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Abstract. We investigate the properties of ideals such that their corresponding

partial orders preserve stationarity. We show that these ideals exhibit many large

cardinal-like consequences. We also prove the existence of a certain non-reflecting

stationary subset of Pkl under some hypotheses.

1. Introduction.

In this paper we say that I is an ideal over S when I is a countably complete fine

(i.e. for every i A6S fx A S : i B xg A I ) ideal over S. For an ideal I, we denote the

poset of I-positive sets ordered by inclusion by PI . We refer the reader to Jech [12] for

background about ideals, and Kunen [14] and Kanamori [13] for terminology from the

theory of forcing (e.g. poset, antichain, predense, generic filter, etc.).

For an uncountable regular cardinal k and a set X with jX jb k, we let PkX denote

the set fsJX : jsj < kg. A set WJPkX is said to be stationary in PkX if for every

function f : l
<o ! PkX , there exists a set s A W such that s is closed under f i.e.

Ea A s<of ðaÞJ s. The collection of non-stationary subsets of PkX forms a k-complete

normal ideal over PkX . This ideal is known as the non-stationary ideal over PkX . We

denote the non-stationary ideal over PkX by NSkX . We refer the reader to Kanamori

[13, Section 25] for basic facts about the combinatorics of PkX .

In this paper we investigate ideals for which their corresponding posets preserve

stationarity. We remind the reader that a poset P is said to be proper if P preserves

stationarity of subsets of P@1
l for every uncountable cardinal l, i.e. for every lb@1,

if XJP@1
l is stationary, then wPI

‘‘ �XX is stationary in P@1
�ll’’. We will show that an

ideal whose corresponding poset is proper possesses many interesting consequences. As

an example we state one of our theorems.

Theorem. Let l be an uncountable cardinal and d be a cardinalb22
2 l

. If there is a

l
þ-complete normal ideal I over P

l
þd such that PI is proper, then NS@1l

is precipitous.

Furthermore NS@1l
is presaturated if 2l

@0 ¼ l
þ.

We will restate and prove this theorem as Theorem 7 later. Let us discuss some

terminology. We say that an ideal I is precipitous if for every generic filter G for PI

over the ground model V, UltGðV Þ, the generic ultrapower of V with respect to G,

is well-founded. We refer the reader to Jech [12] for the definition of UltGðV Þ. The
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existence of a precipitous ideal is known as a large cardinal hypothesis. For example,

see Theorem 86 of [12]. An ideal I over Pkl is said to be presaturated if it is pre-

cipitous and forcing with PI preserves l
þ.

We also present a result concerning ‘‘non-reflecting’’ stationary sets.

Theorem. Let k and l be regular cardinals such that @2a k < l and 2l
<k

¼ l
þ.

If y is a regular cardinal bl
þ with a measurable cardinal above, then there exists a

stationary SJPkHy such that for any X A ½Hy�
l, lJX implies that S VPkX is not

stationary in PkX .

Here Hy stands for the collection of sets which are hereditarily of cardinality <y.

We refer the reader to Kunen [14] for background about Hy. The last theorem will be

presented as Theorem 9.

The next theorem due to Gitik and Shelah [8] shows that the existence of an ideal I

such that PI is proper is always a large cardinal property. We present a di¤erent proof

which shows this result can be strengthened slightly.

Theorem 1. If I is an ideal such that PI is proper, then I is precipitous.

Proof. For a poset P we consider the following game GðPÞ due to Gray [11].

GðPÞ is a two player game of length o. Player I as her first move chooses p0 A P and

a maximal antichain A0 in P. Then Player II chooses a countable subset B0
0 of A0.

Next Player I chooses another maximal antichain A1 and in response Player II chooses

countable B1
0 JA0 and B1

1 JA1. In general as their nth moves, with the exception of

the first move, Player I chooses a maximal antichain An and Player II chooses countable

Bn
i JAi for each ia n. After o moves Player II wins GðPÞ if and only if there exists

qa p0 such that for each i, Bi ¼ 6
n Ao�i

Bn
i is predense below q. Gray proved that P is

proper if and only if Player II has a winning strategy in GðPÞ. For the proof of this see

Baumgartner [2].

