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Abstract. In this paper, we introduce a new nontrivial filtration, called
F-order, for classical and virtual knot invariants; this filtration produces fil-

tered knot invariants, which are called finite type invariants similar to Vassiliev
knot invariants. Finite type invariants introduced by Goussarov, Polyak, and
Viro are well-known, and we call them finite type invariants of GPV-order. We
show that for any positive integer n and for any classical knot K, there exist

infinitely many of nontrivial classical knots, all of whose finite type invariants
of GPV-order ≤ n − 1, coincide with those of K (Theorem 1). Further, we
show that for any positive integer n, there exists a nontrivial virtual knot
whose finite type invariants of our F-order ≤ n− 1 coincide with those of the

trivial knot (Theorem 2). In order to prove Theorem 1 (Theorem 2, resp.),
we define an n-triviality via a certain unknotting operation, called virtualiza-
tion (forbidden moves, resp.), and for any positive integer n, find an n-trivial

classical knot (virtual knot, resp.).

1. Introduction.

In this paper, we introduce a new nontrivial filtration for classical and virtual knot

invariants. Here, a classical knot is an embedded circle in R3 and a virtual knot is a

stable equivalence class of an image of a regular projection to a closed surface of an

embedded circle in Σ× I, where Σ is a closed orientable surface and I is an interval that

is homeomorphic to [0, 1] (for the definitions of knots and virtual knots, see Section 2

and for stable equivalences, see Carter–Kamada–Saito [1]).

In 1990, Vassiliev [18] introduced a filtered space of knot invariants via a standard

unknotting operation, called a crossing change, which is an exchange of the role of an

over path and an under path of a crossing of a knot diagram. In 2000, Goussarov,

Polyak, and Viro [4] introduced another filtration, called GPV-order, by using another

unknotting operation, called virtualization (Figure 6), for classical and virtual knots.

From the theory by Goussarov, Polyak, and Viro [4], we have another framework to

obtain concrete Vassiliev invariants from the dual spaces generated by chord diagrams.

We also note that from Goussarov–Polyak–Viro [4], Vassiliev invariants are extended

to virtual knots. In this paper, filtered knot invariants, which are similar to Vassiliev
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invariants, and Goussarov, Polyak, and Viro invariants are called finite type invariants.

In 1990, the notion of n-triviality was introduced by Ohyama [12] and in 1992, Taniyama

[17] generalized it to n-similarity. In Vassiliev theory, the notion of n-triviality, which is

a special case of n-similarity, plays a significant role; here, a relationship between local

moves and finite type invariants is obtained. For example, by Goussarov [2], for any

positive integer n, a knot K is n-trivial (n-similar to L, resp.) if and only if vm(K) =

vm(unknot) (vm(K) = vm(L), resp.) (m ≤ n− 1).

However, to the best of our knowledge, for an integer n (> 2), an example of n-trivial

classical or virtual knot of GPV-order is still not known. The notion of n-triviality is

defined as follows (see Ohyama [13]). Let A be a collection of n pairwise disjoint,

nonempty subsets, each of which consists of isolated sufficiently small disks on which

unknotting operations are applied. For any subset T of the power set of A, a knot

diagram is denoted by K(T ) by applying a certain unknotting operation to each small

disk in T . Then, a knot K is n-trivial if there exists T such that K(∅) is a diagram of

K and K(T ) is an unknot diagram (note that, in Goussarov–Polyak–Viro [4], a slightly

different definition of n-triviality is obtained).

In this paper, we show that for any positive integer n and for any classical knot K,

there exist infinitely many of nontrivial classical knots, all of whose finite type invariants

of GPV-order ≤ n− 1, coincide with those of K (Theorem 1).

Second, we focus on an unknotting operation, called forbidden moves (Kanenobu

[7] and Nelson [11] independently showed that this move is an unknotting operation).

By using forbidden moves, we introduce a new filtration, called F-order, for classical and

virtual knot invariants (Definition 3). We show that for any positive integer n, there

exists a nontrivial virtual knot whose finite type invariants of F-order ≤ n − 1 coincide

with those of the trivial knot (Theorem 2).

2. Preliminaries.

Suppose that f : S1 → R3 is a smooth embedding. An image f(S1) is called a

knot or a classical knot. Two knots K0 and K1 are isotopic if there exists an isotopy

ht : R3 → R3, t ∈ [0, 1], with h0 = id and h1(K0) = K1. A long knot is a smooth

embedding R → R3 which coincides with the standard embedding outside a compact set.

