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Abstract. For an odd prime number p, we give an explicit upper bound
of λ-invariants for all Zp-extensions of an imaginary quadratic field k under
several assumptions. We also give an explicit upper bound of λ-invariants

for all Zp-extensions of k in the case where the λ-invariant of the cyclotomic
Zp-extension of k is equal to 3.

1. Introduction.

Let k be a number field and p an odd prime number. If k is not totally real, there are

infinitely many Zp-extensions of k. For each Zp-extension k∞/k, we denote by λ(k∞/k)

and µ(k∞/k) the λ-invariant and the µ-invariant for k∞/k, respectively. In Iwasawa

theory, these invariants play a very important role. Our aim in this paper is to study the

behavior of λ(k∞/k) and µ(k∞/k) as k∞ varies over all Zp-extension fields of k.

Suppose that k is an imaginary quadratic field. Let k̃ be the composite of all Zp-

extensions of k. Then we have Gal(k̃/k) ∼= Z⊕2
p . The first problem we study is whether

Sk :=
{
λ(k∞/k) | k∞/k is a Zp-extension in k̃

}
is bounded. For simplicity, we assume at first that p splits in k in this introduction. Let

kc∞/k be the cyclotomic Zp-extension. If λ(kc∞/k) = 1, then we have Sk = {0, 1} and

it is bounded. If λ(kc∞/k) = 2, Fujii [5] and Sands [14] proved Sk = {0, 1, 2} under the

assumption that p does not divide the class number of k. Furthermore, Fujii considered

the case where p divides the class number of k under several assumptions. His theorem

is as follows.

Theorem (Fujii, [5, Theorem 4.1]). Let p be an odd prime number and k an

imaginary quadratic field in which p splits. Assume the following conditions :

(i) λ(kc∞/k) = 2.

(ii) The p-Hilbert class field Lk of k is contained in k̃.

(iii) D is a normal subgroup of Gal(k̃/Q), where D is the decomposition group in

Gal(k̃/k) of a prime lying above p.
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Then Sk is bounded, sup Sk ≤ pn0 , and µ(k∞/k) = 0 for all Zp-extensions k∞ of k.

Here n0 is defined by [Gal(k̃/k) : D] = pn0 (n0 ≥ 0).

Our first main theorem gives an upper bound of Sk in the case of λ(kc∞/k) = 3

under the same conditions (ii) and (iii) in Fujii’s theorem.

Theorem 1.1. Let p be a prime number with p ≥ 5 and k an imaginary quadratic

field in which p splits. Assume the following conditions :

(i) λ(kc∞/k) = 3.

(ii) The p-Hilbert class field Lk of k is contained in k̃.

(iii) D is a normal subgroup of Gal(k̃/Q).

Then Sk is bounded, sup Sk ≤ pn0 , and µ(k∞/k) = 0 for all Zp-extensions k∞ of k.

Here n0 is defined by [Gal(k̃/k) : D] = pn0 (n0 ≥ 0).

The key new idea of the proof of Theorem 1.1 is to find an annihilator of an Iwasawa

module Xk̃, where Xk̃ is the Galois group Gal(Lk̃/k̃) of the maximal unramified abelian

pro-p extension Lk̃/k̃. We note that if we have n0 = 1, then D is a normal subgroup of

Gal(k̃/Q) and we get sup Sk ≤ p, which is the best possible bound (see Remark (2) in

[5]), namely we have sup Sk = p.

Instead of all Zp-extensions of k, we next consider Zp-extensions such that

k∞ ∩ kc∞ ̸= k or k∞ ∩ ka∞ ̸= k,

where ka∞ is the anti-cyclotomic Zp-extension of k. We denote by K the set of Zp-

extensions of k above. The next problem we study is slightly weaker than the first

problem. It is whether

S ′
k := {λ(k∞/k) | k∞ ∈ K}

is bounded. Concerning this problem, we can treat the case of λ(kc∞/k) ≤ p + 1. If we

assume λ(kc∞/k) ≤ p+1 and some extra conditions, then we have sup S ′
k ≤ p+1. More

precisely, we prove in this paper the following.

Theorem 1.2. Let p be an odd prime number and k an imaginary quadratic field

in which p splits. Assume the following conditions :

(i) λ(kc∞/k) ≤ p+ 1.

(ii) The p-Hilbert class field Lk of k is contained in k̃.

(iii) [Gal(k̃/k) : D] = p.

Then S ′
k is bounded, sup S ′

k ≤ p+ 1, and µ(k∞/k) = 0 for all Zp-extensions k∞ ∈ K.

Assuming Greenberg’s generalized conjecture, which is called GGC, we can obtain

a stronger result. Let Lk̃/k̃ and Xk̃ be the same as above. Then Xk̃ is a module over
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the completed group ring Zp[[Gal(k̃/k)]]. It is known that Xk̃ is a finitely generated

torsion Zp[[Gal(k̃/k)]]-module. Then GGC claims that the height of the annihilator

AnnZp[[Gal(k̃/k)]](Xk̃) is grater than 1 for any number field k and any prime p ([4]).

Theorem 1.3. Assume the same conditions as Theorem 1.2. If we assume that

GGC holds for k and p, then we have λ(k∞/k) ≤ p + 1 and µ(k∞/k) = 0 for all but

finitely many Zp-extensions k∞ of k.

Concerning the relation between our Theorem 1.3 and GGC, we remark that Ozaki

proved the following.

Theorem (Ozaki, [13, Theorem 2]). Let p ≥ 2 be a prime number and k an

imaginary quadratic field in which p splits. Assume that GGC holds for k and p. Then

λ(k∞/k) = 1 and µ(k∞/k) = 0 for all but finitely many Zp-extensions k∞ of k such that

at least one prime of k lying above p does not split in k∞/k.

If p does not divide the class number of k, the condition that at least one prime of

k lying above p does not split in k∞/k holds automatically. But if p divides the class

number of k, there may be infinitely many Zp-extensions k∞/k in which both primes of

k lying above p split. In fact, if p splits in the first layer of ka∞/k, then p divides the class

number of k and there are infinitely many Zp-extensions k∞/k in which both primes of

k lying above p split.

The difference between our Theorem 1.3 and Ozaki’s theorem is that our Theorem 1.3

treats all Zp-extensions of k except for finitely many Zp-extensions. On the other hand,

infinitely many Zp-extensions are excluded in Ozaki’s theorem if p splits in the first layer

of ka∞/k. Indeed, let k∞/k be a Zp-extension. We assume that p splits in the first layer

of k∞/k. Then we can prove that λ(k∞/k) ≥ p if both primes of k lying above p ramify

in k∞/k by class field theory.

Concerning Theorem 1.2, we can apply this theorem to infinitely many Zp-extensions

such that at least one prime of k lying above p splits in k∞/k. We note that Kataoka

partially generalized Ozaki’s theorem to arbitrary number fields ([8]).

Example. (i) Put k = Q(
√
−5207) and p = 7. Then the prime 7 splits in k. We

can check that [Lk : k] = 7, Lk ⊂ k̃, λ(kc∞/k) = 3, and [Gal(k̃/k) : D] = 7. Hence we

have sup Sk = 7 and µ(k∞/k) = 0 for all Zp-extensions k∞ of k by Theorem 1.1.