We will show that if an ideal I over Z is not precipitous then Player I has a winning

strategy in GðPI Þ. Suppose an ideal I is not precipitous. Assume for some I-positive

set X that X wPI
‘‘h½ _ttn� j n A oi is a descending sequence in hUltGð �VV Þ;Ei.’’ In par-

ticular for each n A o, X wPI
_ttn A �VV . Let A 0

0 be a maximal antichain in fY A PI :

Y JX , Y w½ �ffY � ¼ ½ _tt0� for some fY A V g: Let A0 ¼ A 0
0 U fZ � Xg if Z � X B I . If

Z � X A I , then let A0 ¼ A 0
0. It is easy to see that A0 is a maximal antichain in PI .

As her first move let Player I choose X and A0. If Z � X B I , as her nth move ðnb 1Þ,

let Player I choose An ¼ A 0
n U fZ � Xg where A 0

n is a maximal antichain in fY A PI :

Y JX , b fY A V such that Y w ½ �ffY � ¼ ½ _ttn�g. If Z � X A I let Player I choose An ¼ A 0
n.

We want to show this is a winning strategy for Player I. Suppose Player II chooses

a countable Bn
i JAi for all ia n as his nth move.

Claim. There is no YaX such that for each i, 6
n Ao�i

Bn
i is predense below Y.

Proof of Claim. Suppose otherwise. Assume that YaX and Bi ¼ 6
n Ao�i

Bn
i

is predense below Y for all i. For each i let hXm : m < oi enumerate elements of Bi.

Let X 0 ¼ X0 and for mb 1, Xm ¼ Xm �6
k<m

Xk. By the definition of Bi for each m

there exists fXm
A V such that Xm wPI

½ �ffXm
� ¼ ½ _tti�. Define gi by gi ¼ 6

m Ao
fXm

0Xm.

Now we claim that Y wPI
½�ggi� ¼ ½ _tti�. Suppose otherwise. Then bZaY : Z wPI

½�ggi�0 ½ _tti�.

Since Bi is predense below Y there is some Xm A Bi such that Xm VZ is I-positive.
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Then Xm VZ wPI
½ �ffXm

� ¼ ½ _tti�. Since Xm VZJ6
kam

Xk there is some kam such that

Xm VZVXk is I-positive. Clearly Xm VZVXk wPI
½ �ffXk

� ¼ ½ _tti�5 ½�ggi� ¼ ½ �ffXk
�. So Xm V

ZVXk wPI
½�ggi� ¼ ½ _tti� contradicting Z wPI

½�ggi�0 ½ _tti�.

Therefore for each i A o there is some gi A V such that Y wPI
½�ggi� ¼ ½ _tti�. For each

i A o let Wi ¼ fa A Y : giþ1ðaÞ A giðaÞg. We know that for each i A o, Y w ½�ggiþ1�E½�ggi�.

Thus Y V7
i Ao

Wi is I-positive. But if a A7
i Ao

Wi then g0ðaÞ C g1ðaÞ C g2ðaÞ � � � .

This contradiction completes the proof of Claim. r

Therefore Player I has a winning strategy in GðPI Þ. So by Gray’s thorem PI is not

proper. r

Remark. The above proof of Theorem 1 shows that if I is an ideal such that

Player I does not have a winning strategy in GðPI Þ, then I is precipitous. Since this

hypothesis is weaker than ‘‘PI is proper’’, we proved a slightly stronger result.

2. Stationary preserving ideals.

In Matsubara [15] we adopted the proof of Theorem 4 in Galvin-Jech-Magidor [7]

to show the following result:

Theorem 2. If k is a supercompact cardinal > an uncountable regular cardinal d,

then wCollðd;<kÞ ‘‘For every lb d
þ there is a d

þ-complete normal fine ideal I over Pd
þl such

that PI is0d-strategically closed ’’ where Collðd; <kÞ is the Levy collapse causing k to be

d
þ.

