SIMULTANEOUS MINIMAL MODELS OF HOMOGENEOUS TORIC DEFORMATIONS

DAISUKE MATSUSHITA

Abstract

Every flat family of Du Val singularities admits a simultaneous minimal resolution after a finite base change. We investigate a flat family of isolated Gorenstein toric singularities and prove that there exists a simultaneous partial resolution.

1. Introduction

For a flat family of surfaces $f: X \to S$, a birational morphism $\tau: \tilde{X} \to X$ is said to be *simultaneous minimal resolution* if τ satisfies the following two conditions:

(1) $f \circ \tau$ is a flat morphism.

(2) $\tilde{X}_s := (f \circ \tau)^{-1}(s)$ $(s \in S)$ is the minimal resolution of X_s .

Let $f: X \to S$ be a flat morphism whose central fibre $f^{-1}(0)$ has only Du Val singularities. Brieskorn [3, 4] and Tyurina [11] proved that there exists an open set $0 \in U$, $(U \subset S)$ and a finite surjective morphism $U' \to U$ such that a flat morphism $f': X \times_U U' \to U'$ admits a simultaneous minimal resolution. We consider an analogous problem for a flat family of isolated Gorenstein toric singularities. According to the Minimal Model Theory, it is natural to consider an existence of "simultaneous terminalization" for a flat family of higher dimensional singularities.

DEFINITION 1. Let $f: X \to S$ be a flat morphism. It is said that f admits a simultaneous terminalization if there exists a birational morphism $\tau: \tilde{X} \to X$ which satisfies the following conditions:

- (1) $f \circ \tau$ is a flat morphism.
- (2) $\tilde{X}_s := (f \circ \tau)^{-1}(s)$ $(s \in S)$ has only terminal singularities.
- (3) $K_{\tilde{X}}$ is τ -nef.

By [2, Theorem 8.1], an *n*-dimensional isolated toric singularity is rigid if $n \ge 4$ or it is not Gorenstein. Hence we investigate a flat family of 3-dimensional isolated Gorenstein toric singularities. Our result is the following:

¹⁹⁹¹ Mathematics Subject Classification: Primary 14E30; Secondary 14B07, 14M25. Received April 16, 2001; revised July 9, 2001.

THEOREM 1.1. Let $f: X \to S$ be a flat morphism such that the central fibre $f^{-1}(0)$ has only 3-dimensional isolated Gorenstein toric singularities and the base space S is reduced. Then there exist an open neighbourhood $0 \in U$, $(U \subset S)$ and a birational morphism $\tau: X \to X \times_S U$ which satisfy the following conditions:

- (1) $f \circ \tau : \tilde{X} \to U$ is a flat morphism.
- (2) The fibre \tilde{X}_s has only hypersurface singularities in cyclic quotient space. Moreover those singularities are defined by

$${xy - zw = 0} \subset C^4/G, \quad G \cong Z/nZ,$$

where the action of G is given by

$$(x, y, z, w) \rightarrow (\zeta x, \zeta^{-1} y, \zeta^a z, \zeta^{-a} w),$$

(ζ is an *n*-th root of unity).

(3) $K_{\tilde{X}}$ is τ -nef.

Remark 1. The singularity of Theorem 1.1 (3) is not terminal singularity if G is not trivial. We construct an example of a flat family of isolated Gorenstein singularity which admits no simultaneous terminalization even if after finite base change. Please see Remark 4 in section 3.

This note is organised as follows: We recall the definition of homogeneous toric deformation according to K. Altmann in section 2. Theorem 1 is proved in section 3.

Homogeneous toric deformation 2.

The following definition of homogeneous toric deformation is introduced by K. Altmann in [1, Definition 3.1].

DEFINITION 2. A flat morphism $f: X \to \mathbb{C}^m$ is called a homogeneous toric deformation if the following conditions are satisfied:

- (1) $X := \text{Spec } C[\sigma^{\vee} \cap M]$ is an affine toric variety.
- (2) f is defined by m equations $x^{r_i} x^{r_0} = t_i$ $(1 \le i \le m)$, where $r_i \in \sigma^{\vee} \cap M$
- (2) *f* is defined by *m* equations $x = x = t_i$ ($1 \le i \le m$), where $r_i \in \sigma = m$ and t_1, \ldots, t_m are coordinates of C^m . (3) Let $L := \bigoplus_{i=1}^{i=m} Z(r_i r_0)$ be the sublattice of *M*. The central fibre $Y := \underline{f}^{-1}(0, \ldots, 0)$ is isomorphic to Spec $C[\overline{\sigma}^{\vee} \cap \overline{M}]$ where $\overline{\sigma} = \sigma \cap L^{\perp}$ and $\overline{M} := M/L$.
- (4) $i: Y \to X$ sends the closed orbit in Y isomorphically onto the closed orbit in X.

