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Abstract. We give a definition of singular integral operators on Morrey–
Banach spaces which include Orlicz–Morrey spaces and Morrey spaces with

variable exponents. The main result of this paper ensures that the singular
integral operator is well-defined on the Morrey–Banach spaces. Therefore,
it provides a solid foundation for the study of singular integral operators on
Morrey type spaces. As an application of our main result, we study commu-

tators of singular integral operators on Morrey–Banach spaces.

1. Introduction.

In this paper, we aim to give an answer to the fundamental question for the study

of singular integral operators on Morrey type spaces, that is, how to define the action of

singular integral operator on functions belonging to a Morrey type space.

The classical Morrey spaces were introduced by Morrey [27] to study the solutions

of some quasi-elliptic partial differential equations. Since the introduction of the classical

Morrey spaces, several important results from Lebesgue spaces had been extended to the

classical Morrey spaces such as the boundedness of the maximal operator [7], singular

integral operators [28] and sublinear operators [23].

Recently, the studies of Morrey spaces is extending to Morrey space built on some

non Lebesgue spaces such as Morrey–Lorentz spaces [3], [18], [31], Orlicz–Morrey spaces

[11], [29], [28], Morrey spaces with variable exponents [1], [13], [15], [19], [22], [24],

[25], [26], [33], [32]. On the other hand, for instance, in [15], [19], we are lack of a

precise definition of the action of singular integral operators on the above mentioned

Morrey type spaces. It is important to give a precise definition on the singular integral

operators studied in the above mentioned results as it gives a solid foundation for us to

study the boundedness of singular integral operators on Morrey spaces.

For the classical Morrey spaces, this fundamental question has been solved in [2]

whereas the results in [2] rely on the pre-dual of the classical Morrey spaces.

In this paper, we give an explicit expression for the definition of the singular integral

operators on Morrey type spaces. This definition is independent of the pre-dual of the

Morrey type space. That is, no matter whether we can identify the pre-dual of the above

mentioned Morrey type spaces or not, our approach applies. Hence, our method directly

applies to the Morrey–Lorentz spaces, the Orlicz–Morrey spaces and the Morrey spaces

with variable exponent. Therefore, the main results of this paper give an unified approach
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of the study of the singular integral operators on Morrey spaces built on Banach function

spaces.

We also see that the boundedness of singular integral operators come naturally from

our definition of the action of singular integral operators on Morrey type spaces.

Additionally, our result provides a solid foundation for further studies of singular

integral operators on Morrey spaces. As an application of our approach, we study the

commutators of some singular integral operators on Morrey type spaces.

This paper is organized as follows. We give the definition of Morrey–Banach spaces

in Section 2. This family includes the Morrey–Lorentz spaces, the Orlicz–Morrey spaces

and the Morrey spaces with variable exponents. The main result of this paper is given

in Section 3. An application of our main result on the commutators is presented in

Section 4.

2. Morrey–Banach space.

Let B(z, r) = {x ∈ Rn : |x − z| < r} denote the open ball with center z ∈ Rn and

radius r > 0. Let B = {B(z, r) : z ∈ Rn, r > 0}.
Let M(Rn) and L1

loc(Rn) denote the space of Lebesgue measurable functions and

the space of locally integrable functions on Rn, respectively. Let S(Rn) and S ′(Rn) be

the space of Schwartz functions and the space of tempered distributions, respectively.

We recall the definition of Banach function space from [4, Chapter 1, Definitions 1.1

and 1.3].

Definition 2.1. A Banach space X ⊂ M(Rn) is said to be a Banach function

space (B.f.s.) on Rn if it satisfies

(1) ∥f∥X = 0 ⇔ f = 0a.e.,

(2) |g| ≤ |f | a.e. ⇒ ∥g∥X ≤ ∥f∥X ,

(3) 0 ≤ fn ↑ f a.e. ⇒ ∥fn∥X ↑ ∥f∥X ,

(4) χE ∈ M(Rn) and |E| < ∞ ⇒ χE ∈ X,

(5) χE ∈ M(Rn) and |E| < ∞ ⇒
∫
E
|f(x)|dx < CE∥f∥X , ∀f ∈ X for some CE > 0.

The Lorentz spaces, the Orlicz spaces and the Lebesgue spaces of variable exponents

are Banach function spaces, see [4], [12].

Furthermore, in view of Item (5) of Definition 2.1, for any B.f.s. X, we have X ⊂
L1
loc(Rn).

We recall the definition of associate space from [4, Chapter 1, Definitions 2.1 and

2.3].