(ii) Put k = Q(
√
−25739) and p = 5. Then the prime 5 splits in k. We can

check that [Lk : k] = 5, Lk ⊂ k̃, λ(kc∞/k) = 4, and [Gal(k̃/k) : D] = 5. Hence we have

sup S ′
k ≤ 6 and µ(k∞/k) = 0 for each Zp-extension k∞ ∈ K by Theorem 1.2.

(iii) Put k = Q(
√
−92089) and p = 5. Then the prime 5 splits in k. We can check

that [Lk : k] = 52, Lk ⊂ k̃, λ(kc∞/k) = 5, and [Gal(k̃/k) : D] = 52. Hence we have

sup S ′
k ≤ 6 and µ(k∞/k) = 0 for each Zp-extension k∞ ∈ K by Theorem 1.2.

Next we consider the case where p does not split in k. If λ(kc∞/k) = 0, then we

have Sk = {0} and it is bounded. Concerning Ozaki’s theorem, he proved that if we

assume that GGC holds for k and p, then λ(k∞/k) = µ(k∞/k) = 0 for all but finitely

many Zp-extensions k∞ of k such that at least one prime of k lying above p does not
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split in k∞/k (Theorem 2 (ii), [13]). Especially, λ(k∞/k) = µ(k∞/k) = 0 for all Zp-

extensions k∞ if p does not divide the class number of k. Fujii considered the case where

p divides the class number of k under several assumptions. If λ(kc∞/k) = 1, Fujii showed

that λ(k∞/k) ≤ 1 for all Zp-extensions k∞ of k such that k∞ ∩ ka∞ = k. Furthermore,

he proved that sup Sk ≤ pn0 and µ(k∞/k) = 0 for all Zp-extensions k∞ under the

assumption that the p-Hilbert class field of k is contained in k̃. If λ(kc∞/k) = 2, we prove

that sup Sk ≤ pn0 and µ(k∞/k) = 0 for all Zp-extensions k∞ under the assumption

that the p-Hilbert class field of k is contained in k̃. Here n0 is the non-negative integer

satisfying [Gal(k̃/k) : D] = pn0 , where D is the decomposition group in Gal(k̃/k) of the

prime lying above p. We prove the following.

Theorem 1.4. Let p be a prime number with p ≥ 5 and k an imaginary quadratic

field in which p does not split. Assume the following conditions :

(i) λ(kc∞/k) = 2.

(ii) The p-Hilbert class field Lk of k is contained in k̃.

Then Sk is bounded, sup Sk ≤ pn0 , and µ(k∞/k) = 0 for all Zp-extensions k∞ of k.

If we consider the set S ′
k, we can treat the case of λ(kc∞/k) ≤ p. More precisely, we

prove the following theorems.

Theorem 1.5. Let p be a prime number with p ≥ 5 and k an imaginary quadratic

field in which p does not split. Assume the following conditions :

(i) λ(kc∞/k) ≤ p.

(ii) The p-Hilbert class field Lk of k is contained in k̃.

(iii) [Gal(k̃/k) : D] = p.

Then S ′
k is bounded, sup S ′

k ≤ p, and µ(k∞/k) = 0 for all Zp-extensions k∞ ∈ K.

Theorem 1.6. Assume the same conditions as Theorem 1.5. If we assume that

GGC holds for k and p, then we have λ(k∞/k) ≤ p and µ(k∞/k) = 0 for all but finitely

many Zp-extensions k∞ of k.

We note that we prove more general theorems including the case where [Gal(k̃/k) :

D] > p (see Theorem 4.1). An important ingredient of this paper is a power series

f(S, T ) which gives an annihilator of the Iwasawa module. In our forthcoming paper, we

would like to investigate the relation between this power series and the 2-variable p-adic

L-function of Yager.

2. Preliminaries.

We recall the definition of the Iwasawa λ-invariants and µ-invariants. Let k∞ be a

Zp-extension over a number field k. For each n ≥ 0, we denote by kn the intermediate

field of k∞/k such that kn is the unique cyclic extension over k of degree pn. Namely,

we have a tower of number fields
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k0 ⊂ k1 ⊂ · · · ⊂ kn ⊂ · · · ⊂ k∞, k0 = k, k∞ =
∞∪

n=0

kn.

Let Cl(kn) be the ideal class group of kn. We denote the order of Cl(kn) ⊗ Zp by

pen . Then Iwasawa’s class number formula states that there exist non-negative integers

λ(k∞/k), µ(k∞/k), and an integer ν(k∞/k) such that

en = λ(k∞/k)n+ µ(k∞/k)pn + ν(k∞/k)

for sufficiently large n ([6]). These invariants are called Iwasawa the λ-, µ-, and ν-

invariant for k∞/k, respectively. We are interested in the behavior of λ(k∞/k) and

µ(k∞/k) as k∞ varies over all Zp-extension fields of k.

Assume that p is an odd prime number and that k is an imaginary quadratic field.

Let K be a Zp-extension or the Z⊕2
p -extension of k. We denote by LK/K the maximal

unramified abelian pro-p extension and put XK = Gal(LK/K). Since the Galois group

Gal(K/k) acts naturally on XK , it becomes a Zp[[Gal(K/k)]]-module. It is known that

XK is a finitely generated torsion Zp[[Gal(K/k)]]-module ([3], [6]).

Since we have Gal(k̃/k) ∼= Z⊕2
p , k has two independent Zp-extensions. For example,

the cyclotomic Zp-extension kc∞ and the anti-cyclotomic Zp-extension ka∞ are disjoint

over k and satisfy k̃ = kc∞ka∞. Thus we have

Gal(k̃/k) ∼= Gal(k̃/kc∞)×Gal(k̃/ka∞).

Let σ and τ be topological generators of Gal(k̃/kc∞) and Gal(k̃/ka∞), respectively. We

fix an isomorphism

Zp[[Gal(k̃/k)]] ∼= Zp[[S, T ]] (σ ↔ 1 + S, τ ↔ 1 + T ). (1)

We put Λ = Zp[[S, T ]]. By this isomorphism, we regard Xk̃ as a Λ-module. We note that

Λ is a noetherian local integral domain with the maximal ideal (S, T, p).

The completed group ring Λ has subrings Zp[[S]] and Zp[[T ]]. For a ring R, we

denote by R× the unit group of R. We suppose that R = Zp[[S]] or R = Zp[[T ]]. For a

finitely generated torsion R-module M , we define the characteristic ideal of M . By the

structure theorem of R-modules, there is an R-homomorphism

φ : M −→

(⊕
i

R/(pmi)

)
⊕

(⊕
j

R/(f
nj

j )

)

with finite kernel and finite cokernel, where mi, nj are non-negative integers and fj ∈ R

is a distinguished irreducible polynomial. We define the characteristic ideal of M as an

ideal in R by

charR(M) =

(∏
i

pmi

∏
j

f
nj

j

)
.

Let G be a profinite group. For any G-module M , we denote by MG the subset of
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elements of M invariant under the action of G. We also denote by MG the largest

quotient module of M on which G acts trivially, namely,

MG = M/M ′, M ′ = ⟨(g − 1)m | g ∈ G,m ∈ M⟩,

where ⟨(g − 1)m | g ∈ G,m ∈ M⟩ is the topological closure of ⟨(g−1)m | g ∈ G,m ∈ M⟩
in M . For each Zp-extension k∞ over k, we study quotient modules of Xk̃ in Section 3

and Section 4.