For the definition of ‘‘0d-strategically closed’’ we refer the reader to Apter-Shelah

[1]. It is well-known that every o-strategically closed poset is proper. Therefore after

Levy collapsing a supercompact cardinal to d
þ, Pd

þl carries a d
þ-complete normal fine

ideal I such that PI is proper. From now on by a k-ideal over PkA we mean a k-

complete normal fine ideal over PkA. Furthermore we say that an ideal I is ‘‘proper’’ if

PI is proper. The existence of a ‘‘proper’’ dþ-ideal on Pd
þl implies a certain reflection

principle.

Definition. If S is a stationary subset of P@1
l and XJ l, then we say that S

reflects to X if S VP@1
X is stationary in P@1

X .

The following is a slight generalization of the Reflection Principle due to Foreman,

Magidor, and Shelah [6].

Definition. The Reflection Principle at l to size d holds if the following prop-

osition is true:

Every stationary set SJP@1
l reflects to some X A ½l�d such that dJX .

Theorem 3. If there exists a ‘‘proper’’ dþ-ideal over Pd
þy, then for every l such that

d
þ
a la y the Reflection Principle at l to size d holds.

Proof. If T is a stationary subset of P@1
l then fx A P@1

y : xV l A Tg is a sta-

tionary subset of P@1
y. It is also known that the projection of a stationary subset of

P@1
y onto P@1

X with @1JXJ y is stationary in P@1
X . For the proofs of these facts,

see Foreman-Magidor-Shelah [5]. From these facts it is easy to see that the Reflection

Principle at y to size d implies the Reflection Principle at l to size d for every l such that

d
þ
a la y.
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Let S be a stationary subset of P@1
y in V. Let I be a d

þ-ideal over Pd
þy such that

PI is proper. Let G be a PI -generic filter over V. Let j : V ! MGUltGðV Þ be the

corresponding generic elementary embedding.

Now work in V ½G�. Since PI is proper, S is stationary in P@1
y. Define S � ¼

f j 00x : x A Sg. Since j 0 y is a bijection between y and j 00y, we know that S � is stationary

in P@1
j 00y.

Define a map f on ðPd
þyÞV by f ðaÞ ¼ S VP@1

a. It is easy to see that S �
J

½ f �J ðP@1
j 00yÞM . Thus M � ‘‘½ f � is stationary in P@1

j 00y.’’ Therefore fa A ðPd
þyÞV :

S VP@1
a is stationary in P@1

ag A G. So it is clear that fa A Pd
þy : S VP@1

a is stationary

in P@1
ag B I . Hence there exists some X A ½y�d such that S reflects to X and dJX .

r

The Reflection Principle at @2 to size @1 implies that the continuum is at most @2

(Shelah [17] and Todorčević [18]). This gives the following corollary.

Corollary 4. If there exists a ‘‘proper’’ @2-ideal over P@2
l, then 2@0a@2.

Magidor proved that if for every regular lb@2 the Reflection Principle at l to size

@1 holds then NS@1
, the nonstationary ideal on @1, is presaturated i.e. NS@1

is precipitous

and @2 remains a cardinal through forcing with PNS@1
. The following corollary is also

immediate.

Corollary 5. If for cofinally many l’s P@2
l carries a ‘‘proper’’ @2-ideal, then NS@1

is presaturated.

It turns out that under some conditions for d su‰ciently large the existence of

a ‘‘proper’’ l
þ-ideal over P

l
þd implies the presaturation of NS@1l

. We will present a

result that is more general, using the following concept:

Definition. Let d and k be uncountable regular cardinals such that k < d. We

say that a d-ideal over PdA is PkA-stationary preserving if the following hold:

(1) I is precipitous,

(2) If S is a stationary subset of PkA, then there exists some X A PI such that

X wPI
“S remains stationary in PkA”:

Remark. By an argument similar to the one given at the beginning of the proof of

Theorem 3, if PI preserves every stationary subset of PkA as in the sense of (2) then it

preserves every stationary subset of PkB for every BJA.

The proof of the next lemma follows Foreman-Magidor-Shelah [6], Goldring [9]

and [10] closely. Although all of the ingredients of the proof of the following lemma

can be found in [9] and [10], since the theorems below depend on its proof we have

decided to present the lemma below.

