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1. Introduction. The space BMOA is one which lies between the space
AB of bounded analytic functions and the Hardy class Hp for any p>0. In this
paper we are concerned with BMOA for general domains and investigate the
inclusion relations among the null classes OAB, OBMOA and Op of plane domains
corresponding to these spaces.

The space BMO of functions of bounded mean oscillation was first introduced
by John and Nirenberg [7], in the context of functions defied in Rn. Since then
several people [1, 3, 5] investigated the space in various contexts and noticed
that BMO has deep connections with conjugate harmonic functions and the dual
of Hardy class Hx. We state the definition of BMO for functions defined on
the unit circle T. Let u be an integrable function on T and / be a subarc of
T. We denote by uλ the average of u over /, that is,

where | / | denotes the Lebesgue measure of /. We say that u is of bounded
mean oscillation, u^BMO, if

where the supremum is taken over all subarcs IdT. We denote by BMOA the
set of functions in BMO whose Poisson extensions to the unit disc D are analytic.
It is known that BMOA can be defined in an equivalent way which makes it
conformally invariant.

Let / be an analytic function in D. We use the following notations:

\\f\\P= sup (-£-[**\f{reiθ)\*dθYP,
o<r<l\lπ Jo /

p
o<r<l

(1.1) Hp(D)={f:f is analytic in D and | | / | | P <+oo} ,

and

= sup ^ - Γ l o g + 1 f(reiθ)\dθ .
0<r<i lπ Jo
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It is known that for / analytic in D the following are equivalent (see, for

example, [1] or [4]):

(a) f<=BMOA]

1—dz
(b) sup(( I/

z—a

(c) f(z) = f1(z)+if2(z), ZΪΞD, for some fό analytic in D with Refj^HB(D) for
; = 1, 2, where HB denotes the space of bounded harmonic functions;

(d) sup f o r e v e r y p>0'

ft?,. )-f(a) <+°°, for some p>0;

a&D

(e) sup

a<ΞD

(f)

In Section 2 we define BMOΛ for general domains and state several equi-
valent conditions. In Section 3 we deal with a classification problem of plane
domains for BMOΛ.

2. BMOA for general domains. Following Metzger [10], we defie BMOΛ
for general domains by using a similar condition to (b). Let G&OG (i.e. G
possesses Green's function) be a domain in the extended complex plane S. We
denote by BMOΛ(G) the space of functions / analytic in G for which

(2.1) supίί \f'(z)\*g(z, a)dxdy<+™,
aGGjJG

where g(z, a) denotes the Green's function of G with pole at a.
Note that the condition (c) is not equivalent to (2.1) in the case where G is

not simply connected. As for conditions (d), (e) and (f), however, we can con-
sider similar conditions for a general domain G, which are equivalent to (2.1).
Let S(G) denote the class of functions subharmonic in G, and following [9], for
u^S(G) we denote by u the least harmonic major ant of u in G, where we set

+<χ> if u admits no harmonic majorants.

THEOREM 1. For f analytic in G, the following are equivalent:
( i ) f(ΞBMOA(G);

(ii) sup wα(α)<+oo, where ua(z)=\f(z)—f(a)\p, for any p>0;
&G

p
a&G

(iii) supwα(α)<+oo, where ua(z)=\f{z)—f(a)\p, for some p>0;
a&G

(iv) sup£ α (α)<+oo, where ua(z) = log+\f(z) — f(a)\ .
a<EG
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In order to prove the theorem, we need two lemmas, one of which is proved
by using Green's theorem, and the other was essentially proved by Rudin [11,
p. 48].

LEMMA 1. For f analytic in G and a<=G let ua(z)=\f{z)—f(a)\2, then

(2.2) JJj/'WI2^, a)dxdy^jύa(a).