3. An annihilator f(S, T ).

As in the previous section, let kc∞ and ka∞ be the cyclotomic Zp-extension and the

anti-cyclotomic Zp-extension of k, respectively. For a number field F , we denote by

LF /F the maximal unramified abelian pro-p extension of F . There are two Zp-extension

fields N∞ and N ′
∞ over k in which one of the primes of k lying above p does not ramify

if p splits in k.

Lemma 3.1 (See for example [13, Lemma 1] of Ozaki). Let k be an imaginary

quadratic field and k∞ a Zp-extension different from N∞ and N ′
∞. Assume that k∞ is

totally ramified at the prime lying above p if p does not split in k. Then there is an exact

sequence of Zp[[Gal(k∞/k)]]-modules :

0 → (Xk̃)Gal(k̃/k∞) → Xk∞ → Gal(k̃ ∩ Lk∞/k∞) → 0,

where Gal(k̃∩Lk∞/k∞) is isomorphic to Zp if p splits in k and is finite cyclic otherwise.

Remark 3.2. (i) We obtain λ(k∞/k) = rankZp(Xk∞) using structure theorem

([15, Theorem 13.12]). By Lemma 3.1, we have

λ(k∞/k) =

rankZp

(
(Xk̃)Gal(k̃/k∞)

)
+ 1 if p splits in k,

rankZp

(
(Xk̃)Gal(k̃/k∞)

)
if p does not split in k

for each Zp-extension k∞ of k satisfying the assumptions of Lemma 3.1.

(ii) Assume that Lk ⊂ k̃. If we suppose that p ≥ 5 and that k∞ = N∞ or N ′
∞,

then we can prove that λ(k∞/k) = µ(k∞/k) = 0 by Remark (1) of Theorem 4.1 in [5].

In fact, we have km ⊃ Lk for sufficiently large m. Using Lemma 4.1 of Chapter 13 in [9],

we obtain

#Cl(km)Gal(km/k) =
e(km/k)#Cl(k)

[km : k][Ek : Ek ∩Nkm/kk
×
m]

,

where Cl(km)Gal(km/k) = {a ∈ Cl(km) | σa = a for all σ ∈ Gal(km/k)}, Ek is the unit

group of k, and e(km/k) is the product of the ramification indexes for all primes of k. We

note that km/k is unramified outside primes lying above p and that k∞ is a Zp-extension

in which one of the primes of k lying above p does not ramify. Hence we obtain
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#(Cl(km)⊗ Zp)
Gal(km/k) =

([km : k]/[Lk : k])#Cl(k)

[km : k]
= 1.

Therefore we obtain Xk∞ = 0. This implies that λ(k∞/k) = µ(k∞/k) = 0.

We put

λ∗ := rankZp

(
(Xk̃)Gal(k̃/kc

∞)

)
=

{
λ(kc∞/k)− 1 if p splits in k,

λ(kc∞/k) if p does not split in k.
(2)

Using Lemma 3.1, we have the following.

Lemma 3.3. Suppose that λ∗ ≥ 1, where λ∗ is the integer defined by (2) above.

Then there exist power series f(S, T ) ∈ AnnΛ(Xk̃) and gi(S) ∈ Zp[[S]] (i = 0, . . . , λ∗−1)

such that

f(S, T ) = Tλ∗
+ gλ∗−1(S)T

λ∗−1 + · · ·+ g0(S).

Proof. By Lemma 3.1, we have the following exact sequence

0 → (Xk̃)Gal(k̃/kc
∞) → Xkc

∞
→ Gal(k̃ ∩ Lkc

∞
/kc∞) → 0

as Zp[[Gal(kc∞/k)]]-modules. Since k is an imaginary quadratic field, Xkc
∞

is a free Zp-

module. We note that rankZp((Xk̃)Gal(k̃/kc
∞)) = λ∗ by (2). Since the element σ is a

generator of Gal(k̃/kc∞), we have

Xk̃/SXk̃
∼= (Xk̃)Gal(k̃/kc

∞)
∼= Z⊕λ∗

p

by the isomorphism (1). Using Nakayama’s lemma, there exist xi ∈ Xk̃ (i = 1, . . . , λ∗)

such that Xk̃ = ⟨x1, . . . , xλ∗⟩Zp[[S]]. Then there exist fij(S) ∈ Zp[[S]] (i, j = 1, . . . , λ∗)

such that

Tx1 = f11(S)x1 + · · ·+ f1λ∗(S)xλ∗ ,
...

...

Txλ∗ = fλ∗1(S)x1 + · · ·+ fλ∗λ∗(S)xλ∗ .

By these relations, we have the following matrix

A =




T − f11(S) −f12(S) . . . −f1λ∗(S)

−f21(S) T − f22(S) . . . −f2λ∗(S)

. . . . . . . . . . . .

−fλ∗1(S) −fλ∗2(S) . . . T − fλ∗λ∗(S)

 if λ∗ ≥ 2,

(T − f11(S)) if λ∗ = 1.
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We denote by det(A) the determinant of the matrix A. We put f(S, T ) = det(A). Then

we obtain

f(S, T ) = Tλ∗
+ gλ∗−1(S)T

λ∗−1 + · · ·+ g0(S)

for some gi(S) ∈ Zp[[S]] (i = 0, . . . , λ∗ − 1). It is easy to see that f(S, T )Xk̃ = 0. Thus

we get the conclusion. □

From the assumption (ii) Lk ⊂ k̃ in Theorem 1.2, we have the following two propo-

sitions.

Proposition 3.4. Suppose that p ≥ 5 if p does not split in k. Assume that Lk ⊂ k̃.

Then we have

[Gal(k̃/k) : D] = #(Zp/f(0, 0)Zp),

where f(S, T ) is the same power series in Lemma 3.3 and D is the decomposition group

in Gal(k̃/k) of a prime lying above p.

We put νm(S) = ((1 + S)p
m − 1)/S for a non-negative integer m.

Proposition 3.5. Suppose that p ≥ 5 if p does not split in k. Assume that

Lk ⊂ k̃ and that D is a normal subgroup of Gal(k̃/Q). Then there exists a power series

U(S) ∈ Zp[[S]]
× such that

f(S, 0) = νn0(S)U(S),

where n0 is the non-negative integer satisfying [Gal(k̃/k) : D] = pn0 .

We will prove Proposition 3.4 and Proposition 3.5 by the same method as Proposi-

tion 4.1 and Proposition 4.2 in [5]. Before proving them, we prepare some lemmas and

propositions. We know that Xk∞ is semi-simple by the following.

Lemma 3.6 (Jaulent and Sands, [7, Proposition 6]). Let k∞/k be a Zp-extension

and γ a topological generator of Gal(k∞/k). Then we have

charZp[[Gal(k∞/k)]] (Xk∞) ̸⊂ (γ − 1)Zp[[Gal(k∞/k)]] if p does not split in k,

charZp[[Gal(k∞/k)]] (Xk∞) ̸⊂ (γ − 1)2Zp[[Gal(k∞/k)]] if p splits in k.

By Lemma 3.6, we have the following.

Lemma 3.7 (Fujii, [5]). Suppose that p splits in k and that Lk ⊂ k̃. Then we have

the following exact sequence as Zp[[Gal(kc∞/k)]]-modules :

0 → Dkc
∞

→ Gal(k̃/kc∞) → (Xk̃)Gal(k̃/k) → 0,

where Dkc
∞

is the decomposition group in Xkc
∞

= Gal(Lkc
∞
/kc∞) of a prime lying above p.