Definition 2.2. Let X be a B.f.s. The associate space of X, X ′, is the collection

of all Lebesgue measurable function f such that

∥f∥X′ = sup

{∣∣∣∣ ∫ f(t)g(t)dt

∣∣∣∣ : g ∈ X, ∥g∥X ≤ 1

}
< ∞.
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According to [4, Chapter 1, Theorems 1.7 and 2.2], when X is a B.f.s., X ′ is also a

B.f.s.

We have the Hölder inequality for X and X ′, see [4, Chapter 1, Theorem 2.4].

Theorem 2.1. Let X be a B.f.s. Then, for any f ∈ X and g ∈ X ′, we have∫
Rn

|f(x)g(x)|dx ≤ ∥f∥X∥g∥X′ .

Definition 2.3. For any B.f.s. X, we write X ∈ M if the Hardy–Littlewood

maximal operator M is bounded on X. We write X ∈ M′ if M is bounded on X ′.

As X,X ′ ⊂ L1
loc(Rn), the Hardy–Littlewood maximal operator is well defined on X

and X ′.

The following result for X ∈ M∪M′ is given in [14, Lemma 3.2]. For completeness,

we also present the proof of the following lemma.

Lemma 2.2. Let X be a B.f.s. If X ∈ M ∪M′, then there exists a constant C ≥ 1

such that

|B| ≤ ∥χB∥X∥χB∥X′ ≤ C|B|, for all B ∈ B (2.1)

where χB is the characteristic function of B.

Proof. According to the Lorentz–Luxemburg theorem [4, Chapter 1, Theo-

rem 2.7], we have X = X ′′. Hence, it suffices to establish (2.1) with the assumption

X ∈ M.

Theorem 2.1 gives the first inequality in (2.1).

For any B ∈ B, we consider the projection

(PBg)(y) =

(
1

|B|

∫
B

|g(x)|dx
)
χB(y).

Since X ⊂ L1
loc(Rn), PB is well defined on X.

There exists a constant C > 0 such that for any D ∈ B, PD(f) ≤ CM(f). Conse-

quently, for any g ∈ X with ∥g∥X ≤ 1,(
1

|B|

∫
B

|g(x)|dx
)
∥χB∥X ≤ ∥PB∥X→X ≤ sup

D∈B
∥PD∥X→X ≤ C∥M ∥X→X .

Definition 2.2 ensures that

∥χB∥X′∥χB∥X = sup

{∣∣∣ ∫
B

g(x)dx
∣∣∣∥χB∥X : g ∈ X, ∥g∥X ≤ 1

}
≤ C|B|. □

Furthermore, for any x ∈ Rn and r > 0, we have

∥χB(x,r)∥X′ ≤ ∥χB(x,2r)∥X′ .

If X ∈ M ∪M′, then, (2.1) asserts that for any x ∈ Rn and r > 0, we have
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∥χB(x,2r)∥X ≤ C
|B(x, 2r)|

∥χB(x,2r)∥X′
≤ C

|B(x, r)|
∥χB(x,r)∥X′

≤ C∥χB(x,r)∥X (2.2)

for some C > 0.

We now give the definition of Morrey–Banach spaces.

Definition 2.4. LetX be a B.f.s. and u(y, r) : Rn×(0,∞) → (0,∞) be a Lebesgue

measurable function. The Morrey–Banach spaceMu
X consists of all f ∈ M(Rn) satisfying

∥f∥Mu
X(Rn) = sup

y∈Rn,r>0

1

u(y, r)
∥χB(y,r)f∥X < ∞. (2.3)

When X is the Orlicz space, Mu
X is the Orlicz–Morrey space. Similarly, when X

is the Lebesgue space with variable exponent Lp(·)(Rn), Mu
X is the Morrey space with

variable exponent Mp(·),u. The reader is referred to [10], [12] and [16] for the definitions

of Lebesgue spaces with variable exponents Lp(·)(Rn) and Morrey spaces with variable

exponents Mp(·),u.

Next, we characterize the weight function u(y, r) used in our main results.

Definition 2.5. Let X be a B.f.s. We say that a Lebesgue measurable function,

u(x, r) : Rn × (0,∞) → (0,∞), belongs to u ∈ WX if there exists a constant C > 0 such

that for any x ∈ Rn and r > 0, u fulfills

C ≤ u(x, r), ∀x ∈ Rn and r ≥ 1, (2.4)

∥χB(x,r)∥X ≤ Cu(x, r), ∀x ∈ Rn and r < 1, (2.5)
∞∑
j=0

∥χB(x,r)∥X
∥χB(x,2j+1r)∥X

u(x, 2j+1r) ≤ Cu(x, r). (2.6)

Proposition 2.3. Let X be a B.f.s. and u(y, r) : Rn × (0,∞) → (0,∞) be a

Lebesgue measurable function. If u satisfies (2.4) and (2.5), then for any B ∈ B, χB ∈
Mu

X .