Proof. Let Ω be a plane domain with smooth boundary and let u and v be
C2 functions on Ω. Then Green's theorem states that

H (vAu — uAv)dxdy = \ (v-^ u-^r— )ds ,
Ω }dΩ\ an on/

(2.3)
J JiJ

where Δ denotes the Laplacian, -w— is differentiation in the outward normal
on

direction, and ds is the arc length element on dΩ.
Let {Gn} be a regular exaustion of G such that a^Gn for n — \, 2, ••• . We

apply (2.3) with u(z)=\f(z) — f(a)\2 and v(z)=gn(z, a) in the domain obtained
by delating from Gn a small disc centered at a, where gn(z, a) denotes the
Green's function of Gn. Noting Au=A\f/(z)\2

> we see by a simple calculation

- ( ( \f'(z)\2g(z, a)dxdy = \im-[[ \f\z)\2gn{z, a)dxdy

= ύa(a).

LEMMA 2. Let π be a universal covering map of G, then f°π~f°π for any
f^S(G).

Proof. Since f°π is a harmonic majorant of f°π, we easily see that /°7Γ

^/°τr. We must show the inverse inequality. Let Γ be the cover transformation

group under which π is invariant. Since f°π°T is a harmonic majorant of

f°π°T=f°π for every T^Γ, we see f°π^f°π°T. By composing T~ι from

right, we obtain the inverse inequality f°π^f°π°T. Thus we see that f°π is

invariant under Γ. Therefore we can define a single-valued harmonic function

in G by f°π°π~1, which is a harmonic majorant of /. Then we see that f°π°π~ι

§:/, and hence f°π^f°π, as asserted.

Proof of Theorem 1. By Lemma 1 we see that (2.1) and (iii) with p—2 are
equivalent. In paticular, we see that (i) implies (iii) and that (ii) implies (i). It
is obvious that (ii) implies (iii) and that (iii) implies (iv), since log+t^tp/p for
any t>0 and p>0.



114 S. KOBAYASHI

All we must prove is that (iv) implies (ii). Suppose that (iv) holds and let
p be fixed with 0<p<oo. Let g=f°π and φb(z)=^(z+b)/(l+bz) for δe/λ Let

a), where ua(z) = \og+\f(z)-f(a)\. For every beD, set vb{z)

=^og+\g(z)—g(b)\f and a = π(b), then we see by Lemma 2

= {ΰa°π){b)

since ua°π=vι,. Therefore we see that g satisfies the condition (f), and hence
(d), since these conditions are equivalent for functions analytic in D as mentioned
in the introduction.

Let Kt=wplg{(z+b)/O.+bz))-g{b)\\p. For fixed a^G, let uβ(z)= | /(z)-/(a) |>

and take a point beD such that a — π(b), then we see again by Lemma 2

ua(a) = (ΰa°π)(b)

=Ub)

V

V

where vh(z)~\g(z)—g(b)\p. Therefore / satisfies (ii), as asserted.
From the proof of the theorem we obtain

COROLLARY. For f analytic in G, f^BMOA(G) if and only if f-π^BMOA{D).

Remark, Metzger [10] essentially proved the corollary in the way to showing
AD{G)(ZBMOA(G), by using Myrberg's theorem, but (the author thinks that)
our proof is rather elementary. Here AD(G) denotes the space of analytic
functions with finite Dirichlet integrals in G.
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3. Classification of domains. Let AB(G) denote the space of all bounded
analytic functions in G, and HV{G), 0<£<oo, the Hardy class, denote the space
of analytic functions / for which \f\v admits a harmonic majorant in G. Note
that when G—D this definition is equivalent with (1.1). We denote by OAB

(resp. OBMOA, OP) the set of all plane domains G for which AB(G) (resp.
BMOA(G), HP(G)) contains only the constants. By Theorem 1 we easily see that

AB(G)dBMOA(G)dHp(G),

for any G and any p>0, and hence

(3.1) OΛB ΏOBMOΛ-D U OP.

In this section we deal with a classification problem which asks whether the
inclusion relation in (3.1) are strict or not. We denote by the sign of inequality
> a strict inclusion relation, and by Cap(E) the logarithmic capacity of a
compact set E.