Proof. By Lemma 3.1, we have an exact sequence
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0 → (Xk̃)Gal(k̃/kc
∞) → Xkc

∞
→ Gal(k̃/kc∞) → 0 (3)

as Zp[[Gal(kc∞/k)]]-modules. Put Γ = Gal(kc∞/k). Using snake lemma, we have

0 →
(
(Xk̃)Gal(k̃/kc

∞)

)Γ
→
(
Xkc

∞

)Γ →
(
Gal(k̃/kc∞)

)Γ
(4)

→ (Xk̃)Gal(k̃/k) →
(
Xkc

∞

)
Γ
→
(
Gal(k̃/kc∞)

)
Γ
→ 0.

We fix an isomorphism

Zp[[Gal(kc∞/k)]] ∼= Zp[[T ]] (τGal(k̃/kc∞) ↔ 1 + T ).

By this isomorphism, we identify these rings. Since we have charZp[[T ]](Gal(k̃/kc∞)) =

(T ), T does not divide a generator of charZp[[T ]]((Xk̃)Gal(k̃/kc
∞)). Indeed, if we assume

that charZp[[T ]]((Xk̃)Gal(k̃/kc
∞)) ⊂ (T ), then (T 2) divides charZp[[T ]](Xkc

∞
) by (3). This

contradicts Lemma 3.6. Therefore charZp[[T ]]((Xk̃)Gal(k̃/kc
∞)) is prime to (T ). Thus we

have ((Xk̃)Gal(k̃/kc
∞))

Γ = 0. By class field theory, we can prove that Mk = k̃Lk, where

Mk/k is the maximal pro-p abelian extension of k which is unramified outside all primes

lying above p ([15, Theorem 13.4 and Corollary 13.6]). Hence we have Mk = k̃ by

Lk ⊂ k̃. Further, we note that Gal(Lkc
∞
/Mk) = TXkc

∞
because the extension Lkc

∞
/k

is unramified outside all the primes above p and Lkc
∞

contains k̃. This implies that

Gal(k̃/kc∞)Γ = Gal(k̃/kc∞) =
(
Xkc

∞

)
Γ
. Therefore, from the exact sequence (4), we have

0 →
(
Xkc

∞

)Γ →
(
Gal(k̃/kc∞)

)Γ
→ (Xk̃)Gal(k̃/k) → 0.

Further, we have (Xkc
∞
)Γ = Dkc

∞
by Lemma 4.1 in [12]. Therefore we get the conclusion.

□

By Lemma 3.7, we can show the following.

Proposition 3.8. Suppose that p ≥ 5 if p does not split in k. Assume that Lk ⊂ k̃.

Then we have a surjective homomorphism

Λ/(f(S, T )) → Xk̃

as a Λ-module, where f(S, T ) is the same power series in Lemma 3.3. In particular, Xk̃

is a Λ-cyclic module. Further we have

(Xk̃)Gal(k̃/kc
∞)

∼= Zp[[T ]]/f(0, T )Zp[[T ]]

as a Zp[[Gal(kc∞/k)]]-module.

Proof. First we consider the case where p splits in k. We note that k̃D∩kc∞ = k.

Thus we have

Gal(k̃/k)/D ∼= Gal(k̃/kc∞)D/D
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∼= Coker(Dkc
∞

→ Gal(k̃/kc∞))

∼= (Xk̃)Gal(k̃/k)

by Lemma 3.7. Since Gal(k̃/k)/D is a cyclic Zp-module,
(
Xk̃

)
Gal(k̃/k)

is a cyclic Zp-

module. By Topological Nakayama’s lemma for completed group rings (Lemma 5.2.18,

[11]), Xk̃ becomes a Λ-cyclic module. By Lemma 3.3, we have f(S, T )Xk̃ = 0. Therefore

we have a surjective homomorphism

Λ/(f(S, T )) → Xk̃.

This morphism induces a surjective homomorphism

Zp[[T ]]/f(0, T )Zp[[T ]] → (Xk̃)Gal(k̃/kc
∞). (5)

Since we have

rankZp (Zp[[T ]]/f(0, T )Zp[[T ]]) = λ∗ = rankZp

(
(Xk̃)Gal(k̃/kc

∞)

)
,

the morphism (5) is injective.

Next we consider the case where p does not split in k. Then we have Mk = k̃.

Indeed, the completion of k at the prime lying above p has no primitive p-th root of

unity by p ≥ 5. Further we have k̃D = Lk since #Cl(k)Gal(k/Q) is prime to p. Thus we

obtain

Gal(k̃/k)/D ∼= Gal(Lk/k)

∼= (Xkc
∞
)Γ.

By Nakayama’s lemma, Xkc
∞

is Λ-cyclic. Therefore Xk̃ is Λ-cyclic. Thus we get the same

results. □

Lemma 3.9. Suppose that p ≥ 5 if p does not split in k. Assume that Lk ⊂ k̃. Let

gi(S) (i = 0, . . . , λ∗ − 1) be the same power series in Lemma 3.3. Then we have

gi(S) ≡ 0 mod (p, S) for i = 0, . . . , λ∗ − 1.

Proof. By Proposition 3.8, we have

charZp[[T ]]

(
(Xk̃)Gal(k̃/kc

∞)

)
= (f(0, T ))

= (Tλ∗
+ gλ∗−1(0)T

λ∗−1 + · · ·+ g0(0)).

Since we have rankZp((Xk̃)Gal(k̃/kc
∞)) = λ∗, the power series f(0, T ) is a distinguished

polynomial. This implies that gi(0) ≡ 0 mod p for i = 0, . . . , λ∗ − 1. Therefore we get

the conclusion. □

Now we can prove Proposition 3.4.

Proof of Proposition 3.4. By Proposition 3.8, we have
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[Gal(k̃/k) : D] =


#
(
(Xk̃)Gal(k̃/k)

)
= #(Zp/f(0, 0)Zp)

if p splits in k,

#
(
(Xkc

∞
)Γ
)
= #(Zp/f(0, 0)Zp)

if p does not split in k.

Thus we have the conclusion. □

Next we prove Proposition 3.5. Since D is a normal subgroup of Gal(k̃/Q), k̃D/Q is

a Galois extension. Since we know that Lk ∩ k̃ ⊂ ka∞ (see for example [5, Lemma 2.2]),

there exists positive integer n0 such that k̃D = kan0
, where kan0

is the n0-th layer of ka∞.

Let k̃an0
be the composite of all Zp-extensions of k

a
n0
. Then we have

Gal(k̃an0
/kan0

) ∼= Z⊕pn0+1
p

because Leopoldt’s conjecture holds ([1]). Using an isomorphism

Zp[[Gal(ka∞/k)]] ∼= Zp[[S]] (σGal(k̃/ka∞) ↔ S + 1),

we identify these rings. We note that Gal(ka∞/kan0
) acts on Gal(k̃an0

/kan0
) trivially since

k̃an0
/kan0

is abelian. Thus we have

Gal(k̃an0
/ka∞) ∼= Zp[[S]]/((1 + S)p

n0 − 1)

as a Zp[[S]]-module.

We use the following proposition to prove Proposition 3.5.

Proposition 3.10 (Fujii, [5, Proposition 4.2]). Suppose that p ≥ 5 if p does not

split in k. Then we have

char
(
Xka

∞

)
⊂ ((1 + S)p

n0 − 1) if p splits in k,

char
(
(Xk̃)Gal(k̃/ka

∞)

)
⊂ (νn0(S)) if p does not split in k.

Now we can prove Proposition 3.5.