Lemma 6. Let k and y be uncountable regular cardinals and l a cardinal such that

2l
<k

< y. If there exists a PkHy-stationary preserving l
þ-ideal over P

l
þHy, then NSkl is

precipitous. Furthermore NSkl is presaturated if 2l
<k

¼ l
þ.

Proof. Let I be a PkHy-stationary preserving l
þ-ideal over P

l
þHy.

Let H ¼ hHy; A;Dy; . . .i where Dy stands for a well-ordering of Hy.
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Claim 1. C ¼ fN A PkHy : N0H5E~AA A N ½~AA enumerates a maximal antichain in

NSkl ) bb A domð~AAÞðN V l A ~AAðbÞ5N V l ¼ SkHðN U fbgÞV lÞ�g contains a club subset

of PkHy. Here SkHðN U fbgÞ stands for the Skolem hull of N U fbg in H.

Proof of Claim 1. Suppose otherwise i.e. PkHy � C is stationary in PkHy. By

the usual normality argument there is some ~AA� which enumerates a maximal antichain

in NSkl such that S ¼ fN A PkHy :
~AA� A N5Eb A domð~AA�ÞðN V l A ~AA�ðbÞ ) N V l0

SkHðN U fbgÞV lÞg is stationary in PkHy. Let G be a PI -generic filter over V such that

S remains stationary in V ½G �. Let j be the corresponding generic elementary embed-

ding from V into M. It is clear that M � ‘‘S is stationary in PkH
V
y and jHV

y j ¼ l.’’

Let f be a function in M such that f is a bijection from l to H V
y .

Now work in M. Let T ¼ fN A Pkl : f 00N A S5ð f 00NÞV l ¼ Ng. Then T is a

stationary subset of Pkl. Since critð jÞ ¼ ðlþÞV , jð~AA�Þ is an enumeration of a maximal

antichain in NSkl. Therefore there exists some a� A domð jð~AA�ÞÞ such that jð~AA�Þða�ÞV

T B NSkl.

Let D ¼ fN A jðPkHyÞ : N0 jðHÞ; a� A N, and N is closed under f ; f �1 and

j 0H V
y g. It is clear that D is club in Pk jðH

V
y Þ. Thus there exists some N A D such

that N V l A jð~AA�Þða�ÞVT . Let N � ¼ f 00ðN V lÞ. From N V l A T we get N � A S.

Since N is closed under f and j 0H V
y we know that j 00N �ð¼ jðN �ÞÞJN. Note that

since N is also closed under f �1, we have jðN �ÞV l ¼ N V l. So jðN �ÞV jðlÞ

ð¼ jðN �ÞV lÞ belongs to jð~AA�Þða�Þ. From N0 jðHÞ, jðN �ÞJN, and a� A N we see

that Sk jðHÞð jðN �ÞU fa�gÞV jðlÞJN V jðlÞ ¼ N V l ¼ jðN �ÞV jðlÞ. So clearly Sk jðHÞ

ð jðN �ÞU fa�gÞV jðlÞ ¼ jðN �ÞV jðlÞ. We can now conclude jðN �Þ B jðSÞ. By the ele-

mentarity of j we have N � B S. This contradiction completes the proof of Claim 1.

r

Claim 2. NSkl is precipitous.

Proof. Let S be a stationary subset of Pkl. Let hWn j n < oi be a sequence of

maximal antichains in PNSkl
0S ¼ fX : X JS and X is stationary in Pklg. Assume

W0 bW1 b � � �bWn b � � � where Wi bWiþ1 denotes that every X A Wiþ1 is a subset

of some Y A Wi. We would like to show that there exists a sequence of sets X0 K
X1 K � � �KXn K � � � such that Xn A Wn for each n, and 7

n Ao
Xn 0q.

Let h be a regular cardinal >y such that C A Hh where C is the club set from

Claim 1. Let Dh be a well-ordering extending Dy. Let H � ¼ hHh; A;Dh; . . .i. Let

C � ¼ fN A PkHh : N0H �;C A N;N V k A kg. Clearly C � is a club subset of PkHh.