THEOREM 2. OΛB>OBΛWA> \J Op.
0<p<co

Proof. In order to prove OAB>OBMOΛ, we must construct a plane domain
G for which AB{G) contains only the constants while BλlOA(G) contains a
nonconstant function. Let A be a compact totally disconnected set with 0^ .4
which lies on the interval [—1, 1] such that Cap(Λ)>0 but of linear measure 0.
For example, we can take as A a Cantor ternary set which is constructed on
the interval [—1, 1]. Let En>m={z+An+4:mi: z^A} for every integer n and
m, and E=\J™>m=-00En,m. Finally let G be the complement of E, G = C—E,
then G is a plane domain with OeG.

We easily see that E is removable for AB functions, since it is a countable
union of sets of linear measure 0, and hence G^OAB. TO show G^OBMOA, we
prove that f{z)—z belongs to BMOA(G). This follows from a deep result on
BMOA and omitted values by Hayman and Pommerenke [5], but we give
another proof so as to make this paper self-contained. Let F—\JZ^~ooEny where
En={z+4:n: z^A}, and Gλ = C—F. The author [8] used the following lemma
for Hp classification.

LEMMA 3. For every p with 0<p<l, f(z)=z belongs to Hp(Gλ).

Proof. By a theorem of Kolmogorov [2, p. 57], every analytic function g
for which | I m g | admits a harmonic majorant belongs to Hpίoτ 0<p<l. There-
fore it is sufficient to prove that | Imz | admits a harmonic majorant in Gλ. Let
X be the bounded harmonic function in d Π { ^ : Imz<2} with boundary value 0
on F and 1 on the line {z\\mz—2}. Since Cap(F)>0, we see that 1 is non-
constant. Since F is invariant under the translation φ{z)-=z—4, so is X. There-
fore we see that
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sup{X(z): Im 2=1} =max{X(z): Im 2=1, - 2 ^ R e z ^ 2 } ^ 1 - ε

for some ε with 0<ε<l/2, and hence we see

(3.2) ε

on the line {z: Im 2=1}. Since (3.2) holds in equality on the line {z:Imz=2},
we see that (3.2) holds in {z : l<Imz<2} by the maximum principle. We define
a positive function s in G1 by

f I m z + ε " 1 i f I ^ ,
( 3 . 3 ) s(z)=\

[ e-1X(z)+2 if lmz<2.

If we can prove that s is superharmonic in Gly we see that s(z)+s(z) is a super-
harmonic majorant of | Imz | . Since | Imz | is subharmonic, we easily see that
I Im ̂ 1 admits a harmonic majorant in Gx by the Perron's family argument.
Therefore it is sufficient to prove that s is superharmonic on the line {z : Imz=2},
since s is harmonic off the line. Fix any z0 with lmzo=2 and r with 0 < r < l ,
then we see by (3.2) and (3.3)

=--Γs(
2π Jo

and hence s is superharmonic at z0, as asserted. This completes the proof of
the lemma.

Let p be arbitrarily fixed with 0<p<l, and put ua(z) = \z— a\p for α e G .
By Lemma 3 we see that ua admits a harmonic majorant in G, since
Let ω=4n+4mz', where m and n are integers, then we see that

for ZΪΞG, since G is invariant under the translation φ(z)=z+ω. Therefore we
obtain

and hence

(3.4) (la

By putting a = a—ω and then ω~—ω in (3.4), we obtain the inverse inequality,
and hence
(3.5) ίia+ω(aJ

rω) = ύa(a),
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which means that ua(a) is invariant under the translation φ(a) = aJrω as a
function of a. Since ua(z)^2p(\z\p+ \ a\p)=2p(uo(z)+ I a \p), we see

(3.6) ua(a)^2p(tUa)+\a\p)

for every G G G . Let Q={z: \Rez\ <2, |Imz|<2} and Λf=max w0U). If we

define
min (#<,(*), M) for z

ulz) for Z*ΞQCΓ\G,

then we easily see that v(z) is a superharmonic majorant of uo(z), since
for Z G Q by the maximum principle. Therefore we see that

(3.7)

for z^QΓΛG. By (3.5), (3.6) and (3.7) we obtain

sup ύa(a)= sup ιιa{a)
α ΞG (KΞQΠG

S2" sup
eρn

which means that f(z)=z satisfies the condition (iii) of Theorem 1, and hence
f(z)=z belongs to BMOΛ(G) by Theorem 1, as asserted.