Proof of Proposition 3.5. We suppose that p splits in k. Using Lemma 3.1,

we have

0 → (Xk̃)Gal(k̃/ka
∞) → Xka

∞
→ Gal(k̃/ka∞) → 0

as a Zp[[Gal(ka∞/k)]]-module. By Proposition 3.10, we obtain

char
(
(Xk̃)Gal(k̃/ka

∞)

)
char(Gal(k̃/ka∞)) = char(Xka

∞
) ⊂ (Sνn0(S)).

This implies that char((Xk̃)Gal(k̃/ka
∞)) ⊂ (νn0(S)). By Proposition 3.8, we have a surjec-

tive homomorphism
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Zp[[S]]/g0(S)Zp[[S]] → Xk̃/TXk̃.

Hence we have (g0(S)) ⊂ char
(
Xk̃/TXk̃

)
⊂ (νn0(S)). By the p-adic Weierstrass

preparation theorem ([15, Theorem 7.3]), there exist a unique decomposition g0(S) =

pmνn0(S)g(S)U(S) into a distinguished polynomial g(S), a unit U(S) ∈ Zp[[S]]
×, and a

non-negative integer m. By Proposition 3.4, we have

pn0 = [Gal(k̃/k) : D]

= #(Zp/g0(0)Zp)

= #(Zp/p
m+n0g(0)Zp).

This implies that m = 0 and g(0) ̸≡ 0 mod p.

By the same method as above, we get the same result in the case where p does not

split in k. Thus we get the conclusion. □

Remark 3.11. Let p be an odd prime number and p a prime ideal of k lying above

p. Suppose that p splits in k. It is known that λ(kc∞/k) = 1 if and only if p does not

split in Mk/k ([10, Proposition 3.D]). If we suppose that Lk ⊂ k̃, then we have Mk = k̃.

This implies that λ(kc∞/k) = 1 if and only if p does not split in k̃/k. Therefore we have

n0 > 0 if we suppose that λ(kc∞/k) > 1.

4. Proof of Theorems.

In this section, we first prove Theorem 1.1 and Theorem 1.4. Let k∞/k be a Zp-

extension. Then there exists a pair (α, β) ∈ Z⊕2
p − pZ⊕2

p such that k∞ = k̃⟨σ
ατβ⟩. In the

case of α ̸= 0, we put α = psα′, where s is a non-negative integer and α′ ∈ Z×
p . We prove

by splitting into four cases.
(I) β ∈ pZp.

(II) β ∈ Z×
p and ps ≥ pn0 − 1.

(III) β ∈ Z×
p and ps < pn0 − 1.

(IV) α = 0.

We first consider the cases that of (I) and (II). We show the following.

Theorem 4.1. Suppose that p ≥ 5 if p does not split in k. Assume that Lk ⊂ k̃

and that n0 > 0, and that 1 ≤ λ∗ ≤ p, where λ∗ is the non-negative integer defined by

(2) after Remark 3.2. Let k∞ be a Zp-extension and ⟨σατβ⟩ the corresponding subgroup

of Gal(k̃/k) to k∞, where (α, β) is an element of Z⊕2
p − pZ⊕2

p . Assume also that either

(I) or (II) holds. Then we have

λ (k∞/k) ≤ λ(kc∞/k), µ (k∞/k) = 0 if (I) holds,

λ (k∞/k) ≤ pn0 , µ (k∞/k) = 0 if (II) holds.

Before proving Theorem 4.1, we prepare some lemmas and propositions. For a pair
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(α, β) ∈ Z⊕2
p − pZ⊕2

p , we put

Hα,β(S, T ) = (1 + S)α(1 + T )β − 1,

Iα,β = (Hα,β(S, T ), f(S, T ), p).

Applying the division lemma ([2, Chapter VII, Section 3, Proposition 5]) to Hα,β(S, T )

and f(S, T ), we have power series qα,β(S, T ), wα,β(S, T ) ∈ Λ satisfying

Hα,β(S, T ) = f(S, T )qα,β(S, T ) + wα,β(S, T ), (6)

wα,β(S, T ) =
λ∗−1∑
i=0

wα,β,i(S)T
i (7)

for some wα,β,i(S) ∈ Zp[[S]] (i = 0, . . . , λ∗ − 1). We have the following.

Proposition 4.2. Let (α, β) be an element of Z⊕2
p −pZ⊕2

p . Assume that 1 ≤ λ∗ ≤ p

and that α = psα′, where s is a non-negative integer and α′ ∈ Z×
p . Let wα,β,i(S)

(i = 0, . . . , λ∗ − 1) be the same power series satisfying (7). Then we have

wα,β,0(S) ≡
∞∑
k=1

(
α′

k

)
Skps

− Spn0−1U(S)qα,β(S, 0) mod p, (8)

wα,β,1(S) ≡ β(1 + Sps

)α
′
− g1(S)qα,β(S, 0)

− Spn0−1U(S)
∂

∂T
qα,β(S, T )

∣∣∣∣
T=0

mod p if 2 ≤ λ∗, (9)

wα,β,k(0) ≡
(
β

k

)
mod p if 3 ≤ λ∗ ≤ p and 2 ≤ k ≤ λ∗ − 1. (10)

Proof. By the equation (6), we have

Hα,β(S, 0) = g0(S)qα,β(S, 0) + wα,β,0(S) ≡ Spn0−1U(S)qα,β(S, 0) + wα,β,0(S) mod p.

Since we have Hα,β(S, 0) ≡
∑∞

k=1

(
α′

k

)
Skps

mod p, we get (8). Taking the partial deriv-

ative of (6) with respect to T , we get (9). We will prove (10). Suppose that λ∗ ≥ 3.

Taking the higher order partial derivative of (6) with respect to T , we have

∂k

∂kT
Hα,β(S, T ) =

k∑
i=0

(
k

i

)
∂i

∂iT
f(S, T )

∂k−i

∂k−iT
qα,β(S, T )

+
λ∗−1∑
j=k

j(j − 1) · · · (j − k + 1)wα,β,j(S)T
j−k (11)

for 2 ≤ k ≤ λ∗ − 1. Hence we obtain

(1 + S)αβ(β − 1) · · · (β − k + 1) ≡
k∑

i=0

(
k

i

)
∂i

∂iT
f(S, T )

∣∣∣∣
T=0

∂k−i

∂k−iT
qα,β(S, T )

∣∣∣∣
T=0
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+ k! wα,β,k(S) mod p.

Since we have ∂i/∂iT f(S, T )
∣∣
T=0

≡ i!gi(0) ≡ 0 mod (S, p) and k ≤ λ∗ − 1 ≤ p − 1, we

get

β(β − 1) · · · (β − k + 1) ≡ k! wα,β,k(0) mod p.

Since k! is a unit in p-adic integers, this implies that

wα,β,k(0) ≡
β(β − 1) · · · (β − k + 1)

k!
≡
(
β

k

)
mod p. □

We can obtain an upper bound of λ(k∞/k) for each Zp-extension k∞/k from the

following.

Lemma 4.3 (Fujii, [5]). Suppose that p ≥ 5 if p does not split in k. Assume that

Lk ⊂ k̃. Let k∞ be a Zp-extension and ⟨σατβ⟩ the corresponding subgroup of Gal(k̃/k)

to k∞, where (α, β) is an element of Z⊕2
p . Then we have

λ (k∞/k) ≤ dimFp(Λ/Iα,β) + 1 if p splits in k, (12)

λ (k∞/k) ≤ dimFp(Λ/Iα,β) if p does not split in k. (13)

Proof. First we suppose that p splits in k. We assume that k∞ is different from

N∞ and N ′
∞. By combining Lemma 3.1 with Proposition 3.8, we have an exact sequence

Λ/(f(S, T ),Hα,β(S, T )) → Xk∞ → Gal(k̃ ∩ Lk∞/k∞) → 0.