Subclaim. If N A C � and ~AA A N is an enumeration of a maximal antichain in NSkl,

then there is some b A domð~AAÞ such that N V l A ~AAðbÞ and N V l ¼ SkH �

ðN U fbgÞV l.

For a proof of the Subclaim we refer the reader to p. 292 of Goldring [9].

Let S and hWn j n < oi be as above. Suppose N0 A C � such that S, hWn j n < oi A

N0, and N0 V l A S. Let ~AA0 A N0 be an enumeration of the maximal antichain W0 U

fPkl� Sg (or simply W0 if Pkl� S is nonstationary.) By the Subclaim there is

some b0 A domð~AA0Þ such that N0 V l A ~AA0ðb0Þ and N0 V l ¼ SkH �

ðN0 U fb0gÞV l. Since

N0 V l A S we must have ~AA0ðb0Þ A W0. Let X0 ¼ ~AA0ðb0Þ and N1 ¼ SkH �

ðN0 U fb0gÞ.

So X0 A N1. Since N1 A C � we can repeat the procedure as follows:
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By W1 0X0 we denote the set fX A W1 : X JX0g. Then W1 0X0 U fPkl� X0g

is a maximal antichain. Let ~AA1 A N1 enumerate this antichain. Then there exists

b1 A domð~AA1Þ such that N1 V l A ~AA1ðb1Þ and N1 V l ¼ SkH �

ðN1 U fb1gÞV l. Since N1 V

l A X0 we know ~AA1ðb1Þ A W1 0X0. Let X1 ¼ ~AA1ðb1Þ and N2 ¼ SkH �

ðN1 U fbgÞ. The

above procedure will produce a sequence of sets X0 KX1 K � � �KXn K � � � such that

Xn A Wn for each n and N0 V l A 7
n Ao

Xn. (Claim 2) r

Claim 3. Suppose h~AAa j a < li is a sequence of enumerations of maximal antichains

in NSkl. Assume B is a stationary subset of Pkl. Then S ¼ fN A PkHy : N0H5Ea A

N V l bb A N N V l A ~AAaðbÞ5N V l A Bg is stationary.

Proof of Claim 3. Let D be an arbitrary club subset of PkHy. We will show

that S VD0q. Let H � be as in the proof of Claim 2 and C be as in Claim 1.

Let E ¼ fN A PkHh : N0H �; h~AAa j a < li A N; y;C;D A N;N VHy A D and N V k A kg.

Clearly E is a club subset of PkHh and EJC �. Since B is stationary, there is some

N0 A E such that N0 V l A B. By the Subclaim if N A E and ~AA A N is an enumeration

of a maximal antichain in NSkl, then there is some b A domð~AAÞ such that N V l A ~AAðbÞ

and N V l ¼ SkH �

ðN U fbgÞV l. By induction we can define a sequence hNg j g <

o:t:ðN0 V lÞi of elements of E such that N0 V l ¼ Ng V l for each g < o:t:ðN0 V lÞ and

Ea A N0 V l bb A 6
g<o:t:ðN0VlÞ

Ng N0 V l A ~AAaðbÞ. Let N � ¼ 6
g<o:t:ðN0VlÞ

Ng VHy. From

6
g<o:t:ðN0VlÞ

Ng A E we see N � A D. Since Ea A N � V lð¼ N0 V lÞ bb A N � N0 V l A
~AAaðbÞ, and N � V l ¼ N0 V l A B, we conclude N � A S VD. (Claim 3) r

From now on we will assume that 2l<k

¼ lþ. Therefore we can assume that if ~AA

is an enumeration of a maximal antichain in NSkl then domð~AAÞa lþ. Presaturation of

NSkl follows immediately from the next claim.

Claim 4. Let h~AAa j a < li be a sequence of enumerations of maximal antichains in

NSkl and B be a stationary subset of Pkl. There exists some stationary subset D of B

such that for each a < l

jfb A domð~AAaÞ : DV ~AAaðbÞ is stationarygja l:

Proof. Let S be as in Claim 3. Let G be a PI -generic filter over V and

j : V ! M be the corresponding generic elementary embedding such that

M � “S is stationary in PkH
V
y ”:

Since M � jH V
y j ¼ l there is some g A M such that g is a bijection from l to H V

y .