An isotopy of long knots is a smooth isotopy consisting of a family of embeddings as

above. Let K be a knot (long knot, resp.). Let p be a regular projection R3 → R2, i.e.,

p(K) is a generic immersed plane closed curve (long curve). In particular, every singular

point of the image p(K) is a transverse double point. The image p(K)(⊂ R2), up to plane

isotopy, with over/under information of each double point is called a diagram of K.

In the classical knot theory, long knots are introduced for purely technical reasons

since adding the point at the infinity point turns a long knot into a knot in the sphere S3
and this construction obtains an one-to-one correspondence between the isotopy classes

of knots and the isotopy classes of long knots.

A virtual knot diagram is a knot diagram having virtual crossings (right) as well

as real crossings in Figure 1 (left). Two virtual knot diagrams are equivalent if one

can be obtained from the other by a finite sequence of generalized Reidemeister moves

in Figure 2. The equivalence class of virtual knot diagrams modulo the generalized
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Figure 1. Crossing types.

Figure 2. Generalized Reidemeister moves.

Reidemeister moves is called a virtual knot. Similarly, a long virtual knot diagram is a

long knot diagram having virtual crossings as well as real crossings. A long virtual knot is

an equivalence class of long virtual knot diagrams modulo the generalized Reidemeister

moves.

A virtual knot diagram (long virtual knot diagram, resp.) is regarded as the image of

an immersion from S1 (R, resp.) into R2. Let K be a virtual knot diagram (long virtual

knot diagram, resp.). A Gauss diagram for K is the preimage of K with chords, each of

which connects the preimages of each real crossing. We specify over/under information

of each real crossing on the corresponding chord by directing the chord toward the under

path and decorating each chord with the sign of the crossing (Figure 3).

Figure 3. The sign of a real crossing.

It is well-known that there exists a bijection from the set of virtual knots (long

virtual knots, resp.) to the set of equivalence classes of their Gauss diagrams modulo the

generalized Reidemeister moves of Gauss diagrams in Figure 4 (Figure 5, resp.). In this

paper, we identify a virtual knot (long virtual knot, resp.) with an equivalence class of

Gauss diagrams, and we freely use either one of them depending on situations.

An arrow diagram is just a Gauss diagram with all chords drawn dashed. Let A
be the set of all arrow diagrams, and D the set of all Gauss diagrams. A subdiagram

of D ∈ D is a Gauss diagram consisting of a subset of the chords of D. Define a map

i : D → ZA by the map that makes all the chords of a Gauss diagram dashed, and define
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Figure 4. Generalized Reidemeister moves of Gauss diagrams

for virtual knots.

Figure 5. Generalized Reidemeister moves of Gauss diagrams for

long virtual knots.

a map I : D → ZA by

I(D) =
∑

D′⊂D

i(D′),

where the sum is over all subdiagrams of D. Extend the map I to ZD linearly. On the

generators of ZA, define (D,E) to be 1 if D = E and 0 otherwise, and then extend (·, ·)
bilinearly. Put

⟨A,D⟩ = (A, I(D)), (1)

for any D ∈ D and A ∈ ZA (for an example, see Examples 1 and 2).

A trivial knot diagram is a virtual knot diagram (long virtual knot diagram, resp.)

with no double points. Let K be a virtual knot whose diagram is D. Suppose that a

virtual knot diagram D and a trivial knot diagram are equivalent. Then K is called a

trivial knot or an unknot. Let D be a long knot diagram or a knot diagram. Then, a

local move is a replacement of a sufficiently small disk d(⊂ R2) on D(⊂ R2) by another

disk d′(⊂ R2) such that ∂d = ∂d′ and (R2 \ d) ∪ d′ gives a diagram. For a virtual knot

diagram (long virtual knot diagram, resp.), the type of local move shown in Figure 6 is

called virtualization and each type of local moves shown in Figure 7 is called forbidden

moves. Let M be a type of local moves. If any virtual knot diagram (long virtual knot

diagram, resp.) can be transformed into a trivial knot diagram by a finite sequence of
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Figure 6. Virtualization.

Figure 7. Forbidden moves consisting of type OF and type LF .

local moves of type M and generalized Reidemeister moves, moves of type M are called

unknotting operations for virtual knots (long virtual knots, resp.).

Fact 1 (Goussarov, Polyak, and Viro [4]). Moves of virtualization are unknotting

operations for virtual knots and for long virtual knots.

Fact 2 (Kanenobu [6], Nelson [11]). Forbidden moves are unknotting operations

for virtual knots and for long virtual knots.