Proof. Let B ∈ B, x ∈ Rn and r > 0. When r ≥ 1, Item (2) of Definition 2.1

and (2.4) give

1

u(x, r)
∥χBχB(x,r)∥X ≤ 1

u(x, r)
∥χB∥X ≤ C∥χB∥X (2.7)

for some C > 0. When r < 1, Item (2) of Definition 2.1 and (2.5) yield

1

u(x, r)
∥χBχB(x,r)∥X ≤ 1

u(x, r)
∥χB(x,r)∥X ≤ C. (2.8)

Therefore, (2.7) and (2.8) assure that

∥χB∥Mu
X
= sup

B(x,r)∈B

1

u(x, r)
∥χBχB(x,r)∥X < C + C∥χB∥X .
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Item (4) of Definition 2.1 guarantees that χB ∈ Mu
X . □

The above proposition shows that when u ∈ WX , Mu
X is nontrivial.

We now give some characterizations of the class WX when X is the Lebesgue space

with variable exponent Lp(·)(Rn). For simplicity, we refer the reader to [12, Chapters 3

and 4] for the definitions of Lp(·)(Rn) and the class of log-Hölder continuous functions

P log(Rn).

Let p(·) ∈ P log(Rn) with p+ = supx∈Rn p(x) < ∞ and p− = infx∈Rn p(x) > 1.

According to [15, Proposition 2.5 and Lemma 6.3], we find that for any p > p+, there is

a constant C > 0 such that for any y ∈ Rn, r > 0 and j ∈ N, we have

∥χB(y,r)∥Lp(·)(Rn)

∥χB(y,2jr)∥Lp(·)(Rn)

≤ C

(
|B(y, r)|
|B(y, 2jr)|

)1/p

= C
∥χB(y,r)∥Lp

∥χB(y,2jr)∥Lp

. (2.9)

Let 0 ≤ θ < 1 and uθ(x, r) = ∥χB(x,r)∥θLp(·)(Rn)
. For any p > p+, (2.9) yields a

constant C > 0 such that

∞∑
j=0

∥χB(x,r)∥Lp(·)(Rn)

∥χB(x,2j+1r)∥Lp(·)(Rn)

u(x, 2j+1r)

u(x, r)
=

∞∑
j=0

(
∥χB(x,r)∥Lp(·)(Rn)

∥χB(x,2j+1r)∥Lp(·)(Rn)

)1−θ

≤ C
∞∑
j=0

2−jn(1−θ)/p ≤ C. (2.10)

Therefore, uθ satisfies (2.6). Furthermore, in view of [12, Corollary 4.5.9], we have

∥χB(x,r)∥Lp(·)(Rn) ≈
{
|B(x, r)|1/p(x), |B(x, r)| ≤ 2n

|B(x, r)|1/p∞ , |B(x, r)| ≥ 1,
(2.11)

where p∞ = limx→∞ p(x) and the existence of this limit is assured by the definition of

log-Hölder continuous function.

Hence, (2.11) guarantees that when r ≥ 1, we have

uθ(x, r) = ∥χB(x,r)∥θLp(·)(Rn) ≥ C|B(x, r)|θ/p+ > C

for some C > 0.

Moreover, (2.11) also yields a constant K > 0 such that ∥χB(x,r)∥Lp(·)(Rn) ≤ K for

all r < 1. Consequently, there exists a C > 0 such that

uθ(x, r) = ∥χB(x,r)∥θLp(·)(Rn) ≥ C∥χB(x,r)∥Lp(·)(Rn), 0 < r < 1.

Therefore, uθ ∈ WLp(·)(Rn).

Let p > p+ and u ∈ WLp . (2.9) shows that u also satisfies (2.6) for X = Lp(·)(Rn).

In addition, (2.11) ensures that for any r ∈ (0, 1)

u(x, r) > C|B(x, r)|1/p > C|B(x, r)|1/p(x) ≥ C∥χB(x,r)∥Lp(·)(Rn)
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because |B(x, r)| < K for some constant K > 0 and 1/p < 1/p+ ≤ 1/p(x), ∀x ∈ Rn.

Therefore, WLp ⊂ WLp(·)(Rn) provided that p > p+.

Moreover, we find that the above inclusion is proper. Precisely, for any p > p+,

there is a θ ∈ (0, 1) such that uθ ̸∈ WLp . Let θ ∈ (0, 1) be selected so that θp > p+.