We will work in M for a while. Let S � ¼ fN A S : N is closed under g and g�1g.

Note that S � is a stationary set such that if N A S � then N V l ¼ g�100N.

Let E ¼ fN V l : N A S �g ¼ fg�100N : N A S �g. So E is a stationary subset of

BðJ jðBÞÞJPkl.

We will show that for every a < l ¼ jðlÞ

jfb < domð jð~AAaÞÞ : jð~AAaÞðbÞVE is stationarygja l: ðyÞ

We will show that if jð~AAaÞðbÞVE is stationary for some b < domð jð~AAaÞÞa jððlþÞV Þ

then b < ðlþÞV i.e. fb < domð jð~AAaÞÞ : jð~AAaÞðbÞVE is stationarygJ ðlþÞV . Then since

jðlþÞV j ¼ l (in M ), this gives (y). Let T ¼ fg 00x : x A jð~AAaÞðbÞVEgV fN A PkHy :
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a A Ng. Since E ¼ fg�100N : N A S �g, T is a stationary subset of S �. Therefore if

N A T then there is some g A N such that N V l A ~AAaðgÞ. By the usual normality

argument there are stationary T �
JT and b �

< ðlþÞV such that if N A T � then b�
A N

and N V l A ~AAaðb
�Þ.

Note that ~AAaðb
�ÞJ jð~AAaðb

�ÞÞ ¼ jð~AAaÞðb
�Þ. So fNVl : N A T �gJ jð~AAaÞðb

�Þ. On

the other hand fN V l : N A T �g ¼ fg�100N : N A T �gJ fg�100g 00x : x A jð~AAaÞðbÞVEg ¼

jð~AAaÞðbÞVE. Thus b ¼ b �
< ðlþÞV .

We now have M � bEJ jðBÞ ½E is stationary 5Ea < jðlÞðjfb < domð jð~AAaÞÞ :

jð~AAaÞðbÞVE is stationarygja jðlÞÞ�. Thus by the elementarity of j, we are done.

(Claim 4) r

(Lemma 6) r

To carry out the arguments in the proof of Lemma 6, it is enough to have a

precipitous ideal over Plþd for db jHyj ¼ 2<y that preserves stationary subsets of Pkd.

Theorem 7. Let l be an uncountable cardinal and d be a cardinalb22
2l

. If there

is a ‘‘proper’’ lþ-ideal over Plþd, then NS@1l is precipitous. Furthermore NS@1l is pre-

saturated if 2l@0 ¼ lþ.

Unfortunately, for kb@2 the hypotheses of Lemma 6 cannot be realized. For

k ¼ l ¼ @2 the following theorem of Feng and Magidor shows the impossibility of our

hypotheses.

Theorem of Feng-Magidor [5]. If yb ð2@2Þþþ
is regular, then there exists a

stationary SJP@2
Hy such that for any X A ½Hy�

@2 , o2 JX implies that S VP@2
X is not

stationary in P@2
X .

Let S be a ‘‘non-reflecting’’ stationary subset of P@2
Hk as in Feng-Magidor.

Suppose I is a precipitous @3-ideal over P@3
Hy. Let F : P@3

Hy ! V be defined by

F ðXÞ ¼ S VP@2
X . So 1wPI

‘‘UltV ðGÞ � ‘½F � is not stationary in P@2
j 00HV

y ’ ’’. Let G

be an arbitrary PI -generic filter over V. Then in V ½G �, ½F � is a nonstationary subset of

P@2
j 00H V

y . It is easy to see that f j 00 y : y A SgJ ½F �. Thus S cannot stay stationary in

V ½G�. Feng and Magidor obtained their theorem by proving that the negation of their

conclusion implies the presaturation of NS@2
and invoking Shelah’s theorem [16] which

refutes the presaturation of NSk for every successor cardinal b@2. For general kb@2

and l we will imitate their proof using the following result.