In this note, we consider a homogeneous toric deformation with some additional conditions:

DEFINITION 3. We call homogeneous toric deformation $f: X \to C^m$ a *Goren*stein homogeneous toric deformation if it satisfies the following two conditions:

- (1) Y has only Gorenstein singularities.
- (2) Kodaira-Spencer map $C^m \to T_Y^1$ is nontrivial.

Remark 2. We list some examples of Gorenstein homogeneous toric deformation.

- (1) The simplest example is $f: \mathbb{C}^2 \to \mathbb{C}$ defined by x y = t.
- (2) Let $g: \mathscr{X} \to S$ be a versal deformation space of Du Val singularity of type A_n . The space \mathscr{X} is defined by the equation

$$\mathscr{X} = (xy + z^{n+1} + t_1 z^{n-1} + \dots + t_{n-1} z + t_n = 0)$$

in \mathbb{C}^{n+3} and g is the projection. Let α_i $(0 \le i \le n)$ be the i + 1-th elementary symmetric polynomials of (n + 1)-variables and H a hyperplane in \mathbb{C}^{n+1} defined by $\sum_{i=0}^{n} s_i = 0$, where s_0, \ldots, s_n are coordinates of \mathbb{C}^{n+1} . We take a base change by $\alpha : H \to \mathbb{C}^n$ $(\alpha^* t_i = \alpha_i(s_0, \ldots, s_n))$.

Then $\mathscr{X} \times_{\mathbf{C}^n} H$ can be described

$$\left\{xy+\prod_{i=0}^n(z+s_i),\sum_{i=0}^n s_i=0\right\}\subset \mathbf{C}^{n+4}.$$

Using new coordinates $z_i := z + s_i$, $\mathscr{X} \times_{\mathbb{C}^n} H$ is written as

$$\mathscr{X} \times_{\mathbf{C}^n} H = \left(xy + \prod_{i=0}^n z_i = 0 \right) \subset \mathbf{C}^{n+3}$$

and $f = (z_1 - z_0, \dots, z_n - z_0)$. Thus $f : \mathscr{X} \times_{\mathbb{C}^n} H \to H$ is a Gorenstein homogeneous toric deformation.

(3) Let g: X → M be a versal deformation space of an n-dimensional (n ≥ 3) isolated Gorenstein toric singularity. We denote by S an irreducible component of M and by S_{red} its reduced structure. By [2, Theorem 8.1], the base change f : X_{red} := X ×_S S_{red} → S_{red} is a Gorenstein homogeneous toric deformation.

3. Simultaneous minimal model of Gorenstein homogeneous toric deformation

Theorem 1.1 is obtained as a corollary of the following theorem.

THEOREM 3.1. Let $f: X := \text{Spec } C[\sigma^{\vee} \cap M] \to C^m$ be a Gorenstein homogeneous toric deformation and $\tau: \tilde{X} \to X$ a toric minimal model of X. Assume that dim X = n + m. Then

- (1) $f \circ \tau : \tilde{X} \to C^m$ is a flat morphism,
- (2) $K_{\tilde{X}_{t}}$ is τ -nef,
- (3) \tilde{X}_t has only hypersurface singularities in a quotient space. Moreover these singularities are defined by

$$(F_i - F_0 = 0) \subset \mathbf{C}^{n+m}/G, \quad (1 \le i \le m)$$

where

- (a) G is an abelian group which acts on C^{n+m} diagonally,
- (b) C^{n+m}/G has only Gorenstein terminal singularities,
- (c) Each F_i is written as

$$F_i = \prod_{j=p_i+1}^{p_{i+1}} x_j \quad (0 \le i \le m)$$

$$0 = p_0 < p_1 < p_2 < \dots < p_m < p_{m+1} = n + m$$

where x_j is the *j*-th coordinate of C^{n+m} . Moreover F_i are invariant monomials under the action of G.

Remark 3. If dim X = 2 + m (i.e. Every fibre of f is 2-dimensional), then F_i , $(1 \le i \le m)$ is written as

$$F_i = x_{i+1} \ (0 \le i \le m-1), \quad F_m = x_m x_{m+1}$$

by changing indices if necessary. Because F_i are invariant monomials under the action of G, the action of each element of $g \in G$ is nontrivial only on coordinates x_m and x_{m+1} . Since C^{2+m}/G has only Gorenstein terminal singularities, the action of G must be trivial. Thus each fibre of $f \circ \tau$ is smooth and τ gives a simultaneous resolution of f.