Next we prove OBMOA> U OP. For this we must construct a domain G
0<ί?<oo

for which BMOΛ(G) contains only the constants while HP(G) contains a non-
constant function for every p with 0<p<oo.

It is known that Op>Oq if p>q^l ([8]). Let Ek be a compact totally
disconnected set which satisfies

(3.8) s-Ek<=Ok+1-Ok.

Since the condition (3.8) remains unchanged if Ek is mapped by a parallel
translation or a homothetic transformation, we can take Ek so that Ek is con-
tained in the disc {z: |*-4*|^1} for 6 = 1,2, •••. Let E={j£L1Ek and G be
the complement of E, G = C—E. It is trivial that G$OP for every p>0, since
G c S - £ , for k = l, 2,

In order to prove G<BOBMOA, we suppose f^BMOΛ(G) and show that / is
constant. Since BMOA{G)(ZHP(G), f belongs to HP{G) for every p>0. There-
fore we see that every point on Ek is removable singularity of /, and hence /
is analytic in the whole complex plane C. Then / can be expressed as a Taylor
expansion

(3.9) f(z)=±cmzm
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for 2 G C . Let
(3.10) Gk={z: \z\<3 4k}-{z: \z-4k\^ik}

and gk(z)=gk(z, —^k) be the Green's function of Gk with pole at —ik for
k=0, 1, 2, •••. Since Gk=4kG0={4;kz z<=G0} by (3.10), we see

and

(3.11)
3n

for z^dGk, where ~— denotes differentiation in the inward normal direction.
dn

Let ua(z)=\f(z) — f(a)\ for α ^ G and write ak — --4fe. If we put

then we see by (3.11) that

dn

on dGk- Therefore we see

-( \f(z)-f(ak)\\dz\,
J | 2 | = 3 4«

= 2π

since G*cG for &=0, 1, 2, •••. Since / satisfies the condition (iii) of Theorem
1 with p = l, we see that

(3.12)

for some constant C. It is well known that the coefficient cm in the expansion
(3.9) is expressed as

(3.13)
Ίπi Ji2i=Λ z

=J_C f{z)-f{ak)
2πi)\z\=R zm+1

for 772=1, 2, •••, where R is an arbitrary positive number. Putting R—3Άk in
(3.13) and using (3.12), we obtain

,. ,^ 1 f l/W-/(α*)l ,,.,
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Letting k—>co, we see that cm—0 for m=l, 2, •••, and hence / is constant, as
asserted. This completes the proof of the theorem.

4. Concluding remarks. It is easily seen that the null class of plane
domains corresponding to the space of analytic functions which satisfy the
condition (c) coincides with OAB- In fact, if G<=OAB and if a function /analytic
in G is expressed as f{z)—fλ{z)+if2{z), z<=G, with Re fj^HB(G) for / = 1 , 2,
then gj(z)=exp fj(z) belongs to AB(G). Therefore gj is constant and so is fj

for j—l, 2, and hence / is also constant, (cf. [5, p. 220])

Let E be the set which we used to prove OAB>OBMOA. Let F=\og(E),

the image of E under all branches of log, and G — C—F. Then we easily show
that G&OAB-OBMOA and that f(z) = ez belongs to BMOΛ(G). Therefore we
can construct a plane domain G^OAB—OBMOA which does not satisfy the
geometric condition of Hayman and Pommerenke's theorem [5] and for which
BMOΛ(G) contains a function with exponential growth.

Let G be the domain which we used to prove OBMOA> U OP. By modi-
0<p<oo

fying somewhat our proof, we can also prove that if f^H^G) and / is analytic
in the whole plane C, then / is constant.
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