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ON THE EXISTENCE OF SPHERICALLY BENT SUBMANIFOLDS,
AN ANALOGUE OF A THEOREM OF E. CARTAN

K~NuTr PAWEL AND HELMUT RECKZIEGEL

Abstract

In this article an analogue of E. Cartan’s theorem about the existence of (local)
totally geodesic submanifolds with a prescribed tangent plane is proved, namely for the
existence of spherically bent submanifolds (=extrinsic spheres); also a global version is
deduced.

Introduction

In a riemannian manifold M the simplest submanifolds are the totally
geodesic ones. An inhabitant of M will consider them as uncurved. The one-
dimensional examples are the geodesics. However the examples of proper totally
geodesic submanifolds of dimensions >2 may be very rare. Already E. CARTAN
has investigated this situation: Starting from a point p € M, a linear subspace
U g T,M of dimension >2 and some ¢ > 0 such that U,(p) is a normal neigh-
bourhood he obtained the following

THEOREM. If S(U) denotes the unit sphere in U and ¢, :]|—¢,e[ — M the
geodesic t — exp,(tu) for every ue S(U), then the “geodesic e-umbrella”

(1) N(p,U) = U cu(]—e,¢[)

ueS(U)
is a totally geodesic submanifold of M if and only if for every ue S(U) and every
te€|—e, ¢ the parallel translate

t
Uu(t) := (|leu)(U) = T,y M of U along c,, see (5),
0

is curvature invariant, that means

Yo,v',0" € Uy(t):  R(v,v")v" € Uy(1).

The most famous special case of this theorem is the well known relation
between Lie triple systems and totally geodesic submanifolds in the theory of
symmetric spaces.
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In this article we solve the analogous problem for spherical submanifolds,
known also as extrinsic spheres from the article [NY] of Nomizu and Yano. In
the euclidean space the open parts of linear subspaces and of ordinary spheres (of
any dimension) are the spherical submanifolds. In an arbitrary riemannian space
M the spherical submanifolds are those which are bent uniformally, that means,
they are totally umbilical and have a parallel mean curvature normal (see Def-
inition 1). If N is a spherical submanifold, p € N a fixed point and z the mean
curvature normal of N at p, then every normal ¢-neighbourhood of N about p is
uniquely determined by the data (p,U := T,N,z), because the unit speed geo-
desics ¢ of N through p are circular arcs of M, that means, they satisfy the third
order differential equation

VaVac + Ve, Vae) - ¢ =0

(0 denotes the canonical unit vector field of R), and the solutions of this equa-
tion are uniquely determined by their initial values ¢(0), ¢(0) and (V,¢)(0) (see the
Propositions 1(f), 2 and 3).

This observation has led us to construct “circular ¢-umbrellas” N.(p, U, z)
for prescribed data (p,U,z) analogously to (1) (see Proposition 5); they are
locally (the only possible) candidates for spherical submanifolds of M associated
to (p,U,z). In fact, we will prove in section 6:

THEOREM 1 (Main result). Let be given a point p € M, a non-trivial linear
subspace U < T,M and a vector z € U\{0} = T,M; furthermore, let S(U) denote
the unit sphere in U and ¢, : J, — M the maximal circular arc with the initial data
cu(0) =p, ¢,(0) =u and (Vyé,)(0) =z for every ue S(U), choose an ¢ >0 such
that the circular e-umbrella

(2) Nﬁ(pv U>Z) = U Cu(]—E,ED
ueS(U)

is defined and put V := U ® Rz. For every ue S(U) and t €]—¢, e[ we define
N Vo) = (V). 2l) = (W) € V) and
Uu(t) :={ve V() |v L z,(0)},

and suppose for all v,v’',v" € U,(1)

(4) R(v,v" " € U,(t) and R(v,v")z,(t) = 0.
Then N.(p,U,z) is a spherical submanifold of M.

The proof of this theorem is inspired by a discovery of K. TsukapA (see [T]),
namely that n-dimensional totally geodesic submanifolds are related to the inte-
gral manifolds of a canonical (horizontal) distribution defined on the Grassmann
bundle G,(TM) over the riemannian manifold M. Already in [PR] we used this
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idea for a short proof of E. Cartan’s theorem. Here in this article we present an
analogue to TSUKADA’s result by constructing such a horizontal distribution & on
a submanifold E of the fibre product G, 1(TM) x TM that the n-dimensional
spherical (not totally geodesic) submanifolds are related to the integral manifolds
of & (Theorem 2). Furthermore, we prove that & is involutive in (U @ Rz,z) €
E if and only if (U,z) satisfies condition (4) appropriately modified (see Proposi-
tion 9(e)); here the curvature form of a horizontal structure on G, (TM) X TM
is the essential tool. After that the proof of Theorem 1 is similar to our short
proof of CARTAN’s theorem: ~ Over the circular e-umbrella N;(p, U, z) we construct
a submanifold S.(p, U,z) = E built up by horizontal lifts of the circular arcs
¢, (used in Theorem 1). As these lifts are tangential to &, we call S;(p,U,z) a
9-umbrella (see Definition 3). Since condition (4) implies the involutivity of &
at all points of S,(p, U,z), this Z-umbrella is an integral manifold of & accord-
ing to Theorem 3 (a theorem usefull also in different situations), and therefore
N.(p,U,z) is a spherical submanifold of M.

Of course, maximal connected integral manifolds of & give rise to max-
imally extended spherical manifolds of M, possibly with selfintersections; they
are described correctly by maximally extended spherical immersions f: N — M.
Theorem 4 shows that they are geodesically closed under suitable hypotheses
(see Definition 4); in particular, if in this situation M is complete, then N is
complete, too.

1. Notations and general basic facts

At first we remark that all manifolds, maps etc. are assumed to be C*
differentiable if not otherwise stated.

In this article M always denotes a connected riemannian manifold of dimen-
sion m; wy : TM — M, {-,->, V and R denote its tangent bundle, riemannian
metric, Levi-Civita connection and curvature tensor, respectively. For all other
(riemannian) manifolds the analogous geometric objects will be marked by an
appropriate index. Furthermore, for any curve o: J — M and any ¢;,% € J let

15}
(5) llo: Ty M — Ty M

51

denote the parallel displacement in M along o. In this article an essential geo-
metric object will be the connection map K : TTM — TM of M (see [D], [P], [L]
p. 284). It is a vector bundle morphism along the projection 7,s; in particular,
the following diagram

TT™M —% . M

M j/ J/ s

™ —— M

™



202 KNUT PAWEL AND HELMUT RECKZIEGEL

commutes. K is defined by!
(6) Kw = VwidTM,

where idzy, is considered as a vector field of M along the projection 7my,.
Consequently, for every curve ¢:J — TM we have

(7) Ko &=V

for 0 and T,m) see the end of this section. If for pe M and ve T,M the
vertical subspace ker(7,7y) = T,(7,M) is denoted by 7, (my), we obtain that the
restriction

(8) K|7;(ma) coincides with the canonical isomorphism 7,(7,M) — T,M.
Furthermore, the restriction
9) (Tnay,K) | T,TM : T, TM — T,M @ T,M is an isomorphism.