For any N ∈ N, we have

N∑
j=0

∥χB(0,r)∥Lp

∥χB(0,2j+1r)∥Lp

u(0, 2j+1r)

u(0, r)
= C

N∑
j=0

2−
jn
p

∥χB(0,2j+1r)∥θLp(·)(Rn)

∥χB(0,r)∥θLp(·)(Rn)

.

Let r ∈ (0, 1) and N = (ln(2/rcn)/ ln 2)−1 where cn is the Lebesgue measure of the

unit ball in Rn. For any j ≤ N , we have |B(0, 2j+1r)| ≤ 2n. Consequently, (2.11) asserts

that

N∑
j=0

2−jn/p
∥χB(0,2j+1r)∥θLp(·)(Rn)

∥χB(0,r)∥θLp(·)(Rn)

≥ C
N∑
j=0

2−jn/p |B(0, 2j+1r)|θ/p(0)

|B(0, r)|θ/p(0)

= C
N∑
j=0

2jn(θ/p(0)−1/p)

for some C > 0.

Since θ/p(0) − 1/p > 0,
∑N

j=0 2
jn(θ/p(0)−1/p) diverges as N → ∞. Furthermore,

since N → ∞ as r → 0+. Therefore, there does not exist a constant C > 0 such that for

any 0 < r < 1,

∞∑
j=0

∥χB(0,r)∥Lp

∥χB(0,2j+1r)∥Lp

u(0, 2j+1r)

u(0, r)
< C.

That is, uθ ̸∈ WLp . Hence, for any p > p+, we have WLp & WLp(·)(Rn).

3. Main result.

In this section, we present the main result of this paper, the definition of singular

integral operators on Morrey–Banach spaces.

Let T : S(Rn) → S ′(Rn) be a linear operator. We say that T is a singular integral

operator if its kernel K(x, y) satisfies

|K(x, y)| ≤ 1

|x− y|n
, x ̸= y. (3.1)

The action of T on f ∈ L1
loc(Rn) is given by

Tf(x) = lim
ϵ→0

∫
|x−y|>ϵ

K(x, y)f(y)dy (3.2)

whenever the limit exists. It is easy to see that if K(x, ·)f(·) is integrable, then by using

dominated convergence theorem, the limit exists and Tf(x) is well defined.
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The definition (3.2) is named as the truncated approach [35, Chapter I, Section 7] or

[34, Chapter 2, Section 4]. It is shown in [5] that whenever K satisfies some conditions

such as cancellation conditions, the limit (3.2) exists for f ∈ Lp(Rn), 1 < p < ∞.

This result had been generalized to Lebesgue spaces with variable exponents, see [12,

Corollary 6.3.13].

Notice that in view of the definition of Morrey–Banach spaces, to study the action

of singular integral operator T on f ∈ Mu
X , we need to estimate Tf on a neighborhood

of x ∈ Rn. On the other hand, the definition of T in (3.2) is given in term of pointwise

limit. Therefore, we cannot directly use it to study the boundedness of T on Mu
X .

The following definition overcomes this difficulty by giving the definition of Tf for

f ∈ Mu
X in a neighborhood of x ∈ Rn.

We are now ready to extend the definition of T (f) when f ∈ Mu
X and T is the

singular integral operator defined by (3.2).

Definition 3.1. Let X be a B.f.s. with X ∈ M ∪ M′ and u ∈ WX . Let T be a

singular integral operator defined by (3.2). Suppose that T is bounded on X. For any

f ∈ Mu
X and x ∈ B(z, r) ∈ B, we define

(T f)(x) = (T (χB(z,2r)f))(x) +

∫
Rn\B(z,2r)

K(x, y)f(y)dy. (3.3)

We need to show that T f is well defined. That is, the above definition is independent

of B(z, r).

The following is the main result of this paper. It shows that T is well defined on

Mu
X .

Theorem 3.1. Let T be a singular integral operator defined by (3.2). Let X be a

B.f.s. with X ∈ M∪M′ and u ∈ WX . If T is a bounded linear operator on X, then T is

a well defined linear operator on Mu
X .

Moreover, for any f ∈ X ∩Mu
X , we have T (f) = T (f). Hence, T is an extension

of T .

Proof. Let f ∈ Mu
X and B(z, r) ∈ B. As T is bounded on X and χB(z,2r)f ∈ X,

T (χB(z,2r)f) is well defined.