Definition 1 (triangle). Suppose thatD is a virtual knot diagram or a long virtual

knot diagram (⊂ R2). For D, if there exists a disk (⊂ R2) that look like one of Figure 8,

the disk is called a triangle. Signs of triangles are defined as shown in Figure 9. When

we would like to specify the sign of a triangle, the triangle is denoted by an ϵ-triangle

(ϵ = +,−). A triangle with the opposite sign to ϵ is called a (−ϵ)-triangle.

Figure 8. Triangles (four types).

Figure 9. Signs of triangles. Dotted curves indicate the connections of vir-

tual knot diagrams or long virtual knot diagrams. For long virtual knot

diagrams, the infinity point is on a dotted curve.
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Definition 2 (finite type invariants of GPV-order). Let VK be the set of the

virtual knots (long virtual knots, resp.) and G an abelian group. Let v be a function

from VK to G. Suppose that v is an invariant of virtual knots (long virtual knots, resp.).

We say that v : VK → G is a finite-type invariant of GPV-order ≤ n if for any virtual

knot diagram (long virtual knot, resp.) D and for any n+1 real crossings d1, d2, . . . , dn+1,∑
δ

(−1)|δ|v(Dδ) = 0,

where δ = (δ1, δ2, . . . , δn+1) runs over (n+ 1)-tuples of 0 or 1, |δ| is the number of 1’s in

δ, and Dδ is a diagram obtained from D by switching every di with δi = 1 to the virtual

crossing.

If v is a finite type invariant of GPV-order ≤ n and is not a finite type invariant of

GPV-order ≤ n− 1, we say that v is a finite type invariant of GPV-order n, and v is

denoted by vGPV
n .

Definition 3 (finite type invariants of F-order). Let VK be the set of the virtual

knots (long virtual knots, resp.) and G an abelian group. Let v be a function from VK
to G. Suppose that v is an invariant of virtual knots (long virtual knots, resp.). We say

that v : VK → G is a finite-type invariant for forbidden moves of order ≤ n if for any

virtual knot diagram (long virtual knot diagram, resp.) D and for any n + 1 disjoint

triangles, each of which is ϵi-triangle di (1 ≤ i ≤ n+ 1, ϵi = −1 or 1),∑
δ

(−1)|δ|v(Dδ) = 0,

where δ = (δ1, δ2, . . . , δn+1) runs over (n+ 1)-tuples of 0 or 1, |δ| is the number of 1’s in

δ, and Dδ is a diagram obtained from D by switching every ϵi-triangle di with δi = 1 to

the (−ϵi)-triangle which is obtained from di by a single forbidden move.

In this paper, a finite-type invariant for forbidden moves of order ≤ n is simply

called a finite-type invariant of F-order ≤ n. If v is a finite type invariant of F-order

≤ n and is not a finite type invariant of F-order ≤ n− 1, we say that v is a finite type

invariant of F-order n, and v is denoted by vFn .

Example 1 (cf. Goussarov–Polyak–Viro [4], Polyak–Viro [15]). Let v2,1 and v2,2
be finite type invariants of GPV-order 2 of long virtual knots. Recall the definition ⟨·, ·⟩
by (1). By Goussarov, Polyak, and Viro [4], these are obtained by

v2,1(·) =
⟨∑

ϵ1,ϵ2

ϵ1ϵ2 , ·
⟩

and v2,2(·) =
⟨∑

ϵ1,ϵ2

ϵ1ϵ2 , ·
⟩
.

It is known that for any classical knot K, v2,1(K) = v2,2(K) and both v2,1 and v2,2
correspond to the second coefficient of Conway polynomial where v2,1(unknot) = 0 and

v2,1(trefoil) = 1 (see Polyak–Viro [15]). It is clear that both v2,1 and v2,2 are nontrivial

knot invariants, which implies that v2,1 (v2,2, resp.) is not a finite type invariant of F-

order 0. Note that every finite type invariant of F-order 0 is a constant map (traditionally,

such an invariant is called a trivial invariant) by Fact 2. In the following, we show that
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Figure 10. Gauss diagrams and a single forbidden move.

Figure 11. D(0,0), D(0,1), D(1,0), and D(1,1). ai (1 ≤ i ≤ 4) denotes an

oriented chord and ϵi (1 ≤ i ≤ 4) denotes the sign of ai.

v2,1 (v2,2, resp.) is a finite type invariant of F-order 1. It is sufficient to show that v2,1
(v2,2, resp.) is a finite type invariant of F-order ≤ 1.