Therefore one obtains: If g: L — TM is some differentiable map and
Y\,Y,: L — TM are two vector fields along 7, o g, then there exists one and
only one vector field X : L — TTM (of TM) along g such that

(10) (T?TM) o X = Y] and KoX = Yz.

For any differentiable map f : N — M its differential is denoted by f, or Tf and
its restriction to 7,N sometimes by 7,f. A submanifold N of M is said to be
regular, if its topology is induced by the topology of M. At last, by ¢ we denote
the canonical unit vector field of R; thus, Vo¢ denotes the covariant derivative of
a vector field ¢:J — TM with respect to e J.

2. Basic properties of spherical maps and submanifolds

DEeFINITION 1.

(a) An isometric immersion f : N — M is said to be spherical if it is totally
umbilical, i.e., there exists a normal vector field H along f such that the
second fundamental form /& of f is given by

(11) WX,Y)=<(X,Yy -H forall X,YeX(N),
and if this field H is parallel in the normal bundle of f i.e.,
(12) V.H € f,T,N for every ve T,N (peN).

H is the so called mean curvature normal of f. We put

“f) = <H,H).

(b) A 1-dimensional isometric immersion, i.e., a unit speed curve ¢:J — M
from an open interval, is called a circular arc if it is spherical.

'For the covariant differentiation of vector fields along maps see [P] p. 36.
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() A submanifold N of M is said to be spherical, if its inclusion map
N — M is spherical.

Remark 1. (a) Spherical submanifolds (with non-vanishing mean curvature
normal) were introduced by Nomizu and YANO in [NY] under the name
extrinsic spheres. In fact, they were treated already before, e.g., in [LN]
and [No].

(b) Every totally geodesic map (resp. submanifold) is also a spherical map
(resp. submanifold), namely with H = 0.

(c) If M is a space of constant curvature, then condition (4) of Theorem 1 is
satisfied automatically. Thus, every initial data (p, U, z) are induced by
a spherical submanifold of M. In the euclidean space the linear sub-
spaces and ordinary spheres of any dimension are the complete spherical
submanifolds. In the euclidean sphere S the complete spherical sub-
manifolds are the intersections of S with affine subspaces of R™'!.
If we describe the hyperbolic space H™ by the hyperboloid model in
the Lorentzian vector space R]"™' (see [O’N] p. 111), then the complete
spherical submanifolds are obtained as the analogous intersections.

(d) If M is a symmetric space and dim U > 2, then the circular ¢-umbrella
N.(p,U,z) of Theorem 1 is a spherical submanifold if and only if there
exists a ¢ € R such that for all vectors v,v’,v" € V := U ® Rz we have

(13) R(v,0")0" = ¢ (', 0"y v — (v, 0"y - v').

Proof. 1If condition (13) is satisfied, then 7 and every parallel translate of
V' is curvature invariant (because of VR =0). According to the theorem of E.
Cartan (mentioned in the introduction) there exists a totally geodesic submanifold
N of M with p e N and T,N = V; moreover, N is a space of constant curvature
¢. Applying the last remark (c) we see that there exists a spherical submani-
fold N of N adapted to the initial data (p, U,z) and which therefore contains
N:(p,U,z) as open part. — Conversely, according to a result of B. Y. CHEN
every spherical, not totally geodesic submanifold N of M with dim N >2 is a
hypersurface of a totally geodesic submanifold N of M, which has constant
curvature (see [Ch]). Therefore condition (13) is satisfied. O

ProOPOSITION 1. Every spherical immersion f: N — M with mean curvature
normal H and shape operator A has the following properties for all X,Y,Z € X(N):
(a) AnX = #(f)- X
(b) ViH — —(f) - f.X
(©) RULX, LY} .7 = f(RY(X, Y)Z = 2(f) - (CY, 25X — (X, Z>Y))
(d) R(f.X, £ Y)H =0
() TN @ RH is a parallel subbundle of TM along f, that means: if
o:J — N is any curve, then we have

5]
(I1f o o) (/i )N ® RH (1)) = (fiTy) N @ RH ().

141
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(£) The image c:=foua of any unit speed geodesic o:J — N in N is
a circular arc in M with mean curvature normal Vy¢ = H o o; hence
%(c) = %(f) (see Definition 1(b)).

Proof. (a) is deduced from (11) by use of the relation between 4 and A.
From (a) and (12) one obtains (b) immediately with the Weingarten identity. (c)
and (d) are obtained by repeating the proof for the curvature equations of Gauss
and Codazzi. For (e) and (f) the formulas (11) and (12) are used again. []

3. Circular arcs and circular ¢-umbrellas

At first we quote a result from LEUNG and Nomizu, see §1 in [LN].

PROPOSITION 2. A unit speed curve ¢ :J — M is a circular arc if and only if
it satisfies the differential equation

VaVaé + (Viaé, Viaé) - ¢ = 0.

The term V¢ is the mean curvature normal of ¢, and hence we have {Vy¢, Vs¢) =
%(c) for circular arcs.

In order to make full use of Proposition 2 we consider differential equations
of this type more generally.

PrOPOSITION 3. Let a vector field Y : TM Xy TM — TM along the canon-
ical projection TM %y TM — M be given. Then the following holds:*
(a) For every (v,a)e TM xy TM there exists a solution o = o, q) : Jpq) —
M of the differential equation

(14) A (CA)

defined on an open interval J, ., satisfying the initial conditions 0 € J, 4,
G(v,4)(0) = v and (Vat(y, 4))(0) = a, and which is unique and maximal in the
Jollowing sense: If a : J — M is another solution of (14) with the same
initial data, then J < J, 4 and o = o 4)|J.

(b) If o : J — M is a solution of (14), then also f:s+J — M, t— o(t —s) is
a solution of (14).

(c) If in the situation (a) 0 :=sup J(, 4 < 00 (resp. 0 :=inf Ji, , > —c0),
then for every compact subset C < TM Xy TM there exists a parameter
to € Jv,a) such that

(O'C(v’u), V@O'C(v,a))(]lo,é[) NnC = (b (resp. (O.C(U’a), V@O.t(v’a))(]& l‘o[) NC = @)

2The results keep valid, if M is only equipped with a linear connection V, and also (with obvious
modifications) if Y is only defined on an open subset G = TM X, TM.
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(d) The subset
DY — {(t,v,a) e R x (TM x 3 TM) |1 € Jiy0)}

is an open neighbourhood of the set {0} x (TM xp TM) in Rx
(TM xp TM), and the map

oY DY - M, (t,v,a)— %(p,a) (1)
is differentiable.