Next, we show that there is a constant C > 0 such that for any x ∈ B(z, r), we have∫
Rn\B(z,2r)

|K(x, y)||f(y)|dy ≤ C∥f∥Mu
X

u(z, r)

∥χB(z,r)∥X
. (3.4)

Write fj = χB(z,2j+1r)\B(z,2jr)f , j ∈ N\{0}. We have∫
Rn\B(z,2r)

|K(x, y)||f(y)|dy ≤
∞∑
j=1

∫
Rn\B(z,2r)

|K(x, y)||fj(y)|dy

=
∞∑
j=1

Ej(x).
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In view of (3.1), the Hölder inequality yields

Ej(x) ≤ C

∫
B(z,2j+1r)\B(z,2jr)

1

|x− y|n
|fj(y)|dy

≤ C2−(j+1)nr−n∥fj∥X∥χB(z,2j+1r)∥X′

for some C > 0. Lemma 2.2 gives

Ej(x) ≤ C
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
1

u(z, 2j+1r)
∥χB(z,2j+1r)f∥X

≤ C
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
∥f∥Mu

X
.

Since u ∈ WX , (2.6) assures that

∞∑
j=1

Ej(x) ≤ C∥f∥Mu
X

∞∑
j=1

u(z, 2j+1r)

∥χB(z,2j+1r)∥X
≤ C∥f∥Mu

X

u(z, r)

∥χB(z,r)∥X
.

Therefore, χRn\B(z,2r)|K(x, y)||f(y)| is integrable. That is, the second term on the

right hand side of (3.3) is well defined.

Finally, it remains to show that the definition is independent of B(z, r) ∈ B. That

is, for any x ∈ B(z, r) ∩ B(w,R) with B(z, r), B(w,R) ∈ B and B(z, r) ∩ B(w,R) ̸= ∅,
we have

(T (χB(z,2r)f))(x) +

∫
Rn\B(z,2r)

K(x, y)f(y)dy

= (T (χB(w,2R)f))(x) +

∫
Rn\B(w,2R)

K(x, y)f(y)dy. (3.5)

Let B(s,M) ∈ B be selected so that B(z, 2r) ∪ B(w, 2R) ⊂ B(s,M). According to

(3.4), for any x ∈ B(z, r) ∩B(w,R), both

χB(s,M)\B(z,2r)|K(x, y)||f(y)| and χB(s,M)\B(w,2R)|K(x, y)||f(y)|

are integrable. Therefore, for any x ∈ B(z, r) ∩B(w,R),

(TχB(s,M)\B(z,2r)f)(x) = lim
ϵ→0

∫
B(s,M)\B(z,2r)

|x−y|>ϵ

K(x, y)f(y)dy

=

∫
B(s,M)\B(z,2r)

K(x, y)f(y)dy,

(TχB(s,M)\B(w,2R)f)(x) = lim
ϵ→0

∫
B(s,M)\B(w,2R)

|x−y|>ϵ

K(x, y)f(y)dy

=

∫
B(s,M)\B(w,2R)

K(x, y)f(y)dy.

Since χB(z,2r)f, χB(s,M)\χB(z,2r)
f ∈ X, the linearity of T on X yields
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(T (χB(z,2r)f))(x) +

∫
Rn\B(z,2r)

K(x, y)f(y)dy

= (T (χB(z,2r)f))(x) +

∫
B(s,M)\B(z,2r)

K(x, y)f(y)dy +

∫
Rn\B(s,M)

K(x, y)f(y)dy

= (T (χB(z,2r)f))(x) + (T (χB(s,M)\χB(z,2r)
f))(x) +

∫
Rn\B(s,M)

K(x, y)f(y)dy

= (T (χB(s,M)f))(x) +

∫
Rn\B(s,M)

K(x, y)f(y)dy. (3.6)

Similarly, we also have

(T (χB(w,2R)f))(x) +

∫
Rn\B(w,2R)

K(x, y)f(y)dy

= (T (χB(s,M)f))(x) +

∫
Rn\B(s,M)

K(x, y)f(y)dy. (3.7)

Therefore, (3.6) and (3.7) yield (3.5). That is, T f is well defined when f ∈ Mu
X .

Obviously, according to (3.3), T is a linear operator on Mu
X .

When f ∈ X ∩ Mu
X , (3.4) guarantees that K(x, ·)χRn\B(z,2r)(·)f(·) is integrable,

therefore,

(T (χRn\B(z,2r)f))(x) =

∫
Rn\B(z,2r)

K(x, y)f(y)dy.

Consequently, χRn\B(z,2r)f ∈ X and the linearity of T on X assure that

(T f)(x) = (T (χB(z,2r)f))(x) + (T (χRn\B(z,2r)f))(x) = (Tf)(x).

That is, on X ∩Mu
X , T reduces to T . Therefore, T is an extension of T . □

With the precise definition of singular integral operators acting on Mu
X , it is now

reasonable to study the boundedness of the singular integral operators on Mu
X .

