold as required.

By (3.1) and logM(r2, 0)^2 log M(r, /), we have

(3.2) ^

Since the genus of g(z) is zero, we can write

g(z)=

Setting

we see that
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,o ON r f log\ g*(r)\
(3.3) hm mf ^ < °o.

In fact, by Lemma 1

> r cos 2 β [ ^ - ^ - = (cos 2y3)log |^*(r) |.
^Jo x x+r

Hence we have (3.3) in view of (3.2).
Since (1.4) is equivalent to g{—r)=0(l) and \g*(—r)\^\g(—r)\ by Lemma 1,

we have g*(—r)=0(l). Now we may assume that

(3.4)

Arguing as in § 5 of [1], we have

where C1} C2 are positive constants which do not depend on r.
Ing I σ*(r) I

Case (1). ^ ^ l i m s u p felf/2

v J=<χ>. From (3.3) we can find arbitrarily

large values of r and s, with r < s , such that the right-hand side of (3.5) is
positive. Thus it follows that the inequality

holds for some t>r and this contradicts (3.4).
Case (2). B=0. In any case, we have (log |g(r) |)/r 1 / 2 >0 for r > 0 . For

each fixed r the right-hand side of (3.5) is positive for sufficiently large s, and
again we have a contradiction.

Case (3). 0 < £ < + oo. Arguing as in § 5 of [1], we have

-, t)dt

where Q(r)t)=2rπ-2(r2-t2)-1\ogrt-1. Thus, proceeding as in § 5 of [1], we
arrive at

,: log|**(r)|

Hence, by Valiron's Tauberian Theorem [4], we have

n(r, 0, g*)

and
n(r, 0, f*)~{B/π)r,
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where f*(z) is the entire function such that if f{z) is represented as

f(z)=AeB'lLE(- — ,

then

Therefore we have 5(0, / * ) = 1 and so

(3.6) 3 ( 0 , / * ) = l .

Now we can show that

(3.7) l i m i n f
r-»oo T

Let z=reiθ, av=\av\ex*v, yv=r/\av\. Look at values of ψ{θ-φv, yv) in 0 ^ 0 ^
π/4—β. By the assumption \φv\^β. Then by Lemma 1,

Φ(θ-φv, y»)=-ψ(-θ+φv, y»)^-ψ(θ+\φ»\, yv).

Hence we have

Let ε a sufficiently small positive number such that ε<π/i—β. Then for
O^θ^π/A-β-ε

[-nW xcos2(θ+β)+rcos(θ+β)

χ2 x*+r*+2xr cos(θ+β)

^-cos( |~2e) log |/ f(r) | .

Thus, setting θo=π/4—β—ε, we have

Therefore we have (3.7) from (3.1) and log M(r, /0)glog M(r, e'Bz)+\og M(r, / ) .
Proceeding as in §4 of [1] from (3.6) and (3.7), we have B—0, which is
impossible.

§ 4. Proof of Theorem 3 and Theorem 3'. In order to prove Theorem 3
and Theorem 3r, we prove the following lemma.

LEMMA 2. Let g{z) be a canonical product of genus k and having zeros
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{—bv} in the sector {z; O^argz—π^2β\ where β is a positive number such that
2β(k-\-l)<π/2. Let g*(z) be a canonical product of genus k and having only
negative zeros {— \ bv |}. Then we have

(4.1) (- l)Mog |s(r) |^(- l)*(cos 2j8(ft+l))log|**(r) I

and especially (—1) * log | g{r) \ > 0.

Let z—reιx, yv=r/\bv\. Then we have Σ ^ ( x , yv)
:=log\g*(reιx)\t and so

by Lemma 1 we have

χk^ x2+r2+2rxcos2β

(-D*(cos2i8(Jίj+l))log|g*(r)|.

In order to prove Theorem 3, let f(z) be an entire function satisfying the
hypotheses in Theorem 3. We assume that (1.7) is false, i.e.,

(4.2) 1 . ^ n

If g{z) is constant, then we have f(z) = eP(z) where P(z) is a polynomial of
degree qy which is the desired result. Hence we may assume that g(z) is not
constant. Since 2k^q-l and 2β(q+l)<ic, we have 2β(k+l)<ic/2. Therefore
we can show that

(4.3) U m i π f g i

If k is even, then (4.1) and (4.2) imply (4.3). If k is odd, then we have

where θo=π/2(k+l)—2β—$ for a sufficiently small positive ε such that
ε<π/2(k+l)-2β, and hence we have (4.3) from (4.2).

On the other hand we have from (1.6) and Lemma 1,

(4.4) (

Arguing as in § 5 of [1], we have

(L ς , [sK-Dk log Ig*{te*fi) 1 -(- l) f e (cos βq/2) log 1 g*(t) \
^ 0 ) )



EXPONENTIAL FUNCTION AND LINDELOF FUNCTION 359

Let
S=lim sup((-l)* log | g*(r) | )/r3/2.

r-oo

If B is +00 or 0, then we have a contradiction from (4.3), (4.4) and (4.5). If
0 < £ < + o o , then

(-1)* log I g*(rη I ^ J"(l+cos βq/2)(-l)k(\og | g*W \ )Q{r, t)dt

where γ—β/π. Hence

(-l)Moglg*(rQl
Jim ^ = 5 .

Therefore <5(0, / * ) = 1 . Now we can show that

(4.6) l i m i n f

In fact, setting θo=π/2(q+l)—β—s for a sufficiently small positive ε such that
ε<π/2(q+ϊ)—β, we have

l o g ' / ?

where fQ(z) is the canonical product formed with the zeros of f(z). Hence we
have (4.6) from (4.2). Proceeding as in § 4 of [1], we have B=0, from 5(0, /*)=1
and (4.6), which is impossible.

In order to prove Theorem 3', it is necessary to prove (4.3), the inequality
corresponding to (4.4) and (4.6) in our case. The proof of (4.6) in our case is
quite similar to that of (4.6) in Theorem 3. The proof of (4.3) in our case
follows from the similar arguments to those in the proof of Theorem 3,
observing that g*(z)=eQ{z)gt(z) where gf(z) is the canonical product formed
with the zeros of g*(z) and Q(z) is a polynomial with deg Q(z)^p. Now by
Lemma 1, (1.8) and the definition of h(z), we have the following inequality
corresponding to (4.4),

(-1)* log I g*{re^)g*(re'^) \ ^2(-l)*(cos βq/2)log | g*(r) \.

Thus proceeding as in the proof of Theorem 3, we can prove Theorem 3r,
observing that g*(z) satisfies the hypotheses of g{z) in Theorem of [2].

§5. Proof of Theorem 4. Let φ(z2)=f(z)f(-z), g(z)=φ{-z)/φφ). If g{z)
is constant, then we have f(z)=AeBz where A, B are constants, which is the
desired result. Thus we may assume that g{z) is not constant. Since
f(ir)f(—ir)/f(0)2=g(r2), where r is real, we have
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by (1.9). Hence we have by (4.1)

Λ = l i m i n f l θ g l f ! ( r ) l < o o

where g*(z) is the canonical product with the only negative zeros which have
the same absolute values as the zeros of g(z) have. Let

If B is +oo or 0, then we have a contradiction from g*(—r)=0(l), by the same
arguments as those in §3. If 0<B<+co, then we have A—B and so

by Valiron's Tauberian Theorem [4].
We remark that f(z)—l/zΓ(z) satisfies the hypotheses of Theorem 4.
We can prove Theorem 5 and Theorem 5' by the similar arguments to

those in proof of Theorem 4 and so we omit their proofs.
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