Proof. Let P :TM xyy TM — TM denote the canonical projection
(v1,v3) — v; for i =1,2. Then there exists one and only one vector field X €
X(TM x5 TM) such that its components X;:= P, X :TM xyy TM — TTM
satisfy

TL’M*Xl = 7'L'M*X2 = Pl, KX] = P2 and KX2 = Y;

see (10). Using these formulas one easily checks:
« If o is a solution of the differential equation (14), then (&, Vya) is an integral
curve of X.
- If ¢ is an integral curve of X, then a:=nyoPiol=myoProl is a
solution of the differential equation (14).
Therefore, the theory of integral curves of vector fields implies all assertions (e.g.,
see [W]). O

Let us apply Proposition 3 to get some information on circular arcs. For
that we fix a value » € R and introduce the vector field®

Y,:TM Xy TM — TM, (v,a) — —x»-<v,v) - v,
which via (14) is associated to the differential equation
(15) VaVao 4+ % - <o, oy - o = 0.

PROPOSITION 4.

(@) Let ¢:J— M be a curve with the initial data 0eJ, u:=¢(0),
a:=(Vs¢)(0), |lull =1, u L a and {a,a) =x. Then c is a circular arc if
and only if it is a solution of the differential equation (15).

(b) If ¢:J — M is a maximal circular arc (see the following Remark) and
0:=supJ < oo (resp. 0 :=inf J > —0), then c(t) tends to the boundary
of M for t — J, that means: for every compact subset C = M there exists
a parameter ty € J such that

c(Jto,0)NC =0 (resp. c(]0,5[)NC =0).

Therefore, every maximal circular arc is defined on the entire real line R,
if M is complete.

3The vector field Y : (v,a) — —<a,a) - v would represent the differential equation of circular arcs
(see Proposition 2) exactly; but with respect to the proof for Proposition 5 the choice of Y, is more
convenient.
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Remark 2. The assertion (a) and Proposition 3(a) show that for any initial
data (u,a) € TM x TM with |lul| =1 and u 1 a there exists a circular arc
¢:J — M satistying 0 € J, ¢(0) = u and (V,¢)(0) = @, which is unique and maxi-
mal in the sense of Proposition 3(a). So we know what is meant by maximal
circular arcs.

Proof.  The “only if part” of (a) is clear. Because of Proposition 2, for the
“if’ part” we have to prove only that c¢:=og, 1is a unit speed curve with
1= <V3¢,V3¢) = » under the prescribed initial assumptions. For that we put
A:={¢,¢) in addition and calculate that 4 and y satisfy the differential equations

(16) A =2(u—x2?) and p' = -l

and the initial conditions 4(0) =1, 2'(0) =0 and u(0) = %; since (A =1, u = x)
also solves (16), we get (¢, ¢> =1 and (V,¢,Vaé) = x.

For (b): Let be given a maximal circular arc ¢:J — M and a compact
subset C of M and assume J:=supJ < co. We may assume 0eJ. We put
u:=¢0), a:=(Vs¢)(0) and »:=<a,ay. From (a) we obtain that ¢ is the
maximal solution o« , of (15). As the curve &:=(¢,Va¢) runs in the subset
S:={(v,b) e TM x)y TM |||v|| = 1 and ||b||* = %} and C :={(v,b) € S| 7y (v) €
C} is a compact subset of TM xy TM, according to Proposition 3(c) there exists
a parameter f € J such that &(]7,0[) N C = 0. But this situation can only occur,
if ¢(Jto,0[)N C =0. — If in the foregoing situation M would be complete, then
C:={peM|d(p,c(0)) <} would be compact (according to the theorem of
Hopr-Rmwow) and ¢([0,d[) could not leave C in contradiction to the last statement;
hence 6 < oo is impossible for complete M. — The case d:=infJ > —o0 is
proved analogously. O

PrOPOSITION 5. Let be given a point p € M, a non-trivial linear subspace
U< T,M and a vector z € U+ = T,M; furthermore, for every unit vector ue U
let ¢, :J, — M denote the maximal circular arc with the initial data ¢,(0) = p,
¢,(0) = u and (V3é,)(0) =z. Then there exists an ¢ > 0 such that each of these
circular arcs is defined at least on the interval |—e¢, e[ and

Ne(pa U7 Z) = U Cu(]_878[)
ue U, |lul|=1
is a regular submanifold of M (see section 1), which we will call the circular -
umbrella associated to the data (p, U, z).

Proof. We will mimic the construction of the exponential map of a rie-
mannian manifold at a point, where the geodesics are replaced by circular arcs.
For that we apply Proposition 3 to the differential equation (15) with x = (z,z),
it means to the vector field Y : =Y, and the associated differentiable map
®Y: DY — M. Since for every unit vector ue U we have x(c,) = {z,z) = x,
Proposition 4(a) implies (with the notations of Proposition 3)

J, = J(u,:) and Cu = U(y,z)-
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Therefore, we may abbreviate J, := J(, ¢y uy-) and ¢, := oy, u,u5.-) for arbitrary
vectors u € U. Obviously we have Jo = R and ¢y = p. Furthermore, for every

1 .
ue U and every s € R\{0} the curve ¢ — c¢,(s?) (l € Ju> is seen to be a solu-

tion of the differential equation (15), too; hence we obtain
1
(17) Ju = . Ju and ¢yt ey (st).

Therefore,
D:={ueU|(l,u,{uuy z)e DY}
is a star shaped open neighbourhood of 0 in U,
®:D— M, u— ®Y(1,u uud-z)=c,l)
is a differentiable map with the special value ®(0) = p, and
(18) ®(tu) = ¢,(t) for every vector ue U and every 1€ J,.

Hence the differential T7o® : ToU — T, M is the inclusion map U — T,M, if ToU
is canonically identified with U. Therefore, there exists an ¢ > 0 such that the &-
neighbourhood U,(0) of the euclidean space (U,<-,-»,) is imbedded into M by
®. Because of (17) and (18) we have |—¢, ¢[ < J,, for every unit vector u € U and
®(U,(0)) = Ne(p,U,z). Thus the proof is complete. O

Remark 3. (a) In case z = 0 the map @ is the restriction of the exponential
map exp, to D < U.

(b) Although we have ®(u) = ¢,y (||u||) for u e U,(0)\{0}, where ¢, is a
simple circle arc, we can not use this formula for a definition of ®; it is
the purpose of the above construction to remove the “singularity” at
u=0. Quite a similar situation will occur in section 6 when we prove
Theorem 1.