Proof of Theorem 1.1. Since S is reduced, there exists an open set $0 \in U$, $(U \subset S)$ which satisfies the following commutative diagram:

where η is an open immersion and $\mathscr{X}_{red} \to \mathscr{G}_{red}$ is the restriction of a versal deformation space to some irreducible component with its reduced structure. For Theorem 1.1, it is enough to prove that there exists a birational morphism $\tau : \mathscr{X}_{red} \to \mathscr{X}_{red}$ which satisfies the assertions of Theorem 1.1. By [2, Theorem 8.1], we describe $\mathscr{X}_{red} \to \mathscr{G}_{red}$ as a Gorenstein homogeneous toric deformation. Then by Theorem 3.1, there exists a birational morphism $\mathscr{X}_{red} \to \mathscr{X}_{red}$ which satisfies assertions (1) and (2) of Theorem 1.1. We check the assertion (3). Because dim $\mathscr{X}_{red} = \dim \mathscr{G}_{red} + 3$, F_i is written as

$$F_i = x_i \ (0 \le i \le m - 2), \quad F_{m-1} = x_{m-1}x_m, \quad F_m = x_{m+1}x_{m+2}$$

or

$$F_i = x_i \ (0 \le i \le m-1), \quad F_m = x_m x_{m+1} x_{m+2}.$$

Each F_i are invariant monomials under the action of G. Hence, in the latter case, singularities of a fibre is isomorphic to C^3/G . There exists no 3-dimensional Gorenstein quotient terminal singularities. Thus G is trivial. Therefore the central fibre has only the following singularities:

$$\{x_{m-1}x_m - x_{m+1}x_{m+2} = 0\} \subset C^4/G.$$

Again there exists no 3-dimensional Gorenstein quotient terminal singularities. Hence C^4/G has only isolated singularities. The proof of Theorem 1.1 is completed by the classification of 4-dimensional isolated Gorenstein toric singularities [8, Theorem 2.4].

Proof of Theorem 3.1. By [1, Theorem 3.5, Remark 3.6], the construction of σ is as follows:

(1) σ is defined by $\sigma = \mathbf{R}_{\geq 0}P$, where P is an (n+m-1)-dimensional polygon given by

$$P := \operatorname{Conv}\left(\bigcup_{i=0}^m R_i \times e_i\right).$$

Note that R_i $(0 \le i \le m)$ are integral polytopes in \mathbb{R}^{n-1} and

$$R_i \times e_i := \{(x_1, \ldots, x_{n-1}, 0, \ldots, 1, \ldots, 0) \in \mathbf{R}^{n+m} | (x_1, \ldots, x_{n-1}) \in R_i \}.$$

(2) f is defined by $(x^{r_i} - x^{r_0})$ $(1 \le i \le m)$, where $r_i : N_{\mathbf{R}} = \mathbf{R}^{n+m} \to \mathbf{R}$ is the (n+i)-th projection.

Thus, all primitive one dimensional generators of σ are contained in the hyperplane in $N_{\mathbf{R}}$ defined by $r_0 + \cdots + r_m = 1$. By [9, Theorem 0.2], there exists a toric minimal model \tilde{X} . Let $\sigma = \bigcup \sigma_{\lambda}$ be the corresponding cone decomposition. By [9, Definition 1.11], these cones satisfy the following three conditions:

- (1) σ_{λ} is a simplex.
- (2) One dimensional primitive generators k_1, \ldots, k_{n+m} of σ_{λ} are contained in the hypersurface defined by $r_0 + \cdots + r_m = 1$.
- (3) The polytope

$$\Delta_{\lambda} := \sum_{j=0}^{n+m} \alpha_j k_j, \quad \sum_{j=0}^{n+m} \alpha_j \le 1, \ \alpha_j \ge 0$$

contains no lattice points except its vertices.