Theorem 3.2. Let T be a singular integral operator. Let X be a B.f.s. and u ∈ WX .

If X ∈ M ∪M′ and T is a bounded linear operator on X, then T is bounded on Mu
X .

Proof. In view of Theorem 3.1 and (3.4), for any x ∈ B(z, r) ∈ B, we have

|χB(z,r)(x)(T f)(x)|

≤ |χB(z,r)(x)(T (χB(z,2r)f))(x)|+ χB(z,r)(x)

∫
Rn\B(z,2r)

|K(x, y)f(y)|dy

≤ |χB(z,r)(x)(T (χB(z,2r)f))(x)|+ CχB(z,r)(x)∥f∥Mu
X

u(z, r)

∥χB(z,r)∥X

Applying the norm ∥ · ∥X on both sides, the boundedness of T on X guarantees that
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∥χB(z,r)T f∥X ≤ ∥T (χB(z,2r)f)∥X + C∥χB(z,r)∥X∥f∥Mu
X

u(z, r)

∥χB(z,r)∥X
≤ C∥χB(z,2r)f∥X + C∥f∥Mu

X
u(z, r).

Next, we show that there is a constant C > 0 such that for any z ∈ Rn and r > 0,

we have

u(z, 2r) ≤ Cu(z, r). (3.8)

In view of (2.6), we obtain

∥χB(z,r)∥X
∥χB(z,2r)∥X

u(z, 2r) ≤
∞∑
j=0

∥χB(z,r)∥X
∥χB(z,2j+1r)∥X

u(z, 2j+1r) ≤ Cu(z, r).

By using (2.2), we have

u(z, 2r) ≤ C
∥χB(z,r)∥X
∥χB(z,2r)∥X

u(z, 2r) ≤ Cu(z, r)

for some C > 0. Therefore, we establish (3.8).

Consequently, (3.8) yields

1

u(z, r)
∥χB(z,r)T f∥X ≤ C

1

u(z, 2r)
∥χB(z,2r)f∥X + C∥f∥Mu

X
≤ C∥f∥Mu

X
.

By taking supremum over B(z, r) ∈ B, we obtain the boundedness of T on Mu
X . □

Our method is also used in [21] to study singular integral operators with rough

kernels.

Our approach does not only apply to singular integral operators, with some simple

modifications, it can be used to study the commutator of singular integral operators in

the subsequent section.

4. Commutators.

In this section, we use our definition for singular integral operator T on Mu
X to

study the commutator [T, b]. The reader is referred to [6], [8] for some details about

commutators of singular integral operators on Lebesgue spaces and its applications.

The study of commutators involves the function space of bounded mean oscillations

BMO. We say that a locally integrable function f belongs to BMO if

∥f∥BMO = sup
B∈B

∥χB(f − fB)∥L1

|B|
< ∞

where fB = (1/|B|)
∫
B
f(y)dy.

We recall some characterizations of BMO as these characterization are related to

the study of commutator.

The BMO can also be characterized by B.f.s., see [14, Theorem 2.3].
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Theorem 4.1. Let X ∈ M′. Then, the norm

∥f∥BMOX
= sup

B∈B

∥χB(f − fB)∥X
∥χB∥X

and ∥ · ∥BMO are mutually equivalent.

Let b ∈ BMO and T be defined by (3.2). Suppose that T is bounded on X, the

commutator [T, b] is defined as

[T, b]f = T (bf)− b(Tf), f ∈ X.

We now ready to study the boundedness of the commutator [T, b] on Mu
X via the

formula (3.3).

Definition 4.1. Let X be a B.f.s. with X ∈ M∪M′, u ∈ WX and b ∈ BMO. Let

T be a singular integral operator defined by (3.2). Suppose that T and [T, b] are bounded

on X. For any f ∈ Mu
X and x ∈ B(z, r) ∈ B, we define

[T , b]f(x) = [T, b](χB(z,2r)f)(x) +

∫
Rn\B(z,2r)

(b(y)− b(x))K(x, y)f(y)dy. (4.1)

Theorem 4.2. Let T be a singular integral operator defined by (3.2) and b ∈
BMO. Let X be a B.f.s. with X ∈ M and u ∈ WX . Suppose that there exists a constant

C > 0 such that for any x ∈ Rn and r > 0, u fulfills

∞∑
j=0

(j + 1)
∥χB(x,r)∥X

∥χB(x,2j+1r)∥X
u(x, 2j+1r) ≤ Cu(x, r). (4.2)

If T and [T, b] are bounded on X, then [T , b] is well defined on Mu
X .