A single forbidden move is presented by Gauss diagrams up to signs of crossings as

in Figure 10. Recall the definition of Dδ in Definition 3. Suppose that a long virtual

knot diagram D has two disjoint triangles. Let D(0,0) = D and let δ = (δ1, δ2). Let

J =
∑

δ(−1)|δ|v2,1(Dδ). By definition, Dδ with |δ| = 1 (D(1,1), resp.) is obtained from

D(0,0) by a single forbidden move (exactly two forbidden moves, resp.). If there exists

Dδ such that type (I) in Figure 10 does not appears twice in Dδ, it is easy to see J = 0.

Thus, without loss of generality, we can suppose that D(δ1,δ2) is as in Figure 11. Here,

for oriented chords ai (1 ≤ i ≤ 4) in Figure 11, it is clear that whether there is an

intersection of α ∈ {a1, a2} with β ∈ {a3, a4} or not does not affect the values of J under

the corresponding forbidden moves. Then,∑
δ

(−1)|δ|v2,1(Dδ) = v2,1(D(0,0))− v2,1(D(0,1))− v2,1(D(1,0)) + v2,1(D(1,1))

=
(
v2,1(D(0,0))− v2,1(D(0,1))

)
−

(
v2,1(D(1,0))− v2,1(D(1,1))

)
= ϵ3ϵ4 − ϵ3ϵ4

= 0.

For v2,2, since the arguments are essentially the same as that of v2,1, the detail of the

proof of
∑

δ(−1)|δ|v2,2(Dδ) = 0 is omitted (focus on (III) of Figure 10).

Example 2. Let v3,1 be a finite type invariant of GPV-order 3 of virtual knots.

By Goussarov, Polyak, and Viro [4], this is obtained by

v3,1(·) =
⟨ ∑

ϵ1,ϵ2,ϵ3

ϵ1ϵ2ϵ3

(
3 − + + − −

)
−

++

+
−−
, ·
⟩
,
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where ϵi = ±1 (i = 1, 2, 3).

Let D+ be a virtual knot diagram containing a +-triangle. Let D− be a virtual knot

diagram containing − -triangle obtained by a single forbidden move. Formulae of the

difference v3,1(D+)−v3,1(D−) are obtained by [16, Lemma 3.5], and using the formulae,

it is elementary to show that v3,1 is a finite type invariant of F-order ≤ 1 in the same way

as Example 1. Details of this proof are left to the reader. Note that v3,1 is a nontrivial

virtual knot invariant, which implies that v3,1 is not a finite type invariant of F-order 0.

Therefore, v3(K) is a finite type invariant of F-order 1.

Definition 4 (GPVn-similar, GPVn-trivial). Let K (L, resp.) be a virtual knot

or a long virtual knot. Let K̃ (L̃, resp.) be a diagram of K (L, resp.). Suppose that A1,

A2, . . ., An are non-empty sets of crossings K̃ or A1, A2, . . ., An are non-empty sets of

crossings L̃. Then, K and L are GPVn-similar if there exist Ai (1 ≤ i ≤ n) such that

• Ai ∩Aj = ∅ (i ̸= j),

• By replacing real to virtual at every crossing of any nonempty subfamily of {Ai | 1 ≤
i ≤ n}, L̃ is obtained from K̃ or K̃ is obtained from L̃.

In particular, if a virtual knot K and a trivial knot are GPVn-similar, K is GPVn-trivial.

Definition 5 (Fn-similar, Fn-trivial). Let K, L be virtual knots and K̃ (L̃, resp.)

a diagram of K (L, resp.). Let A1, A2, . . ., An be non-empty sets of disjoint triangles in

K̃. Then, K and L are Fn-similar if there exist Ai (1 ≤ i ≤ n) such that

• Ai ∩Aj = ∅ (i ̸= j),

• L̃ is obtained from K̃ by forbidden moves at the triangles in any nonempty sub-

family of {Ai | 1 ≤ i ≤ n}.

In particular, if a virtual knot K and a trivial knot are Fn-similar, K is Fn-trivial.

A virtual knot that is GPVn-trivial (Fn-trivial, resp.) is given by Lemma 2

(Lemma 4, resp.).

3. Main Results.

Theorem 1. For any classical knot K, any positive integers l, m, and n (m ≤
n− 1), and any finite type invariant vGPV

m of GPV-order m, there exist infinitely many

of classical knots Kℓ
n such that vGPV

m (Kℓ
n) = vGPV

m (K).

Theorem 2. Let O be a trivial knot. For any positive integers m and n (m ≤ n−1),

and for any finite type invariant vFm of F-order m, there exists a nontrivial virtual knot

Kn such that vFm(Kn) = vFm(O).