This implies that rankZp(Xk∞) ≤ dimFp(Λ/Iα,β) + 1. Hence we get (12). In the case of

k∞ = N∞ and that of k∞ = N ′
∞, we have λ(k∞/k) = 0 by Remark 3.2 (ii). Thus we

complete the former.

Next we suppose that p dose not split in k. Then we have an exact sequence(
Xk̃

)
Gal(k̃/k∞)

→ Xk∞ → Gal(k̃ ∩ Lk∞/k∞) → 0. (14)

We note [k̃ ∩ Lk∞ : k∞] < ∞. Thus we get rankZp(Xk∞) ≤ rankZp((Xk̃)Gal(k̃/k∞))

≤ dimFp(Λ/Iα,β). Therefore we complete the proof. □

We can determine dimFp(Λ/Iα,β) in the case of (I) by the following.

Proposition 4.4. Let (α, β) be an element of Z⊕2
p −pZ⊕2

p . Assume that (I) holds.

Assume also that n0 > 0 and that 1 ≤ λ∗ ≤ p, where λ∗ is the non-negative integer

defined by (2) after Remark 3.2. Then we have

dimFp(Λ/Iα,β) = λ∗.

Proof. If we suppose that (I) holds, then we have α ∈ Z×
p . It follows from

Proposition 4.2 that
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wα,β,0(S)

S

∣∣∣∣
S=0

≡ α mod p.

In the case of 2 ≤ λ∗, we obtain

wα,β,1(S) ≡ 0 mod (p, S)

by Lemma 3.9, Proposition 4.2, and pn0 − 1 > 0. In the case of 3 ≤ λ∗ ≤ p, we obtain

wα,β,i(S) ≡
(
β

i

)
≡ 0 mod (p, S)

for 2 ≤ i ≤ λ∗ − 1. This implies that

wα,β(S, T ) ≡ S

(
wα,β,0(S)

S
+

λ∗−1∑
i=1

wα,β,i(S)

S
T i

)
mod p,

wα,β,0(S)

S
+

λ∗−1∑
i=1

wα,β,i(S)

S
T i ≡ α mod (p, S, T ).

Therefore we obtain

Iα,β = (f(S, T ), wα,β(S, T ), p) = (S, Tλ∗
, p).

Hence we have

Λ/Iα,β ∼= (Z/pZ)⊕λ∗
.

Thus we get the conclusion. □

Next we determine dimFp(Λ/Iα,β) in the case of (II). First we suppose that λ∗ = 1.

In this case, Fujii proved the following.

Proposition 4.5 (Fujii, [5, Theorem 4.1]). Let β be an element of Z×
p . Assume

that λ∗ = 1 and α = psα′ with ps ≥ pn0 − 1 > 0 and α′ ∈ Z×
p . Then we have

dimFp(Λ/Iα,β) = pn0 − 1.

Next we suppose that λ∗ ≥ 2. We note that the power series wα,β,1(S) is a unit in

Zp[[S]] if β is a unit in the p-adic integers and n0 > 0. Applying the division lemma to

f(S, T ) and wα,β(S, T ), there exist power series Qα,β(S, T ) ∈ Λ and cα,β(S) ∈ Zp[[S]]

such that

f(S, T ) = wα,β(S, T )Qα,β(S, T ) + cα,β(S). (15)

We will prove the following.

Proposition 4.6. Let β be an element of Z×
p . Assume that λ∗ ≥ 2 and α = psα′

with ps ≥ pn0 − 1 > 0 and α′ ∈ Z×
p . Then we have
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dimFp(Λ/Iα,β) = pn0 − 1.

Before proving Proposition 4.6, we claim the following.

Lemma 4.7. Assume the same conditions of Proposition 4.6. Let Qα,β(S, T ) be

the same power series defined by (15). Then we have

Qα,β(S, 0) ≡ 0 mod (p, S).

Proof. We recall the construction of Qα,β(S, T ) ([2, Chapter VII, Section 3,

Proposition 5]). We put

Uα,β(S, T ) =

λ∗−1∑
i=1

wα,β,i(S)T
i−1,

hα,β(S, T ) = −wα,β(S, T )Uα,β(S, T )
−1 + T.

We note that Uα,β(S, T ) ∈ Λ× since Uα,β(0, 0) = wα,β,1(0) ≡ β mod p. We get the power

series Qα,β(S, T ) from a sequence of power series {q(m)
α,β (S, T )}∞m=0 satisfying

f(S, T )− Tq
(0)
α,β(S, T ) ∈ Zp[[S]],

q
(m)
α,β (S, T ) =

∞∑
i=0

qα,β,i
(m)(S)T i,

where qα,β,i
(m)(S) ∈ Zp[[S]] is defined by

qα,β,i
(m)(S) =

i+1∑
j=0

hα,β,j(S)qα,β,i+1−j
(m−1)(S) (m ≥ 1), (16)

hα,β(S, T ) =

∞∑
i=0

hα,β,i(S)T
i. (17)

Then we have

Qα,β(S, T ) = Uα,β(S, T )
−1

∞∑
m=0

q
(m)
α,β (S, T ). (18)

Since we have f(S, T ) = Tλ∗
+ gλ∗−1(S)T

λ∗−1 + · · ·+ g1(S)T + g0(S) by Lemma 3.3, we

get

q
(0)
α,β(S, T ) = Tλ∗−1 + gλ∗−1(S)T

λ∗−2 + · · ·+ g1(S).

Indeed, by (16), we have f(S, T ) − T (Tλ∗−1 + gλ∗−1(S)T
λ∗−2 + · · · + g1(S)) = g0(S) ∈

Zp[[S]]. By the definition of Uα,β(S, T ), we have wα,β(S, T )−TUα,β(S, T ) = wα,β,0(S) ≡
0 mod S. Thus we get

hα,β(S, T ) = −(wα,β(S, T )− TUα,β(S, T ))Uα,β(S, T )
−1
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= −wα,β,0(S)Uα,β(S, T )
−1

≡ 0 mod S.

By (17), we have hα,β,i(S) ≡ 0 mod S for all i ≥ 0. Hence we get qα,β,i
(m)(S) ≡ 0 mod S

by (16). Therefore we obtain

Qα,β(S, 0) = Uα,β(S, 0)
−1

∞∑
m=0

q
(m)
α,β (S, 0)

= Uα,β(S, 0)
−1

∞∑
m=0

qα,β,0
(m)(S)

= Uα,β(S, 0)
−1

∞∑
m=0

(hα,β,0(S)qα,β,1
(m−1)(S) + hα,β,1(S)qα,β,0

(m−1)(S))

+ Uα,β(S, 0)
−1qα,β,0

(0)(S)

≡ 0 mod (p, S)

by (18), qα,β,0
(0)(S) = g1(S), and Lemma 3.9. Thus we get the conclusion. □

For a power series V (S) =
∑∞

i=0 biS
i ∈ Zp[[S]], let

λ(V (S)) = inf{ i | bi ̸≡ 0 mod p }

be finite. Then we call λ(V (S)) the λ-invariant of V (S).

