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A NOTE ON ASYMPTOTIC UNBIASEDNESS

OF ESTIMATES

BY RITEI SHIBATA

§ 1. Introduction.

In estimation theory the concept of asymptotic unbiasedness of estimates is
an important extension of ordinary unbiasedness. An estimator is intuitively
called asymptotic ally unbiased when the bias function converges to zero with
the smaller order than that of the variance for each parameter. This definition,
however, admits so called super-efficient estimator whose asymptotic variance
never exceeds the Cramer-Rao lower bound and is below it at some parameter
([10], [13]). Walker [12] showed that if the derivative of the bias function also
converges to zero, such estimator is excluded. Another approach by Rao [7], [8]
and Schmetterer [9] is that if an estimator is asymptotic normal and its con-
vergence is uniform in the compact neighbourhood of each parameter, it is not
super-efficient.

In this paper combining these two approaches we will propose a new defini-
tion of asymptotic unbiasedness and show that the Cramer-Rao inequality asymp-
totically holds in a general framework. Although the proposed class of esti-
mates is wider, it is easier to verify the conditions because the definition
depends only on how the bias function converges to zero and no asymptotic
distribution or derivative of the bias function is needed.

§2. Asymptotic unbiasedness.

Let Xn—(xu x2, ••• , xn) be a sequence of n random variables distributed
according to the joint probability density function f(Xn, Θ) with respect to a σ-
finite measure μ(dXn) on Rn, where θ is a parameter which can take any value
in an open interval Θ. We assume the following regularity condition on the
density f(Xn, θ).

CONDITION 1. For each θ^θ there exists a positive sequence cn {which may
depend on θ) such that

(2.1) /(*)= HHΓ-1-Έ5Ϊ
Λ- + 0 h n-co
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is positive finite, where the expectation EΘ is taken on the support of f(Xn, θ).

As is well known, with some regurality conditions ϊ(β) is represented as

ϊ(β)= ψ^~l, Tim In(θ, θ+hlcn)

by the Kullback Leibler information

Inifii, ^2)=^1{log->7^-'--a i

Γ} θi> θ<^θ

(see [4]).
Condition 1 is satisfied if xu x2} ••• , xn are independent, identically distri-

buted and the Fisher information

is positive finite, in fact putting cn=y/W we have

1 Γ r h2 i n Ί
Γ r limj/W— -- + 1 -1
I In-™ L 72 J J

l i m Γ

In this paper we will consider estimation of the parameter θ. Condition 1
implies that \cn{Tn—θ)\ is bounded away from zero in probability for any
estimator Tn(Xn) of #([11]). That is, the possible highest order of consistency
is O(cn). Assuming the existence of the bias function bn{θ)—EΘ(Tn--θ) we will
define asymptotic unbiasedness of Tn in such a general framework.

DEFINITION. An estimator Tn of θ is said to be asymptotically unbiased
(from the right) at θ if

(2.2) cnbn{β) — > 0 as n — > oo ,

and one of the following conditions is satisfied
(1) for any small h>0

(2.3) cnbn(θ+h/cn)—+0 a s 7 i — > o o ,

(2) there exists a positive sequence δn which converges to zero with o(l/cn)
and

(2.4) (bn(θ+δn)-bn(θ))/δn-^O as n—>oo.

The asymptotic unbiasedness from the left is similarly defined and the dis-
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cussion is the same. The condition (2.2) requires that the bias of Tn vanishes
as n —> oo with the smaller order than that of variance and the condition (2.3)
or (2.4) requires some uniformity of the convergence.

PROPOSITION 1. // one of the following conditions is satisfied, then Tn is
asymptotic ally unbiased,

a) both cnbn(θ) and the derivative bf

n(θ) converge to zero as n—> oo (Walker [12]),
b) the distribution function Fn(t, θ) of cn(Tn—θ) converges to a normal distri-

bution function uniformly in the compact neighbourhood of θ for each fixed t and
the (lJrd)th absolute moment of Fn(t, θ) is bounded for some δ>0 (Rao and
Schmetterer [7], [8], [9]),

c) cnbn(θ) converges to zero as n —> oo uniformly in the compact neighbourhood
of θ (Ibragimov and Khasminskii [5]),

d) cnbn(θ) converges to zero as n—*co and is equicontinious.

Proof. If a) holds, we can choose a positive sequence δn—O(l/cn) such that
for any ε>0 there exists a positive integer TV and

bn(θ+δn)-bn(θ) ft/( < ε ,

so that (2.4) follows. The condition b) implies c), and (2.2) and (2.3) follow from
c) or d).

Remark. The moment condition in b) is not so strong since our main
concern is in the mean squared error and it is sufficient to consider only esti-
mates whose second moments are bounded.

The above proposition shows that our definition is very wide. Next we
will show that the Cramer-Rao inequality holds for such estimates.

THEOREM. Assume Condition 1. If Tn is asymptotically unbiased then the
following inequality holds.

Proof. From the Chapman-Robbins inequality [3], we have

°Cn H = " "», θ+a)-f(Xn,θ) V

for any θ, θ+a^Θ, where α>0. If Tn satisfies (2.2) and (2.3), putting a=h/cn

and dividing the denominator and the numerator of the right side of (2.5) by h2,
we have the desired result from Condition 1. We can obtain the result putting
a=on in the same manner if Tn satisfies (2.2) and (2.4).

Example. Let xt have the mean
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, θ-(l-θ)θι~ι if \β\^l
μι(θ)=Eθxι=\

1 θ-{l-θ)θ~ι otherwise,

1 n

where — CXD<#<CO. Consider an estimator Tn——Σ x% of θ, then the bias
n ι=i

function of Tn becomes

1
n

1 0-/1-1

-n)

if

if | 0 | ^ 1

otherwise

1*1*1

otherwise.

and the derivative is

Since ^(1)=1 and #,(—1)=(—I)""1, the condition a) in Proposition 1 is not satisfied
at 0=1 or —1. Therefore we can not apply Walker's result. Furthermore if xL

satisfies the following linear equation,

(2.6) Xi=Xi + μi(β)

then

Unless xλ is normal, Tn is not asymptotically unbiased in the sense of Rao and
Schmetterer since Tn is not asymptotically normal.

However (2.2) and (2.4) hold for any positive sequence δn such as non —> ô
and δncn —> 0 when the Condition 1 is satisfied and cn=o(?i), and Tn is asy-
mptotically unbiased in our sense.
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