(c) In [NY] the theory of circular arcs is based on the development of
curves. But this method would not simplify the proof of Proposition 5.

4. Horizontal structures

Let n: E — M be an arbitrary fibre bundle* and 7" := ker(Tn) its vertical
subbundle. If E, denotes the fibre of = over p e M, then ¥; = T.E, for every
ec k.

DEerFINITION 2. By a horizontal structure of = we understand a subbundle
A# < TE, which is complementary to ¥, i.e., TE = ¥ @ #, and by its curvature
form the tensor field Q of type (1,2) on E characterized by the equation

“The theory of horizontal structures can be developed for arbitrary surjective submersions as well.
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VX, Y e i(E) Q(Xa Y) = _[Xifa Y-M}"I/';

the indizes /# and ¥~ mean that one has to regard the horizontal resp. vertical
part of the respective vector field. Furthermore, a C* map ¢ : L — E is said to
be horizontal if it satisfies

9:TyL = Ay, for every qe L.

every e € E,, and for every X,Y e I'(,#) we have
(19) [X,Y](e) e #, = Q(X(e), Y(e)) =0.

Differential geometers are familiar with special horizontal structures: In the
article [E] C. EHRESMANN introduced connections, which are horizontal structures
with a further property (see Remark 5); the best known examples are the con-
nections on principal fibre bundles and the induced connections on bundles which
are associated to them (see [KN]). Other examples appear in the theory of rie-
mannian submersions (see [O’N]). With the methods of the latter book one can
prove:

PROPOSITION 6. If A is a horizontal structure of @, g : L — E a C* map and
X : L — TM a vector field along mwo g, then there exists one and only one vector
field X : L — TE along g such that

X=X and X’q € My, Jor every qe L.
X is called the horizontal lift of X.

For X € X(M) the horizontal lift of X oz is simply called the horizontal lift
of X.

PROPOSITION 7. For any horizontal structure H of n the following is true:
(a) For every curve o:J — M defined on an open interval J and every
initial data (s,e) € J x E with n(e) = a(s) there exists a horizontal curve

&:J — E defined on an open interval J satisfying
seJcJ, ds)=e and mod=oalJ,

which is unique and maximal in the sense of Proposition 3(a). The curve
a will be called the maximal horizontal lift of o with the initial data (s, e).

(b) Let L be a further manifold, B an open neighbourhood of {0} x L in
RxL and F:B— M vresp. g: L — E C* maps satisfying mog(p)=
F(0,p) for all pe L. We assume that J,:={teR|(t,p) e B} is an
interval for every pe L. If a,:J, — E denotes the maximal horizontal
lift of the curve o, :J, — M, t — F(t,p) satisfying a,(0) = g(p), then
B:={(t,p) € B|teJ,} is an open neighbourhood of {0} x L in B and the
map F:B— E, (t,p)— a,(t) is C* differentiable.
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Remark 5. A horizontal structure # is a connection in the sense of
EHRESMANN, if in the situation of Proposition 7(a) we always have J =J.

Proof.  Accepting assertion (a) we first prove (b). For that we pull back
the fibre bundle # by means of the map F and get the fibre bundle £ — B shown
in the diagram

Prg

E:=BxyE —— E

o

B .M
Analogously to the pullback of connections (see [P] p. 57) we can define the
pullback s of the horizontal structure ; it is characterized by

J?(q,g) ={we T(q‘e)E |prg,we #.} for all (g,e)e E.

Now let X € X(E) be the horizontal lift of the canonical vector field d/0t € ¥(B)
(notice Bc Rx L) and ®: D — E its maximal flow. If for p e L we put p:=
((0, p),g9(p)) € E and denote the maximal integral curve of X starting at p by
&5, then pry o &5 is the maximal horizontal lift a, of the assertion (b). Therefore,
we get B={(t,p) e B|(t,p) e D} and F : (t, p) — pry o ®(t, p). Hence B and F
have the stated properties.

Assertion (a) is proved with the same methods; work with the diagram

= Prg

E—JXME—>E

|

J —— M
and use the horizontal lift X of d € X(J) (compare [P] p. 59). O

PROPOSITION 8.  Let be given a second fibre bundle 7 : E — M with a horizon-
tal structure S and a fibre bundle morphism F : E — E and assume F,H, %’p
for every e € E.  Then the curvature forms Q and Q of A resp. # are related to
each other by

F.Q(X,Y)=Q(F.X,F,Y) for all X,Y € X(E).

For the proof one uses similar arguments as for the proof of the structure
equation for the curvature tensor (e.g., see [P] p. 83).

We give now three examples of horizontal structures, which will become
important for our investigation.

Example 1. A horizontal structure of the tangent bundle related to circular
arcs. We modify the construction of the canonical connection of the tangent
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bundle over the riemannian manifold M (see [P] p. 77): If K denotes the con-
nection map of M (see (6)—(10)), then the kernels

A (myr) :=ker(T.TM — TM,w— Kw+<z,z) -ny,w) for ze TM

define a horizontal structure #“(m),) of the tangent bundle 7, as is easily seen.
If o:J— M is a curve with 0 €J and z e T, M, then

(20)  z, denotes the maximal #¢(m)-horizontal lift of o with z,(0) = z;
according to (7) it is the maximal solution { of the differential equation
(21) Vol + <00 -a=0 with {(0) ==z

Therefore, Proposition 2 shows that for a circular arc ¢:J — M with 0 € J and
z:= (Vp¢)(0) its mean curvature normal V¢ is the maximal #°(m;s)-horizontal
lift z.; hence in this case z. is defined over the entire interval J. But nevertheless,
A (mpr) 1s no connection in the sense of Ehresmann (see Remark 5); in par-
ticular, it can not be induced by a covariant derivative of M. Now we show
that the curvature form Qf,, of #“(my) is given by

(22)  KQ%y (w,w")
= R(T[M*W, nM*W,)Z + 2<Za Z> ' (<7IM*W/a Z>7IM*W - <7TM*W7 Z>7TM*W/)

for all w,w' e T.(TM) (ze TM); notice (9) and that 7m,Q%,, =0 is satisfied
automatically. For the proof of (22) let two vector fields X, Y € X(M) be given,
denote their horizontal lifts by X and Y and abbreviate ¢ := id7y, # = A “(ny)

and 7 := my. Then [X, Y], is the horizontal lift of [X, Y] because of r.[X, Y] =
[X,Y]on. Now we calculate

VXl:K)f: —{iy-Xonm
and
Vig = K(X, Y], +[X,1],) = —KQ§\, (X, Y) = &, - [X, Y]om.

With this expressions we continue using the structure equation for the curvature
tensor (e.g., see [P] p. 83):

R(R*X/, Ty ?)l = VXV}}I — Vyvl\“/l — V[Y‘ f,v]l
=21y (X om1)y- Yon—<Yon,l>~Xon)—|—KQ;M(X', Y).