Let $X_{\lambda} :=$ Spec $C[\sigma_{\lambda}^{\vee} \cap M]$ and let k_{j}^{\vee} $(1 \le j \le n+m)$ be the dual vectors of k_{j} . By (1), X_{λ} can be written as follows:

$$X_{\lambda} \cong C^{n+m}/G$$

where $G := N/\bigoplus_{j=1}^{n+m} \mathbb{Z}k_j$ and the action of G is diagonal. Because each k_j are contained in the hypersurface defined by $r_0 + \cdots + r_m = 1$ and $\langle r_i, k_j \rangle \ge 0$ $(r_i \in \sigma^{\vee})$,

$$\begin{cases} \langle r_i, k_j \rangle = 1 & \text{for } p_i < j \le p_{i+1} \\ \langle r_i, k_j \rangle = 0 & \text{other } j \end{cases}$$

where $0 = p_0 < p_1 < p_2 < \dots < p_m < p_{m+1} = n + m$. Thus x^{r_i} is written as

$$x^{r_i} = \prod_{j=p_i+1}^{p_{i+1}} x_j$$

where $x_j = x^{k_j^{\vee}}$ is the *j*-th coordinate of C^{n+m} . The monomials x^{r_i} are invariant under the action of *G*, because $r_i \in \sigma_{\lambda}^{\vee} \cap M$. Thus if we set $F_i = x^{r_i}$, the proof of Theorem 3.1 is completed.

Remark 4. There exists an example of a flat family of isolated Gorenstein toric singularity which has no simultaneous terminalization even after finite base change.

LEMMA 3.2. Let Y be a hypersurface singularity in a cyclic quotient space defined by

$$\{x_1x_2-x_3x_4=0\} \subset \mathbf{C}^4/G, \quad G\cong \mathbf{Z}/l\mathbf{Z}.$$

where the action of G given by

$$(x_1, \dots, x_4) \to (\zeta^{a_1} x_1, \dots, \zeta^{a_4} x_{n+1}), \quad (0 < a_i < l)$$
$$a_1 + a_2 \equiv a_3 + a_4 \equiv 0 \pmod{l}.$$

Note that ζ is a primitive l-root of unity and a_i 's are coprime. Let X be the subvariety $C^4/G \times C$ defined by

$$x_1x_2 - x_3x_4 = t$$

and $f: X \to C$ the projection. Then Y has only isolated Gorenstein toric singularities and f admits no simultaneous terminalization even after any finite base change.

Proof. It is easy to see that Y has only isolated toric singularities. Since the residue form

$$\operatorname{Res} \frac{dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4}{x_1 x_2 - x_3 x_4}$$

is G-equivariant, Y has only isolated Gorenstein toric singularities. Because

$$\sum_{i=1}^{4} a_i \ge 2l_i$$

 C^4/G has only Gorenstein terminal singularities. We derive a contradiction assuming that there exists a simultaneous terminalization after some finite base change. Let Z be the subvariety $C^4/G \times C$ defined by

$$x_1x_2 - x_3x_4 = t^m$$
.

From the assumption, there exists a simultaneous terminalization $\tau : \mathscr{X} \to Z$. Let Z' be the subvariety in C^5 defined by

$$x_1x_2 - x_3x_4 = t^m$$
.

Then there exists a finite morphism $Z' \to Z$. Since Z' has only hypersurface singularities whose singular locus has codimension four, it is Q-factorial by [7, XI.3.13]. By [6, Lemma 5.16], Z is again Q-factorial. Because a general fibre of $f: X \to C$ is smooth, the codimension of exceptional set of τ is greater than two. That contradicts to [5, VI 1.5 Theorem].

REFERENCES

- K. ALTMANN, Minkowski sums and homogeneous deformations of toric varieties, Tôhoku Math. J. (2), 47 (1995), 151–184.
- [2] K. ALTMANN, The versal deformation of an isolated toric Gorenstein singularity, Invent. Math., 128 (1997), 443–479.
- [3] E. BRIESKORN, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann., 166 (1966), 76–102.
- [4] E. BRIESKORN, Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann., 178 (1968), 255–270.
- [5] J. KOLLÁR, Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer-Verlag, Berlin, 1996.
- [6] J. KOLLÁR AND S. MORI, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge, 1998.
- [7] A. GROTHENDIECK, Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA2), North-Holland, Amsterdam, 1968.
- [8] D. R. MORRISON AND G. STEVENS, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc., 90 (1984), 15–20.
- [9] M. REID, Decomposition of toric morphisms, Arithmetic and Geometry Volume II (M. Artin and J. Tate eds.), Progress in Math. 36, Birkhäuser, Boston, 1983, 395–418.
- [10] M. REID, Young person's guide to canonical singularities, Algebraic Geometry Bowdoin 1985 (S. J. Bloch ed.), Proc. Sympos. Pure Math. 46-1, AMS, Providence, 1987, 345–414.
- G. N. TYURINA, Resolution of singularities of plane deformations of double rational points, Functional Anal. Appl., 4 (1970), 68-73.

DIVISION OF MATHEMATICS GRADUATE SCHOOL OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO, 060-0810 JAPAN e-mail: matusita@math.sci.hokudai.ac.jp