Now we can prove Proposition 4.6.

Proof of Proposition 4.6. We have Iα,β = (wα,β(S, T ), cα,β(S), p) by the

equations (6) and (15). Further we have

cα,β(S) = f(S, T )− wα,β(S, T )Qα,β(S, T )

= f(S, 0)− wα,β(S, 0)Qα,β(S, 0)

≡ Spn0−1U(S)− wα,β,0(S)Qα,β(S, 0) mod p. (19)

We note that U(S) ∈ Zp[[S]]
× by Proposition 3.5. We have λ(wα,β,0(S)) ≥ pn0 − 1 by

Proposition 4.2 and ps ≥ pn0 − 1. Further we have λ(wα,β,0(S)Qα,β(S, 0)) ≥ pn0 by

Lemma 4.7. Therefore we obtain λ(cα,β(S)) = pn0 − 1 by (19). Hence we have

Λ/Iα,β = Λ/(wα,β(S, T ), cα,β(S), p)

∼= Zp[[S]]/(cα,β(S), p)

∼= (Z/p)⊕pn0−1
.

Thus we get the conclusion. □

Proof of Theorem 4.1. First we suppose that (I) holds. By Proposition 4.4,

we have dimFp(Λ/Iα,β) = λ∗. By the inequalities (12) and (13) in Lemma 4.3, we get
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λ(k∞/k) ≤ dimFp(Λ/Iα,β) + 1 = λ∗ + 1 = λ(kc∞/k) if p splits in k,

λ(k∞/k) ≤ dimFp(Λ/Iα,β) = λ∗ = λ(kc∞/k) if p does not split in k.

Therefore we obtain µ(k∞/k) = 0.

Next we suppose that (II) holds. By Proposition 4.5 and Proposition 4.6, we have

dimFp(Λ/Iα,β) = pn0 − 1. By the inequalities (12) and (13) in Lemma 4.3, we get

λ(k∞/k) ≤ dimFp(Λ/Iα,β) + 1 = pn0 − 1 + 1 = pn0 if p splits in k,

λ(k∞/k) ≤ dimFp(Λ/Iα,β) = pn0 − 1 if p does not split in k.

Therefore we obtain µ(k∞/k) = 0. Thus we get the conclusion. □

Remark 4.8. We suppose that Lk ⊂ k̃ and that (α, β) is an element of Z⊕2
p .

Hence we have kam ⊃ Lk for sufficiently large m. We assume that α = psα′, where s is

a non-negative integer and α′ ∈ Z×
p . Thus we have k̃⟨σ

ατβ⟩ ⊃ Lk for sufficiently large s.

Then we can prove that λ(k̃⟨σ
ατβ⟩/k) = 0 and that µ

(
k̃⟨σ

ατβ⟩/k
)
= 0 in the case where

p does not split in k (see Remark (1) of Theorem 4.1 in [5]).

Next we consider the case of (III). We use the following.

Lemma 4.9 (See for example [5, Lemma 2.1] of Fujii). Let F∞/F be a Zp-extension

of a number field F . Suppose that g ∈ Gal(Q/Q), here Q is a fixed algebraic closure of

Q. Then we have λ(F∞/F ) = λ(g(F∞)/g(F )).

Remark 4.10. Let k be an imaginary quadratic field and k∞ a Zp-extension of k.

Let J be a generator of Gal(k/Q). We apply Lemma 4.9 to the Zp-extension k∞/k. Let

J be an element of Gal(Q/Q) with J |k = J . There exists a pair (α, β) ∈ Z⊕2
p − pZ⊕2

p

such that k∞ = k̃⟨σ
ατβ⟩. Then we have J(k∞) = k̃⟨σ

−ατβ⟩ because the actions of J on σ

and τ are given by J(σ) = σ−1 and J(τ) = τ , respectively. Therefore Lemma 4.9 implies

that

λ
(
k̃⟨σ

ατβ⟩/k
)
= λ

(
k̃⟨σ

−ατβ⟩/k
)
.

We put pn0 = [Gal(k̃/k) : D]. We prove the following.

Theorem 4.11. Let p be a prime number with p ≥ 5. Assume that Lk ⊂ k̃ and that

λ∗ = 2. Let k∞ be a Zp-extension and ⟨σατβ⟩ the corresponding subgroup of Gal(k̃/k)

to k∞, where (α, β) is an element of Z⊕2
p . Suppose that α = psα′ and β ∈ Z×

p , where s

is a non-negative integer and α′ ∈ Z×
p . Assume also that (III) holds. Then we have

λ (k∞/k) ≤ pn0 and µ (k∞/k) = 0.

Proof. We may assume that β = 1. We put Tα = H−α,1(S, T ) = (1 + S)−α(1 +

T ) − 1. Since T = (1 + S)α(1 + Tα) − 1, we have T ≡ (1 + S)α − 1 mod Tα. By

Proposition 3.8, we have a surjective homomorphism
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Λ/(f(S, T ), Tα) → Xk̃/TαXk̃.

Since we have Λ = Zp[[S, Tα]], we obtain

rankZp(Xk̃/TαXk̃) ≤ rankZp (Zp[[S]]/f(S, (1 + S)α − 1)Zp[[S]]) . (20)

By the definition of f(S, T ), we have

f(S, (1 + S)α − 1)− g0(S) ≡ {(1 + Sps

)α
′
− 1}2 + g1(S){(1 + Sps

)α
′
− 1} mod p

≡ {(1 + Sps

)α
′
− 1}A(S) mod p,

where A(S) is defined by

A(S) = (1 + Sps

)α
′
− 1 + g1(S).

We assume that there exists a p-adic integer α ∈ Zp such that

λ (k∞/k) = λ
(
k̃⟨σ

ατ⟩/k
)
> pn0 .

Then we have rankZp(Xk̃/TαXk̃) ≥ pn0 . In fact, we have

rankZp(Xk̃/TαXk̃) = λ(k∞/k)− 1 ≥ pn0 if p splits in k,

rankZp(Xk̃/TαXk̃) ≥ λ(k∞/k) > pn0 if p does not split in k

by Lemma 3.1 and (14). Then we have λ(f(S, (1+S)α− 1)) ≥ pn0 by (20). This implies

that λ(f(S, (1 + S)α − 1) − g0(S)) = pn0 − 1 because of λ(g0(S)) = pn0 − 1. Since we

have λ((1 + Sps

)α
′ − 1) = ps, we obtain λ(A(S)) = pn0 − 1 − ps. By Lemma 4.9 and

Remark 4.10, we have

λ
(
k̃⟨σ

ατ⟩/k
)
= λ

(
k̃⟨σ

−ατ⟩/k
)
.

By the same argument as above, we get

f(S, (1 + S)−α − 1)− g0(S) ≡ {(1 + Sps

)−α′
− 1}2 + g1(S){(1 + Sps

)−α′
− 1} mod p

≡ {(1 + Sps

)−α′
− 1}AJ(S) mod p,

where AJ(S) is defined by

AJ (S) = (1 + Sps

)−α′
− 1 + g1(S).

Therefore we obtain

A(S)−AJ (S) ≡ (1 + Sps

)α
′
− (1 + Sps

)−α′
mod p. (21)

Since we have λ((1+ Sps

)−α′ − 1) = ps, we have λ(AJ(S)) = pn0 − 1− ps. Hence we get

λ(A(S)−AJ (S)) ≥ pn0 − 1− ps. (22)
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By (21), we get λ(A(S)−AJ(S)) = ps since we have λ((1+Sps

)α
′ − (1+Sps

)−α′
) = ps.