From this formula (22) can easily be derived.

Example 2. The canonical connection of a Grassmann bundle over a rie-
mannian manifold. For each point p e M let L,M be the set of frames of 7,M,
which we describe by isomorphisms u : R” — T,M as in [KN] p. 56 (remember
m=dim M); by n: LM — M we denote the entire frame bundle.

For some fixed number re{l,...,m} let y,: G, (TM)— M denote the
Grassmann bundle; its fibre over p is the Grassmann manifold G,(7,M) of the
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r-dimensional subspaces V' < T,M. This bundle is associated to the frame
bundle via the map

0: LM x G,(R") — G,(TM), (u,V)— u(V);

see [B] sect. 6.5.1. For each uelL,M the map g,:G,(R")— G,(T,M),
V — u(V) is a diffeomorphism; and if V € G,(R"™) denotes the subspace which is

spanned by the first canonical unit vectors ey, ...,e, € R™, then the fibre bundle
morphism
(23) o' LM — G.(TM), uw— u(V)=span{u(e),...,u(e,)}

is a surjective submersion (even a principal fibre bundle). The linear connection
# (LM) of LM corresponding to V induces a connection #(y,) (in the sense of
EHRESMANN, see Remark 5) on the Grassmann bundle (see [KN] p. 87); it is given
by

(24) Hyuv)(7,) = 0/ H(LM) < Ty, v)(G,(TM))  (ue LM).
If «:J — M is a (broken) curve with 0 eJ and V € G,(T, M), then
(25) ¥, denotes the maximal #(y,)-horizontal lift of « with V,(0) = V;

it is exactly the parallel displacement of } in the riemannian manifold M along
the curve o

(26) Va(t) = (lo) (V).

In [PR] section 5 we have calculated the curvature form Qg (7)) at an arbitrary
point V € G,(TM) for w,w' € TyG,(TM)

d .
Qa,(rany(w, w') = I (exp(t- R(v,v"))(V)) with v:=yp, w and v/ :=yp, w';
=0
here R(v,v') is considered as an endomorphism of 7,M; hence, ¢+—
exp(t-R(v,v")) is a l-parameter subgroup of GL(7,M) and ¢+~
exp(t- R(v,v"))(V) a curve in G,(T,M). From this result we have derived for
arbitrary w,w' € Ty G,(TM)

(27) QG,.(TM)(W7 W/) =0« R(yr*wa yr*wl)(V) V.
We bring this example to an end by mentioning a canonical C* distribution
T =7, on G,(TM) introduced by K. Tsukapa in [T] p. 400 in order to inves-

tigate totally geodesic submanifolds (in his paper it is denoted by &). For every
point V € G,(TM) the linear subspace 7y < Ty G,(TM) is characterized by

Iy < jfy(y,) and yr*yy =V.
Example 3. The essential horizontal structure of the article. Now we glue

together the foregoing examples. For some fixed number ne {l,...,m— 1} we
take the fibre product of y,,, : Gu41(TM) — M and ny : TM — M
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7: E:=Gp ) (TM) Xy TM — M,
it is also associated to the frame bundle of M, namely via the map
0: LM x (G i (R™") x R™) = E,  (u,V,v) — (u(V),u(v)).

Furthermore we introduce the canonical projections P;: E — G, (TM) and
P, : E— TM and define a horizontal structure #(t) of 7 in canonical way,
namely by

Hy,(1) == {we Ty E|Pr.we Hy(y,,) and Prwe A (ny)}

yZ

= {(wi,w2) € Ay (Vyi1) X A (M) | Vg1 W1 = T2}

for all (V,z) € E. From this construction the following is clear: If o:J — M is
a curve with 0 e J and e = (V,z) € E,) := 7 ' («(0)), and if V; : J — G, (TM)
and z,:J — TM denote the maximal horizontal lifts described in (26) and the
remark behind (21), then

(28) i

ey = (Vy,zy) : J — E is the maximal #(t)-horizontal lift of « with e,(0) =e.

Furthermore, using Proposition § we can calculate the curvature form Qg
of #(r), namely for eeE and w,w'eT,E we obtain P .Qp(w,w') =
Qg,,,(rm)(Prow, Prow') and Py Qp(w,w') = Q7 (P2.w, Py,w'), or more loosely
speaking

(29) Qg(w, W,) = (QGIH»I(TM) (wi, Wi)v Q;‘M(WZv Wé)),

if we (wi,wa), w = (w,w)).

5. A characterization of spherical isometric immersions

By 7: E — M and ' (7) we denote the fibre bundle and horizontal structure
of Example 3.

PROPOSITION 9.
(@) The set R
E:={(V,z)e E|ze V\{0}}

is a regular submanifold of E (see section 1), and the restriction
T|E: E — M is a subbundle of ©: E — M with typical fibre

F:={(V,0) €Guu1(R") x R" |ve V\{0}}

associated to the frame bundle of M via the restriction §|(LM x F) of
the map ¢ described in Example 3. In the following we will shortly write
T instead of t|E. In addition we introduce the vector field

H:E—TM, (V,z2)—z
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in M along t and the fibre bundle morphism
G:E— Gy(TM), (V,z)— {veV|vLz}

(b) There exists a subbundle % of the tangent bundle TE of rank n, which is
characterized by

(30) D, < A1) and 1,9, = Gle) for all ecE.

() If ¢:J— M is a circular arc with 0eJ, z:= (Vs¢)(0) #0 and V e
Gui1(Teo)M) a subspace containing ¢(0) and z, then & = (V,,z. := Vac) is
a D-integral curve in E (see the following Remark). A

(d) For all sections X,Y € I'(2) and all points e = (V,z) € E the following
formulas hold.

(31) Vyx@u.YeV, (Vyutr.Y,z)=<{z,z)-{t.X(e),r.Y(e)) and
(32) VyH = —<H,H> ©.X.
(e) The distribution % is involutive at e € E, that means
(X, Y](e) € D, for all sections X,Y € T'(2),
if and only if for all v,v',v" € G(e) the following is true
(33) R(v,v"Ww" € G(e) and R(v,v")H(e) = 0.

Remark 6. (a) It is intended that the notations H and G remind the reader
to “mean curvature normal” (see Definition 1(a)) and “Gauss map”.

(b) A differentiable map g : L — E is said to be Z-integral, if g.7T,L = 94,
for every pe L.