4. Proofs of Theorem 1 and Theorem 2.

4.1. Proof of Theorem 1.

To begin with, we introduce a new kind of crossing, which is called semi-virtual.

At a semi-virtual crossing there are still over/under information. In a diagram, every
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semi-virtual crossing is shown as a real one, but surrounded by a small circle. Every

semi-virtual crossing is related to the other types of crossings by the following formal

relation:

:= − .

Let Ai = {ci1, ci2, . . . , ciα(i)} and let K
(

1 2 ... k
i1 i2 ... ik

)
be a diagram with semi-

virtual crossings by replacing a real crossing with the virtual crossing at

c11, . . . , c1i1−1, c21, . . . , c2i2−1, . . . , ck1, . . . , ckik−1 and replacing a real crossing with

the semi-virtual crossing at c1i1 , c2i2 , . . . , ckik (see Example 3). Here, note that

= + .

Then, similarly to [13, Lemma 3, p.289] by Ohyama, it is elementary to see the following:

Lemma 1. If K and K ′ are GPVn-similar, a finite type invariant vGPV
m of GPV-

order m(≤ n) satisfies

vGPV
m (K) = vGPV

m (K ′) +
∑

1≤ij≤α(j),1≤j≤n

vGPV
m

(
K

(
1 2 . . . n

i1 i2 . . . in

))
.

In particular, if K and K ′ are GPVn-similar and vGPV
i is a finite type invariant for

GPV-order m (≤ n− 1), then

vGPV
m (K) = vGPV

m (K ′).

Lemma 2. For any positive integers ℓ and n, there exists a classical knot Kℓ
n such

that Kℓ
n is GPVn-trivial.

Proof. Let Kℓ
n be a knot and Aj (1 ≤ j ≤ i) a non-empty set of crossings as

in Figure 12. Since VKℓ
n
(t) = (t2 − 1)(VKn(t) − 1)

∑ℓ−1
i=0(t

−2i) + VKn(t) and VKn(t) ̸= 1

(by Kanenobu [6]), Kℓ
n is a nontrivial knot. Note also that for positive integers ℓ and ℓ′

(ℓ ≤ ℓ′), Kℓ
n and Kℓ′

n are not equivalent. □

Figure 12. Kℓ
n.
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For two classical knots L and L′, L♯L′ denotes a connected sum of L and L′. Suppose

that K is a classical knot. Recall that, in the proof of Lemma 2, we give a classical knot

Kℓ
n concretely. By definition, it is easy to see that K and K♯Kℓ

n are n-similar. Then, by

using Lemma 1, vGPV
m (K) = vGPV

m (K♯Kℓ
n). □

Example 3. The key point is that if K
(

1 2 ... n
i1 i2 ... in

)
has n columns, then it has

n semi-virtual crossings. For example, a virtual knot diagram of the leftmost figure of

Figure 13 is GPV2-trivial by {A1, A2} where A1 = {c11, c12} and A2 = {c21, c22}. By

definition, α(1) = 2 and α(2) = 2. Every K
(

1 2
i1 i2

)
is obtained by Figure 13.

Figure 13. GPV2-trivial knot diagrams.

4.2. Proof of Theorem 2.

To begin with, we introduce a new kind of crossing, which is called semi-triple

point. A semi-triple point is a sufficiently small disk that consists of a single triple point

consisting of an over path and a virtual crossing, as or . That is, at a semi-triple

point there is still over/under information. In a diagram, every semi-triple point is shown

as a triple point, but surrounded by a small circle. Every semi-triple point is related to

ϵ- and (−ϵ)-triangles by the following formal relation:

:= − ,

positive negative

:= −

positive negative

where the sign of a triangle is defined as in Definition 1.

Let Ai = {ci1, ci2, . . . , ciα(i)} consist of triangles. Let K
(

1 2 ... k
i1 i2 ... ik

)
be a diagram

with semi-triple points by replacing an ϵ-triangle ( , resp.) with the (−ϵ)-triangle

( , resp.) at c11, . . . , c1i1−1, c21, . . . , c2i2−1, . . . , ck1, . . . , ckik−1 and replacing a triangle

( , resp.) with the semi-triple point ( , resp.) at c1i1 , c2i2 , . . . , ckik . Here, note

that
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= + ,

positive negative

= − ,

negative positive

= + , and

positive negative

= − .

negative positive

That is, every ϵ-triangle equals the sum of (−ϵ)-triangle and ± semi-triple point where

the sign ± coincides with ϵ. Then, in the rest of the paper, for a given triangle, the

induced sign, + or −, which is the coefficient of a semi-triple point, is called the sign of

a semi-triple point. For clil as above, the sign of a semi-triple point is denoted by ϵlil .