By (22), we get

ps ≥ pn0 − 1− ps.

If we suppose that s = 0, then we have n0 = 1 and p ≤ 3. This is a contradiction.

If we suppose that s > 0, then we have 2 ≥ pn0−s. Since we have s < n0, this is a

contradiction. Therefore we have λ(k̃⟨σ
ατ⟩/k) ≤ pn0 for all α ∈ Zp. □

Finally we consider the case of (IV). Suppose that α = 0. We note that k∞ = ka∞
since we have β ∈ Z×

p . We show the following.

Proposition 4.12. Let p be a prime number with p ≥ 5. Assume that Lk ⊂ k̃.

Then we have

λ (ka∞/k) ≤ pn0 , µ(ka∞/k) = 0 if p splits in k,

λ (ka∞/k) = 0, µ(ka∞/k) = 0 if p does not split in k.

Proof. We may assume that β = 1. We suppose that p splits in k. Since

I0,1 = (f(S, T ), T, p) = (Spn0−1, T, p), we have Λ/I0,1 = Zp[[S]]/(S
pn0−1, p). Using

Lemma 4.3, we obtain λ (ka∞/k) ≤ pn0 .

We suppose that p does not split in k. By Remark 4.8, we obtain λ (ka∞/k) = 0. □

By Theorem 4.1, Theorem 4.11, and Proposition 4.12, we have proved Theorem 1.1

and Theorem 1.4.

Finally we prove Theorems 1.2, 1.3, 1.5, and 1.6. Let k∞ be a Zp-extension and

⟨σατβ⟩ the corresponding subgroup of Gal(k̃/k) to k∞, where (α, β) is an element of

Z⊕2
p − pZ⊕2

p . In the case of α ̸= 0, we put α = psα′, where s is a non-negative integer

and α′ ∈ Z×
p . By Lemma 3.4 in [5], we have s > 0 if and only if k∞ ∩ ka∞ ̸= k. If we

suppose that k∞ ∩ kc∞ ̸= k, then we have β ∈ pZp. We consider the following four cases:
(I) β ∈ pZp.

(II) β ∈ Z×
p and s > 0.

(III) β ∈ Z×
p and s = 0.

(IV) α = 0.

Proof of Theorem 1.2 and 1.3. We assume that [Gal(k̃/k) : D] = p. Then D

is a normal subgroup of Gal(k̃/Q) by Remark (2) in [5]. We assume also that λ(kc∞/k) ≤
p+ 1. If either (I), (II), or (IV) holds, we have µ(k∞/k) = 0 and

λ(k∞/k) ≤ max{p, λ(kc∞/k)} ≤ p+ 1

by Theorem 4.1 and Proposition 4.12. Thus we get Theorem 1.2.

Next we prove Theorem 1.3. We assume that (III) holds. Then any prime of k lying

above p does not split in k∞/k. By Ozaki’s theorem, we have
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λ(K/k) = 1 and µ(K/k) = 0

for all but finitely many Zp-extensions K if we assume that GGC holds for k and p.

Therefore we get Theorem 1.3. □

Next we prove Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5 and 1.6. We assume that λ(kc∞/k) ≤ p. If either (I),

(II), or (IV) holds, we have µ(k∞/k) = 0 and

λ(k∞/k) ≤ max{p, λ(kc∞/k)} ≤ p

by Theorem 4.1 and Proposition 4.12. Thus we get Theorem 1.5.

Next we prove Theorem 1.6. We assume that (III) holds. Then any prime of k lying

above p does not split in k∞/k. By Ozaki’s theorem, we have

λ(K/k) = 0 and µ(K/k) = 0

for all but finitely many Zp-extensions K if we assume that GGC holds for k and p.

Therefore we get Theorem 1.6. □

Acknowledgements. The author would like to express his deepest appreciation

to Satoshi Fujii, who read the first version of this paper carefully, pointed out misprints.

The author would like to thank to Keiji Okano for giving him valuable comments on

this paper. The author is sincerely grateful to Professor Masato Kurihara for his helpful

advice on the manuscript. The author would like to express his thanks to the referee for

reading this article carefully and for giving him helpful comments.

References

[ 1 ] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121–124.

[ 2 ] N. Bourbaki, Commutative algebra, Hermann/Addison-Wesley, 1972.

[ 3 ] R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number field, Amer. J. Math., 95

(1973), 204–214.

[ 4 ] R. Greenberg, Iwasawa theory—past and present, In: Class Field Theory—Its Centenary and

Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 335–385.

[ 5 ] S. Fujii, On a bound of λ and the vanishing of µ of Zp-extensions of an imaginary quadratic field,

J. Math. Soc. Japan, 65 (2013), 277–298.

[ 6 ] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183–

226.

[ 7 ] J. F. Jaulent and J. W. Sands, Sur quelques modules d’Iwasawa semi-simples, Compositio Math.,

99 (1995), 325–341.

[ 8 ] T. Kataoka, A consequence of Greenberg’s generalized conjecture on Iwasawa invariants of Zp-

extensions, J. Number Theory, 172 (2017), 200–233.

[ 9 ] S. Lang, Cyclotomic fields I and II, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990.

[10] J. Minardi, Iwasawa modules for Zd
p-extensions of algebraic number fields, Thesis (1986), University

of Washington.

[11] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Second edition,

Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008.

[12] K. Okano, Abelian p-class field towers over the cyclotomic Zp-extensions of imaginary quadratic

fields, Acta Arith., 125 (2006), 363–381.

https://doi.org/10.1112/S0025579300003703
https://doi.org/10.2307/2373652
https://doi.org/10.2307/2373652
https://doi.org/10.2969/aspm/03010335
https://doi.org/10.2969/aspm/03010335
https://doi.org/10.2969/jmsj/06510277
https://doi.org/10.1090/S0002-9904-1959-10317-7
https://doi.org/10.1090/S0002-9904-1959-10317-7
https://doi.org/10.1016/j.jnt.2016.08.008
https://doi.org/10.1007/978-1-4612-0987-4
https://doi.org/10.1007/978-3-540-37889-1
https://doi.org/10.4064/aa125-4-5


1026(338)

1026 K. Murakami

[13] M. Ozaki, Iwasawa invariants of Zp-extensions over an imaginary quadratic field, In: Class Field

Theory—Its Centenary and Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc.

Japan, Tokyo, 2001, 387–399.

[14] J. W. Sands, On small Iwasawa invariants and imaginary quadratic fields, Proc. Amer. Math. Soc.,

112 (1991), 671–684.

[15] L. C. Washington, Introduction to cyclotomic fields, Second edition, Grad. Texts in Math., 83,

Springer-Verlag, New York, 1997.

Kazuaki Murakami

Department of Mathematical Sciences

Graduate School of Science and Engineering

Keio University

Hiyoshi, Kohoku-ku, Yokohama

Kanagawa 223-8522, Japan

E-mail: murakami 0410@z5.keio.jp

https://doi.org/10.2969/aspm/03010387
https://doi.org/10.2969/aspm/03010387
https://doi.org/10.2969/aspm/03010387
https://doi.org/10.1090/S0002-9939-1991-1057961-4
https://doi.org/10.1090/S0002-9939-1991-1057961-4
https://doi.org/10.1007/978-1-4612-1934-7
https://doi.org/10.1007/978-1-4612-1934-7