Proof. For (a): We put F:={(V,v) e G, 1(R") x R"|ve V} and con-
sider the canonical vector bundle F — G, (R™), (V,v) — V as subbundle of the
trivial vector bundle G,;1(R™) x R" — G,;1(R™). It is well known that F is a
regular submanifold of G, (R™) x R™. This result is carried over to F, because
this set is open in F. And so also E is seen to be a regular submanifold of E
via local trivializations of the bundle 7: E — M constructed by means of the
map g; notice that F is invariant under the action GL(m) X (G,+1(R™) x R™) —
Gui1(R™) X R™, (A, V,v) — (A(V), A(v)); obviously z|E is a subbundle of .

For (b): Let J denote the inverse image of the Tsukada distribution 7,
by the vector bundle morphism TP, | #(z) : H#(t) — H(y,.1), Where TP is the
differential of the canonical projection P; : E — G, 1(TM) (see the Examples 2
and 3). It is a differentiable subbundle of the horizontal structure #(7), namely

QNZV,Z) ={we Ay (1) |t.weV} for all (V,z)eE.
Now we prove

(34) I, <« T,E for all ecE,
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that means, 7 |5 is a distribution on E of rank n+ 1. For the proof of (34) let
a point e = (V,z) e E and a vector we ., be given. Then there exists a .7 -
integral curve ¢:J — E with é( )=w. If we put o:=70¢, then we get =
(Va,z,) from Example 3, because ¢ is horizontal. Moreover, E(n) e ,/g (1 implies
a(t) = 1.&(t) € V,(¢). Since { = z, satisfies the differential equation (21) we find
(Vozy)(t) € Vo(t); as V, is a parallel subbundle of TM along o according to
Example 2 and the initial value z,(0) =z lies in V\{0} = 7;(0)\{0}, one can
easily derive z,(7) € V,(1)\{0} for every ¢ in some interval |—¢ ¢[. Therefore,
&|]—e el is a curve in E and therefore we T,E. So (34) is proved. Now the
proof of assertion (b) is quickly completed, namely & is the kernel of the linear
vector bundle map 7 — R, w— <f1(e),r*w> if wed,.

For (c¢): From the remark behind (21) and the formulas (25) and (28) we
know that ¢ is horizontal. Furthermore, ¢+ 5(f) := Ré(t) ® R(Vaé)(t) is a
parallel subbundle of TM along ¢ with #(0) = V; therefore we get z.(t) €
n(t) = Ve(t), ©.&(1) = ¢(t) en(t) = VL(t) and 7.&(¢) L z.(¢) for every ¢t. Thus we
see that ¢ is a curve in E, which is Z-integral.

For (d): If X, Y eT(2) and e = (V,z) € E are given, let ¢:J — E be the
integral curve of X with £(0) = e and put « :=70¢&. Then we have & = (V,z,)
and & =rt,£. Since in particular ¢ is horizontal, we get:

(i) the parallelity of ¥, (see (26)) and (ii) Viz, + {z,,z,>-a =0 (see (21)).

On the other hand, since Y o¢ is tangential to &, formula (30) shows in
particular 7, Y o &(¢) € V,(¢) for every z. Because of (i) we obtain therefore also
(Vatr. Y 0 &)(1) € Vo (1), particularly: V.Y = (Vor. Y 0 £)(0) € V,(0) = V; this
is the first part of (31). Next we prove (32) by means of (ii):

VyH = (VaH 0 &)(0) = (Vaz,)(0) = —<z,2) - &(0) = —(CH, H) - 1. X)],.
After this result we continue using the Ricci identity and obtain the second
identity of (31):

(Vy@t.Y,H(e)y = X(e) (r.Y,Hy — (.Y (e),Vy H>
=0
5 (H(e),H(e)) - {t.X(e), 7. Y (e)).
For (e): We continue with the data given in the proof of (d). According to the
structure equation for the torsion (see [P] p. 101) and using (31) we obtain
7.[X, Y](e) € G(e) for all eeE.

Therefore, & is involutive in e = (V,z) if and only if [X, Y](e) € #.(7) for all
X,Y eI'(2). Because of (19) and (29) this property is equivalent to

Q6. (ray(wi,w)) =0 and  Qf, (wy, w3) =0

(35) for all w= (w,w2), w' = (wj,w}) € Z,.
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Now we use (27) and (22), take notice of y, | w1 =y, w2 = 7.w € G(e) and get
that (35) is equivalent to

R, v YV =V and R(v,0")z=0 for all v,v’ € G(e).
With <{R(v,v")v",z) = —<{R(v,v")z,v") we finaly obtain the statement (e). [

THEOREM 2.

(@) If S < E is an integral manifold of the distribution &, then there exists
a riemannian metric {-,-yg on S such that t|S:S — M is an isometric
immersion; in fact, it is spherical and H|S is its mean curvature normal.

(b) If f: N — M is a spherical isometric immersion from a connected n-
dimensional riemannian manifold with mean curvature normal H # 0, then

f:p (LT,N ® RH,, Hy)
is a D-integral map into E (see Remark 6(b)) with the following properties
(36) tof=f, Hof=H and Gof is the Gauss map of f.

Furthermore, S ::f(N) is an integral manifold of & and f is a local
isometry onto S, if S is equipped with the riemannian metric (-, )g
described in (a).

Proof. For (a): Because of Remark 4 z|S is an immersion into M. Thus
{-,->s can be defined in the appropriate way. In order to show that z|S is
spherical, let vector fields X,Y € X(S) =T(2|g) and e= (V,z) € S be given.
Then we calculate the second fundamental form /4 of z|S using the Gauss equa-
tion and Proposition 9(d): Because we have

V3 Y +h(X(e), Y(e)) = Vyr.Y eV with 2.Vy, Y e t.T.S = .2, = G(e),

where (X (e), Y(e)) is perpendicular to G(e), the second identity of (31) implies
h(X(e), Y(e)) = <(t.X(e),7.Y(e)y -z =<X(e), Y(e)>s- H(e). Eventually the par-
allelity of H|S follows from (32). R

For (b): Obviously f is a differentiable map into E with the properties
stated in (36). For the Z-integrability of f it suffice to prove: For every point
p €N and every unit vector v e T,N the image f.v lies in &, with e := (V,z) :=
f(p). For that let o: J — N denote the maximal geodesic with &(0) = v and put
¢:=foa. According to Proposition 1(f) c is a circular arc in M with (V,¢)(0) =
H, =z. Obviously V contains the vectors ¢(0) and z. Then Proposition 9(c)
implies that e. = (V;,z.) is a Z-integral curve; and from Proposition 1(e), (f) we
derive ¢, =f oa. Therefore f,v =¢é.(0) € Z,. The further assertions of (b) are
obvious. O

6. Proof of Theorem 1

Since in Proposition 5 the existence of the circular umbrella N,(p, U,z)
already was proved, it remains to show that it is a spherical submanifold under



216 KNUT PAWEL AND HELMUT RECKZIEGEL

the hypothesis (4). For that we put n := dim U and continue with the notations
used in the proof of Proposition 5. If V,S(U), V,,z, and U, have the meaning
of Theorem 1, then (V,,z,) is the horizontal lift e, : J, — E of ¢, with ¢,(0) =
e:= (V,z) for every vector ue S(U); according to Proposition 9(c) e, is Z-
integral. .