Then, similarly to [13, Lemma 3, p.289] by Ohyama, it is elementary to see the

following:

Lemma 3. If K and K ′ are Fn-similar, a finite type invariant vFm of F-order

m(≤ n) satisfies

vFm(K) = vFm(K ′) +
∑

1≤ij≤α(j),1≤j≤n

ϵ1i1ϵ2i2 · · · ϵninvFm
(
K

(
1 2 . . . n

i1 i2 . . . in

))

where ϵ∗ is the sign of a semi-triple point.

In particular, if K and K ′ are Fn-similar and vFm is a finite type invariant of F-order

m (≤ n− 1), then

vFm(K) = vFm(K ′).

Notation 1. Every braid appearing in this paper is a pure 4-braid. Thus, it is

called a braid simply. For a given braid b, the virtual knot diagram b̂ obtained from b by

Figure 14 is called the closure of the braid.

Figure 14. A braid b (left) and its closure b̂ (right).
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Lemma 4. For any positive integer n, there exists Kn such that Kn is Fn-trivial.

Proof. Let

Let b(k) be a braid with a non-empty set Al (1 ≤ l ≤ k) consisting of disjoint

triangles, b(k)−1 its inverse, b̂(k) its closure, [·, ·] a commutator, and D(b̂(k)) a virtual

knot diagram defined as follows: b(1) = A, b(2) = [B, b(1)], b(4u − 1) = [B, b(4u − 2)],

b(4u) = [A, b(4u − 1)], b(4u + 1) = [A, b(4u)], b(4u + 2) = [B, b(4u + 1)] (u ≥ 1). Note

that the definition of b(k)−1 having Al (1 ≤ l ≤ k) is defined as the mirror image of b(k)

with Al (1 ≤ l ≤ k).
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Let KH be a Khovanov homology by Manturov [10] (for our notation, see Sec-

tion 6.2). Then, since for every k ∈ N, there exist i, j (j ̸= ±1) such that

rank(KHi,j(b̂(k))) ≥ 1 by Section 5. Note that KH0,−1(unknot) = Z2, KH0,1(unknot) =

Z2, and for i, j (|j| ̸= 1), KHi,j(unknot) = 0. Thus, b̂(k) is a nontrivial virtual knot. □

By Lemma 3 and Lemma 4, we have Theorem 2. □

5. On a computation of KH(b̂(k)).

In the following, for every b̂(k), we show that there exist i, j(|j| ̸= 1) such that

KHi,j(b̂(k)) ̸= 0. We use definitions and notations in Section 6.1 for the Khovanov

homology. Let D = D(b̂(k)) as in Section 4.2 (see Lemma 4). We define the set Si,j0 by

Si,j0 = {S : enhanced state | i−1 ≤ i(S) ≤ i+1, j(S) = j0, every circle has the label 1}.

By definition, Si,j0 is a generating set of the direct sum of chain groups Ci−1,j0(D) ⊕
Ci,j0(D) ⊕ Ci+1,j0(D). For a given virtual knot diagram, the arrangement of disjoint

circles on a plane by smoothing along every marker of each real crossing is called a state.

A state with labels by assigning a label x or 1 for every circle in a state is called an

enhanced state. For an enhanced state S (a state s, resp.), let |s| = the number of circles

in s.

Lemma 5. Let S ∈ Si,j0 . Let s be the state obtained from S by ignoring labels x, 1

satisfying the following conditions (1) and (2):

(1) For every state t obtained from s by replacing a positive marker with the negative

maker, |t| = |s|.

(2) For every state t obtained from s by replacing a negative marker with the positive

maker, |t| ≤ |s|.

Then, Ci−1,j0(D)⊕ Ci,j0(D)⊕ Ci+1,j0(D) is generated by {S}, i.e.,

Si,j0 = {S : enhanced state | i− 1 ≤ i(S) ≤ i+ 1, j(S) = j0} = {S}.

Proof. We check the conditions (1) and (2), respectively.

1. By the definition of Khovanov homology in the Z2 coefficient by Manturov. Suppose

that S ∈ Si,j0 . The condition (1) implies that replacing a positive marker with the

negative maker does not change the number of component. By definition, the

differential sends S to 0.

2. If we replace a negative marker on S by a positive marker, i decreases by 1. Suppose

that |t| ≤ |s|. Then, for every enhanced state T obtained from t with labels,

j(T ) < j0. Then, T /∈ Si,j0 .