In addition, for any f ∈ X ∩Mu
X , we have [T, b]f = [T , b]f .

Proof. Similar to the proof of Theorem 3, we find that our result follows when,

for any x ∈ B(z, r),

χRn\B(z,2r)(·)(b(·)− b(x))K(x, ·)f(·)

is integrable.

We write fj = χB(z,2j+1r)\B(z,2jr)f , j ∈ N\{0} and

bB(z,2j+1r) =
1

|B(z, 2j+1r)|

∫
B(z,2j+1r)

b(w)dw

As X ∈ M, the Lorentz–Luxemburg theorem [4, Chapter 1, Theorem 2.7] guarantees

that (X ′)′ = X ∈ M. That is, X ′ ∈ M′. According to Theorem 4.1, we find that

∥χB(z,r)(b(·)− bB(z,r))∥X′ ≤ C∥b∥BMO∥χB(z,r)∥X′ , (4.3)

and
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∥χB(z,2j+1r)(b(·)− bB(z,2j+1r))∥X′ ≤ C∥b∥BMO∥χB(z,2j+1r)∥X′

for some C > 0. Furthermore, we have

|bB(z,2j+1r) − bB(z,r)| ≤ C(j + 1)∥f∥BMO,

see [35, p. 141]. Thus,

∥χB(z,2j+1r)(b(·)− bB(z,r))∥X′ ≤ C(j + 1)∥b∥BMO∥χB(z,2j+1r)∥X′ (4.4)

Write

Ej(x) =

∫
B(z,2j+1r)\B(z,2jr)

|b(y)− b(x)||K(x, y)||f(y)|dy.

We have

Ej(x) ≤
∫
B(z,2j+1r)\B(z,2jr)

|b(y)− bB(z,r)||K(x, y)||f(y)|dy

+

∫
B(z,2j+1r)\B(z,2jr)

|bB(z,r) − b(x)||K(x, y)||f(y)|dy

= Ij + IIj .

Lemma 2.2 and (4.4) yield

Ij ≤
∫
B(z,2j+1r)\B(z,2jr)

|b(y)− bB(z,r)||K(x, y)||f(y)|dy

≤ C2−(j+1)r−n∥χB(z,2j+1r)f∥X∥χB(z,2j+1r)(b− bB(z,r))∥X′

≤ C(j + 1)∥b∥BMO
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
1

u(z, 2j+1r)
∥χB(z,2j+1r)f∥X

≤ C(j + 1)∥b∥BMO
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
∥f∥Mu

X
.

Next, Lemma 2.2 gives

IIj ≤
∫
B(z,2j+1r)\B(z,2jr)

|bB(z,r) − b(x)||K(x, y)||f(y)|dy

≤ C|b(x)− bB(z,r)|2−(j+1)r−n∥χB(z,2j+1r)f∥X∥χB(z,2j+1r)∥X′

≤ C|b(x)− bB(z,r)|
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
∥f∥Mu

X
.

Therefore, for any x ∈ B(z, r), (4.2) assures that∫
Rn\B(z,2r)

|b(y)− b(x)||K(x, y)||f(y)|dy
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≤
∞∑
j=1

Ej ≤
∞∑
j=1

(Ij + IIj)

≤ C

∞∑
j=1

(j + 1)∥b∥BMO
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
∥f∥Mu

X

+ C
∞∑
j=1

|b(x)− bB(z,r)|
u(z, 2j+1r)

∥χB(z,2j+1r)∥X
∥f∥Mu

X

≤ C∥b∥BMO
u(z, r)

∥χB(z,r)∥X
∥f∥Mu

X
+ |b(x)− bB(z,r)|

u(z, r)

∥χB(z,r)∥X
∥f∥Mu

X

< ∞ (4.5)

because b ∈ BMO implies that b(·) − bB(z,r) is integrable on B(z, r) and, hence, b(·) −
bB(z,r) is finite almost everywhere on B(z, r).

Similar to the proof of Theorem 3, for any x ∈ B(z, r) ∩ B(w,R) with

B(z, r), B(w,R) ∈ B and B(z, r) ∩ B(w,R) ̸= ∅, select a B(s,M) ∈ B so that

B(z, 2r) ∪B(w, 2R) ⊂ B(s,M).

We have

[T, b](χB(s,M)\B(z,2r)f) =

∫
B(s,M)\B(z,2r)

(b(y)− b(x))K(x, y)f(y)dy,

[T, b](χB(s,M)\B(w,2R)f) =

∫
B(s,M)\B(w,2R)

(b(y)− b(x))K(x, y)f(y)dy

because χB(s,M)\B(z,2r)(·)(b(·) − b(x))K(x, ·)f(·) and χB(s,M)\B(w,2R)(·)(b(·) − b(x))

K(x, ·)f(·) are integrable.