Furthermore, for every s € R the curve ey, : Jy, — E defined by ey, (1) = e,(s?)
is also Z-integral; in addition it is the horizontal lift of ¢y with ey, (0) =e. If
we put B:={(t,u)eRx U|telJ,}, then F:B— M, (t,u) — c,(t) =" (t,u
{u,uy - z) is a differentiable map. Applying Proposition 7(b) (with g = ¢) we get
that F: B— E, (t,u) — e,(t) is differentiable, too. Consequently,

®: U, 0) — E, u— e,(1) is a differentiable map with 70 ® = ®.
As ®|U,(0) is an embedding, the same is true for ®. In particular,

O(U(0) = U el-s.el),

ueS(U)

is a regular submanifold of E. Because for every ueS(U) the curve f+—
®(tu) = e,(t) was proved to be Z- 1ntegra1 ® is a Z-umbrella in the sense of the
following Definition 3. Moreover, since G(e,(t)) = U,(t), according to Propo-
sition 9(e) the assumption (4) says that the distribution & is involutive at all
points of S :=®(U,(0)). Therefore, the following Theorem 3 shows that @ is
-integral; that means, S is an integral manifold of &, and according to Theo-
rem 2(a) 7|S is a spherical immersion with the mean curvature normal H|S.
Consequently the image 7(S) = N,(p, U,z) is a spherical submanifold with tan-
gent space G(¢) = U and mean curvature normal H(e) = z at the point p. Thus
the proof is complete. O

For the end of this section let & be a C* distribution on a manifold E.

DEerFiNITION 3. If U is a linear space, B = U a star shaped neighbourhood of
0in U, J,:={teR|tue B} forevery ue U and ¢ : B— E a C* imbedding such
that all curves J, — E, t+— ¢(tu) are Z-integral, then we call ¢ a D-umbrella.

THEOREM 3. If ¢ : B — E is a Q-umbrella and & is involutive at all points of
@(B), then the entire map ¢ is Z-integral.

This theorem was proved in the last section of [PR] by using a result of BLU-
MENTHAL and HEeBDA (see [BH] p. 165).

7. A global theorem

If in the foregoing proof S is replaced by the maximal connected integral
manifold S containing S, then T|S describes a maximally extended spherical
submanifold (with selfintersections, if z|S is not injective). It is the purpose of
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the following theorem to show that T|S' has some completeness property under
suitable hypotheses. In order to formulate them we define:

DerFmNITION 4. A totally geodesic resp. spherical immersion f: N — M is
said to be geodesically closed, if the image f oa of any maximal unit speed
geodesic & is

(a) a maximal geodesic in case that f is totally geodesic, and

(b) a maximal circular arc in case that f is spherical (see Remark 2).

Remark 7. If M is complete, then f is geodesically closed if and only if N,
too, is complete (see Proposition 4(b)).

Let again be given a point p € M, a linear subspace U & T, M and a vector
ze UN\{0} = T,M and put V:=U@®Rz and e:=(V,z)e E. Under these
assumptions we introduce a special class of broken circular curves: A broken
unit speed curve c¢: [0,b.] — M with the “break points” 0 <7 < --- <1, < b, is
called a broken circular curve, if every “section” ¢;:=c|[t;,t;11] (with 7o := 0,
ty+1 :=b.) is a circular arc and if the mean curvature normals V,¢; add to a
continuous vector field along ¢, which we will denote by Vaé. Now, by C(p, U, z)
we denote the set of all such broken circular curves with ¢(0) =p and
(V2¢)(0) =z such that ¢;(#;) € Vo(¢;) holds for every i, where V,:[0,b.]—
G,11(TM) denotes the #(y,,)-horizontal lift of ¢ (see (25) and (26)); then
automatically one has ¢;(¢), (Vié)(¢) € Vo(t) for every t e [t;,ti41], Voé coincides
with the #“(my)-horizontal lift z. of ¢ (see Example 1) and (V;,z.) is the #(7)-
horizontal lift e. of ¢ (see (28)); it is a (continuous) broken curve in E such that
every section e, | [t;,ti+1] i1s Z-integral. Of course every simple circular arc with
the prescribed initial data belongs to C(p, U, z).

Remark 8. If f: N — M is a spherical immersion with mean curvature
normal H and ¢ € N a point such that f(q) =p, fiT,N = U and H(q) =z and if
o:[0,b] — N is a broken unit speed geodesic of N with o(0) = p, then the image
c:=foa is an element of C(p,U,?z).

THEOREM 4. If in the above situation for every broken circular curve
(c:10,b.] = M) e C(p,U,z) and every te€[0,b,] we have

(37) Yo, v, v" € Gle (1)) : (R(v,v')v" € G(e.(t)) and R(v,v")z.(t) = 0),

then there exists one (and up to an isometry exactly one) geodesically closed, spher-
ical immersion F : N — M with mean curvature normal H from a simply connected
riemannian manifold N and a point q € N such that F(q) =p, F.T,N =U and
H(q) =z

In the special case of a complete riemannian manifold M Theorem 4 is an
analogue of a result of R. HERMANN [H] on the existence of complete totally
geodesic submanifolds.
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Proof. At first we see from (37) that the assumptions (4) of Theorem 1 are
satisfied for some circular e-umbrella N,(p, U, z); hence we find that N,(p, U,z)
is a spherical submanifold of M. Applying Theorem 2(b) with the inclusion map
f = (Ne(p,U,z) — M) we get an integral manifold f(N,(p,U,z)) of Z con-
taining e = (V z). Let S be the maximal connected integral manifold of &
which contains f(N,(p, U,z)) (see [Nu, _Theorem 4] or [BH, Theorem 1.3 and
1.4], a proof of the paracompactness of S can be found in [LR] p. 94). Because
of Theorem 2(a) 7|S is a spherical immersion with respect to the induced rie-
mannian metric {-,-)>s. Of course, we have eeS 7(e) = p, 2. T.S = 1.9, =
G(e) = U and z is its mean curvature normal at e.