Therefore, (1) and (2) imply

Si,j0 = {S : enhanced state | i− 1 ≤ i(S) ≤ i+ 1, j(S) = j0} = {S}. □
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To prove the existence of i, j(|j| ̸= 1) such that KHi,j(b̂(k)) ̸= 0 for every b̂(k), we

find an enhanced state satisfying the conditions (1) and (2) of Lemma 5, which implies

0 → Si,j0 → 0.

We will find such an enhanced state obtained from b̂(k). In order to define such enhanced

states, we prepare Notation 2.

Notation 2. For braids A and B, for every crossing, we put on a negative marker.

For braids A−1 and B−1, if we apply the smoothing along a positive (negative, resp.)

marker at a real crossing, then, by a short dotted arc (solid arc, resp.), we indicate that

we select the positive (negative, resp.) marker, as shown in Figure 15. The symbol δ

indicates a simple circle that simplifies presentations of enhanced states as in Figures 16

and 17. In the rest of this paper, every label on each circle is 1, and thus, the indication

of the labels are omitted. We define an enhanced state S(b̂(k)) and S(b̂(k)−1) (2 ≤ k)

by Figures 16 and 17 recursively.

Figure 15. A smoothing along a positive marker (left) and a smoothing

along a negative marker (right).

By using Figure 17, it is elementary to check S(b̂(k)) (1 ≤ k ≤ 6) satisfies the

conditions (1) and (2) by the direct computation for every crossing. By using the recursive

formulae of definitons, it is easy to see that S(b̂(k)) (7 ≤ k) satisfies the conditions (1)

and (2). Finally, we show that |j(S(k))| ̸= 1 in the following. Note that, by definition,

Figure 16. S(b̂(1)), S(b̂(2)), and S(b̂(2)−1). The symbol δ indicates a simple

circle.
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Figure 17. S(b̂(k)) and S(b̂(k)−1) (k ≥ 3). (b(k)) ((b(k)−1), resp.) indicates

the part of S(b̂(k)) (S(b̂(k)−1), resp.) between two adjoining dotted segments.

The symbol δ indicates a simple circle.

w(b̂(k)) = 0. Note also that by definition, σ(S(b̂(k))) < 0. Then, for S(b̂(k)) (k ≥ 2),

j(S(b̂(k))) = (−1/2)σ(S(b̂(k))) + τ(S(b̂(k))) > τ(S(b̂(k))). Here, it is easy to see that

τ(S(b̂(k))) > 2 by Figure 17 (see the number of δ). Thus, S(b̂(k)) (2 ≤ k) satisfies

|j(S(b̂(k)))| ̸= 1 and the conditions (1) and (2). By Lemma 5, for every k ∈ N (k ≥ 2),

there exist i and j (|j| ̸= 1) such that KHi,j(b̂(k)) ̸= 0. □

6. Definition of Khovanov homology for virtual knots.

In this section, we recall a definition of a Khovanov homology for virtual knots.

It is worth giving the following short review of Khovanov homologies of Viro [19] and

Manturov [10] because readers easily check our notation.
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6.1. A definition of the Khovanov homology by Viro for knots.

The Khovanov homology of the Jones polynomial is introduced by Khovanov [9].

There are at least two famous redefinitions of the Khovanov homology. Here, we give a

brief review of the definition of Viro [19]. Before starting with the review, we define a

link and a link diagram.

Definition 6 (link, link diagram). A link of k components is the image of a

smooth embedding of the disjoint union of k circles into R3. In particular, a knot is a

link of 1 component. Two links L and L′ are isotopic if there exists a smooth family of

homeomorphisms ht : R3 → R3 for t ∈ [0, 1] such that h0 is the identity map of R3 and

h1(L) = L′. Then, such a family of ht is called an isotopy of R3.

For an unoriented link diagram, we recall the definition of the Kauffman bracket

⟨·⟩ that is the map from the set of unoriented link diagrams to Z[A,A−1]. For a link

diagram D, let D0 (D∞, resp.) be link diagrams obtained by replacing a disk (⊃ a single

crossing) with the other disk d0 (d∞, resp.), as shown in Figure 18. Then, it is defined

by the following conditions:

1. ⟨∅⟩ = 1.

2. ⟨D ⨿ knot diagram with no crossings⟩ = (−A2 − A−2)⟨D⟩, where ⨿ stands for

disjoint sum.

3. ⟨D⟩ = A⟨D0⟩ + A−1⟨D∞⟩.