Consequently,

[T, b](χB(z,2r)f)(x) +

∫
Rn\B(z,2r)

(b(y)− b(x))K(x, y)f(y)dy

= [T, b](χB(s,M)f)(x) +

∫
Rn\B(s,M)

(b(y)− b(x))K(x, y)f(y)dy

= [T, b](χB(w,2R)f)(x) +

∫
Rn\B(w,2R)

(b(y)− b(x))K(x, y)f(y)dy.

Therefore, [T , b] is well defined.

Moreover, for any f ∈ X∩Mu
X and x ∈ B(z, r), χRn\B(z,2r)(·)(b(·)−b(x))K(x, ·)f(·)

is integrable, the linearity of [T, b] guarantees that

[T , b]f(x) = [T, b](χB(z,2r)f)(x) +

∫
Rn\B(z,2r)

(b(y)− b(x))K(x, y)f(y)dy

= [T, b](χB(z,2r)f)(x) + [T, b](χRn\B(z,2r)f)(x) = [T, b]f(x). □

With some modifications on (4.2), the above method can also be used to show that

the higher order commutator
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[T , b]kf(x) = [T, b]k(χB(z,2r)f)(x) +

∫
Rn\B(z,2r)

(b(y)− b(x))kK(x, y)f(y)dy,

k ∈ N, is well defined on Mu
X , for brevity, we leave the details to the reader.

Since [T , b] is well defined on Mu
X , we are allowed to study the boundedness of [T , b]

on Mu
X .

Theorem 4.3. Let T be a singular integral operator defined by (3.2) and b ∈
BMO. Let X be a B.f.s. with X ∈ M ∩ M′ and u ∈ WX . If T are bounded on X,

u ∈ WX satisfies (4.2) and

∥[T, b]f∥X ≤ C∥b∥BMO∥f∥X

for some C > 0, then [T , b] is bounded on Mu
X .

Proof. Let f ∈ Mu
X and B(z, r) ∈ B. Since [T, b] is bounded on X, we have

∥χB(z,r)[T, b](χB(z,r)f)∥X ≤ ∥[T, b](χB(z,r)f)∥X ≤ C∥χB(z,r)f∥X ,

for some C > 0.

To deal with the second term on (4.1), (4.5) guarantees that

χB(z,r)(x)

∫
Rn\B(z,2r)

|b(y)− b(x)||K(x, y)||f(y)|dy

≤ CχB(z,r)(x)∥f∥Mu
X

u(z, r)

∥χB(z,r)∥X

+ C|b(x)− bB(z,r)|χB(z,r)(x)∥f∥Mu
X

u(z, r)

∥χB(z,r)∥X
.

Since X ∈ M′, Theorem 4.1 yields

1

u(z, r)
∥χB(z,r)[T , b]f∥X

≤ C
1

u(z, r)
∥χB(z,r)f∥X + C∥f∥Mu

X
+ C

∥χB(z,r)|b− bB(z,r)|∥X
∥χB(z,r)∥X

∥f∥Mu
X

≤ C
1

u(z, r)
∥b∥BMO∥χB(z,r)f∥X + C∥b∥BMO∥f∥Mu

X
+ C∥b∥BMO∥f∥Mu

X

≤ C∥b∥BMO∥f∥Mu
X

for some C > 0. By taking supremum over B ∈ B, we establish the boundedness of [T , b]

on Mu
X . □

In view of [9, Corollary 2.10], we have the boundedness of [T, b] on the Lebesgue

spaces with variable exponents Lp(·)(Rn). The above result gives an extension of the this

boundedness result to Morrey spaces with variable exponents Mp(·),u.
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Corollary 4.4. Let T be a singular integral operator and b ∈ BMO. Suppose

that p(·) : Rn → (1,∞) satisfies Lp(·)(Rn) ∈ M ∩ M′, T is bounded on Lp(·)(Rn) and

u ∈ WLp(·)(Rn) satisfies (4.2). Then, [T , b] is bounded on Mp(·),u.

Let p(·) be a log-Hölder continuous function with 1 < p− ≤ p+ < ∞, 0 ≤ θ < 1

and uθ(x, r) = ∥χB(x,r)∥θLp(·)(Rn)
. As an application of the above result, we find that if

T and Lp(·)(Rn) satisfy the conditions in Corollary 4.4, then there is a constant C > 0

such that for any f ∈ Mp(·),uθ

∥[T , b]f∥Mp(·),uθ
≤ C∥f∥Mp(·),uθ

.
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