Now the crucial point is to prove that 7|S is geodesically closed. For that,
let a maximal unit speed geodesic & : J — S be given. As tod is a circular arc in
M, it can be extended to a maximal circular arc o : J — M. Let us assume J :=
supJ <supJ. Then we choose some broken unit speed geodesic /)’ [0,d] — S
starting from f(0) = e with f(d) € @(J). We may assume f(d) = a(d). As

¢ [0,0] = § z.—>{ﬁ<l) for t € [0,d]
Y 7 a(r) forteld,d]

is a broken unit speed geodesic, the curve

c~mﬂeM’tH{”ﬁ@ for ¢ [0, d]
o ’ u()  for ted.o]

is an element of C(p, U, z) according to Remark 8. Its horizontal lift e : [0,6] —
E is Z-integral and it satisfies e, | [0,0[ = ¢. Thus ¢’ :=¢.(0) is a good candidate
in order to continue a. A

For realizing this idea we put p’':=c¢(d), U :=G(¢') and z':= H(¢').
Then there exists a suitable ¢ > 0 such that the circular ¢’-umbrella N’ :=
Ny (p', U’ 2") exists. In particular, for every unit vector u € U’ the circular arc
¢y i ]—¢, &' — N’ with initial values ¢,(0) = u and (V,¢,)(0) =z’ exists, and the
curve

(1) fort <o
0,0+ — M, ¢ ol
[0.0+] = M, H{@@—a for ¢ > &

is an element of C(p, U,z). Because of (37) Theorem 1 can be applied in order
to obtain that N’ is a spherical submanifold of M, too.

Now we show that the curves ¢, (with u e U’) are geodesics of N':  Apply-
ing the Gauss equation (combined with Definition 1(a)) and Proposition 1(b) we
get

—x - &y = VoVaéy = Vj Vq "6y — % ¢, with x = %(cy) =<z,2).

Hence, VaN "¢, is a parallel vector field in N’ along c,; it vanishes identically,
because (Vyc,)(0) =z L T,,N’. So we have seen that ¢, is a geodesic of N'.
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Of course, we may assume ¢’ <o —d. Because u' :=d(d) = ¢(d) e U’ and
(Vaa)(0) = (Vaé)(0) = 2/, we get a(t) = ¢, (t —0) for every €10 —¢',0]. Hence
we even obtain |0 —¢&',0 + &' = J and a(t) = ¢,/ (t — 9) for every te]0 —&',0 + &'l
Consequently, o|]0 —&',0 4+ ¢'[ is a geodesic arc of N'.

With the inclusion map f’:= (N’ < M) of the spherical submanifold N’
we get a further integral manifold S’ :=f'(N’); it contains f/(p’) = e’ = e.(0).
Moreover, f'oa|ld—¢',0] and e.|]0 —¢',0] are (r)-horizontal lifts of
ol]o —¢',0] with fio a(0) = e.(0). Therefore we get

foa(lo &0 = ec1d — &/, ]) = &6 — #/,8]) = 400 — ¢/.0]) = §'N S

Consequently S’ is a subset of S, 7 an isometry into S and f7 oo |16 —¢',0+¢|
a geodesic in § continuing & beyond J in contradiction to the maximality of
. Thus we have proved sup J =sup J. In the same way we get inf J = inf J,
hence J = J.

In order to define the spherical immersion F: N — M of Theorem 4 we use
the umversal covering ¢ : N — S of S, put F:= (z|S) o ¢ and choose some point
ge g '({e}). Let us now prove the uniqueness of F. For that let f: N — M
be another spherical immersion from a simply connected riemannian manifold
N and g€ N a point which have the same propertles as F and ¢q. According to
Theorem 2(b) the induced map f N — E satisfies (36); in particular we have
f(@) =e=¢(q). Hence, f is a local isometry into S. Since N is simply
connected, there exists a local isometry ¥ : N — N such that po¥ =f and
Y(g) =¢q. From the construction we get FoW =f. As f is geodesically
closed, ¥ is geodesically closed, too. Therefore, according to the following
Lemma YW is a covering map, in fact even an isometry because of the simple
connectedness of N. O

LEMMA. If N and N are connected riemannian manifolds of the same dimen-
sion, then each geodesically closed local isometry f: N — N is a covering map.

This lemma is a generalization of Theorem 4.6(1) in [KN] p. 176, in which N
is assumed to be complete. One can follow the proof of [KN]; where they use
the completeness of N the argumentation keeps valid if instead of that we use
that f is geodesically closed.

REFERENCES

[B] N. BourBaki, Variétés Différentielles et Analytiques, Fascicule de Résultats, Hermann,
Paris, 1967.

[BH] R. A. BLUMENTHAL AND J. J. HEBDA, The generalized Cartan-Ambrose-Hicks theorem,
Geometriae Dedicata, 29 (1989), 163-175.

[Ch]  B.-Y. CHeN, Extrinsic spheres in compact symmetric spaces are intrinsic spheres, Michigan
Math. J., 24 (1977), 265-271.

D] P. DomBrOWSKI, On the geometry of the tangent bundle, J. Reine Angew. Math., 210
(1962), 73-88.



[KN]

(L]
(LN]

[No]
[Nu|

INY]
[O'N]

(P]
[PR]

(T]

(W]

KNUT PAWEL AND HELMUT RECKZIEGEL

C. EHRESMANN, Les connexions infinitésimales dans un espace fibré différentiable, Colloque
de Topologie, Bruxelles, 1950, Georges Thone, Liege, Masson & C'E, Paris, 1951, 29-55.
R. HerMmANN, Existence in the large of totally geodesic submanifolds of Riemannian spaces,
Bull. Amer. Math. Soc., 66 (1960), 59-61.

S. KoBayasHr anD K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience
Publ., New York, 1963.

S. LaNG, Fundamentals of Differential Geometry, Springer, New York, 1999.

D. S. LeunGg anDp K. Nomizu, The axiom of spheres in Riemannian geometry, J. Diff.
Geometry, 5 (1971), 487-489.

K. Nomizu, Generalized central spheres and the notion of spheres in Riemannian geometry.
Tohoku Math. J., 25 (1973), 129-137.

F. NUBEL, On integral manifolds for vector space distributions, Math. Ann., 294 (1992),
1-17.

K. Nomizu aND K. YANO, On circles and spheres in Riemannian geometry, Math. Ann.,
210 (1974), 163-170.

B. O’NEILL, Semi-Riemannian Geometry With Applications to Relativity, Academic Press,
New York, 1983.

W. A. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.

K. PAWEL AND H. RECKZIEGEL, Affine submanifolds and the theorem of Cartan-Ambrose-
Hicks, Kodai Math. J., 25 (2002), 341-356.

K. Tsukapa, Totally geodesic submanifolds of Riemannian manifolds and curvature-
invariant subspaces, Kodai Math. J., 19 (1996), 395-437.

F. W. WARNER, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman
and Company, Glenview, 1971.

MATHEMATISCHES INSTITUT DER UNIVERSITAT zU KOLN
WEYERTAL 86-90, D-50931 KOLN

GERMANY

e-mail: reckziegel@math.uni-koeln.de