For each crossing of D, the replacing D with D0 or D∞ is called a smoothing. Note

that a smoothing from D to D0 (D∞, resp.) corresponding to A (A−1, resp.) and then

we call the smoothing corresponding to A a positive (negative, resp.) smoothing. To

specify a direction of a smoothing of a crossing, we use a sufficient small segment on

the crossing. The small segment is called a marker (see Figure 19). By definition, each

signed marker determines the direction of a smoothing for a crossing (Figure 20). For a

Figure 18. (a) a disk (⊃ a single crossing), (b) d0, (c) d∞.

Figure 19. (a) a disk (⊃ a single crossing), (b) positive marker, (c) negative marker.

Figure 20. Each signed marker determines the direction of a smoothing for a crossing.
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given link diagram, suppose that we smooth every crossing along a marker. Then, the

smoothened link diagram is called a state.

Next, we assign a label, x or 1, for every circle of a state. For a state, we define a

map deg from the set of circles in the state to {−1, 1} by deg(x) = −1 and deg(1) = 1.

A state whose circles have labels, each of which is x or 1, is called an enhanced state.

Let S be an enhanced state. Then, let σ(S) be the number of positive markers minus

the number of negative markers for a state. Let τ(S) =
∑

circle y in S deg(y). For a knot

diagram D, let w(D) be the number of positive crossings minus the number of negative

crossings. Then, let

i(S) =
1

2
(w(D)− σ(S)), j(S) = w(D) + i(S) + τ(S).

Here, note that the unnormalized Jones polynomial Ĵ(L) is defined by

Ĵ(L) = (−1)w(D)⟨D⟩.

Then, for a link diagram D of a link L, Ĵ(L) is obtained by

Ĵ(L) =
∑

enhanced state S of D

(−1)i(S)qj(S).

For the well-known Jones polynomial VL(t) with Vunknot(t) = 1, the unnormalized Jones

polynomial Ĵ(L) = (q + q−1)VL(q), with the variable q replaced by q = −t1/2.

Now, we define the Khovanov chain group. Let D be a link diagram and S(D) the

set of enhanced states of D. Let C(D) = Z2[S(D)]. Then, let Ci,j(D) is the subgroup

of C(D) generated by enhanced states, each of which satisfies i(S) = i and j(S) = j.

For a state s having a positive marker on a crossing, there exists a state s′ such that

s′ is obtained by replacing a single positive marker of s with the negative marker at the

crossing. Let S be an enhanced state that is a state s with labels. Then, let TS be an

enhanced state that is the state s′ with labels, as shown in Figure 21. Then, for every

enhanced state S, d(S) is defined by

d(S) =
∑

enhanced state S

TS .

By definition, this is naturally extended to the homomorphism d from Ci,j(D) to

Ci+1,j(D). It is well-known fact that d is a coboundary operator (i.e., d2 = 0). Tradi-

tionally, the homomorphism d is called the differential in the case of Khovanov homology.

In [9], Khovanov obtained Theorem 3:

Theorem 3 (Khovanov [9]). Let L be a link and D a link diagram. The homology

group Hi,j(D) corresponding {Ci,j(D), di} is an isotopy invariant of L, and thus, this

homology can be denoted by Hi,j(L). The homology group Hi,j(L) satisfies

Ĵ(L) =
∑
j

qj
∑
i

(−1)i rankHi,j(L).
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Figure 21. Pairs S, TS .

6.2. A definition of the Khovanov homology by Manturov for virtual

knots in the case of the coefficient Z2.

Manturov extended the definition of the Khovanov homology to that of virtual knots

by adding the map between enhanced states obtained by virtual knot diagrams. The

problem is that the change of a single positive marker to define the differential does

not require the change of the component enhanced states for all cases as in Figure 21.

This is because, for virtual knot diagrams, in general, there exists an enhanced state S

and a positive marker p such that even if p is changed, then the number of component

of S does not change. Fortunately, in the case of the coefficient Z2, the definition was

extended to virtual knots straightforwardly by regarding these cases as zero maps (i.e.,

in particular, the switching of the markers unchanging the number of components change

by ±1 corresponds to a zero map). It is known that the extended homomorphism is also

a coboundary operator. We denote the homomorphism by the same symbol d. In this

paper, the Khovanov homology with the coefficient Z2 obtained by Manturov is denoted

by KHi,j . In [10], Manturov obtained Theorem 4:

Theorem 4 (Manturov [10]). Let K be a virtual knot and D a virtual knot diagram

of K. The homology group KHi,j(D) corresponding {Ci,j(D), di} is invariant under

generalized Reidemeister moves, and thus, this homology can be denoted by KHi,j(K).
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