Theorem 8 (Burke-Matsubara [3]). If k is a regular cardinal b@2 and l a regular

cardinal >k, then NSkl cannot be presaturated.

Remark. Even when k ¼ l the same conclusion as in Theorem 8 holds provided k

is a successor cardinal b@2 using the above mentioned theorem of Shelah.

The following is our result on ‘‘non-reflecting’’ stationary sets.

Theorem 9. Let k and l be regular cardinals such that @2a k < l and 2l<k

¼ lþ.

If y is a regular cardinal blþ with a measurable cardinal above, then there exists a

stationary SJPkHy such that for any X A ½Hy�
l, lJX implies that S VPkX is not

stationary in PkX . Furthermore the same conclusion holds even if we replace ‘‘k < l’’ by

‘‘k ¼ l ¼ dþ for some d’’.
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Proof. Suppose otherwise. Let k, l, and y be as in the hypothesis of our

theorem. Let d > y be a measurable cardinal. We are assuming the following:

ð�Þ For every stationary SJPkHy, there exists X A ½Hy�
l
such that S VPkX is

stationary in PkX and lJX .

We will show that ð�Þ implies the presaturation of NSkl thus deriving the desired

contradiction.

We will use the following notion:

Definition. CJPmHy is l-club if

(i) if haa : a < li is a J-chain from C then 6
a<l

aa A C,

(ii) C is unbounded in PmHy.

We say T JPmHy is l-stationary if T VC0q for every l-club CJPmHy.

By adopting the proof of Theorem 3.1 and Corollary 3.2 in Feng-Jech [4], we can

show the following claim.

Claim 1. Assume ð�Þ holds. If SJPkHy is stationary then RðSÞ ¼ fX A ½Hy�
l
:

S VPkX is stationary in PkX and X K lg is a l-stationary subset of PlþHy.

Let h be a bijection from Hy to PkHy. Given a stationary SJPkHy, let RðSÞ
� ¼

RðSÞV fX A ½Hy�
l
: Ea A X hðaÞJX5Et A PkX h�1ðtÞ A Xg. So RðSÞ� is stationary

in PlþHy for every stationary SJPkHy.

Now we carry out the arguments given in the proof of Lemma 6. Note that

if for every stationary SJPkHy there exists some generic elementary embedding

js : V ! Ms GUltðV ;GsÞ such that Ms � ‘‘S is stationary in PkH
V
y ’’, then we can carry

out the same proof. Furthermore this Ms need not be entirely well-founded. If

jsðyÞ A wfpðhMs;EiÞ where wfpðhMs;EiÞ is the well-founded part of hMs;Ei and

hMs;Ei � ‘‘S is stationary’’, then these arguments will survive.

In order to obtain such a generic ‘‘elementary embedding’’ we use Woodin’s

stationary tower forcing [19].

Let d be a measurable cardinal >y. Suppose SJPkHy is stationary. There

is some Ramsey cardinal x such that y < x < d. So p ¼ fX JVx : X VHy A RðSÞ�5

jX V xj ¼ xg A P<d. We refer the reader to Woodin [20] for the definition of P<d. Let

G be a P<d-generic object containing p. Let j : V ! M be the corresponding generic

‘‘elementary embedding.’’ Note that jðxÞ ¼ x. Thus all of the pertinent parts are in

wfpðM Þ.

The following claim completes the proof:

Claim 2. The function FS : p ! V defined by FSðX Þ ¼ S VPkðX VHyÞ represents

f j 00 y : y A Sg in M.

Proof. Clearly f j 00 y : y A SgJ ½FS�. Suppose ½g� A ½FS�. We may assume that

g : PðVbÞ ! V where x < b < d.

Then q ¼ fX JVb : X VVx A p5gðXÞ A S VPkðX VHyÞg A G. If X A q then

h�1ðgðXÞÞ A X VHy. Thus by the normality, there exists some a A Hy such that

q� ¼ fX JVb : X A q5h�1ðgðXÞÞ ¼ ag A G. Therefore ½g� ¼ j 00hðaÞ where hðaÞ A S.

(Claim 2) r

(Theorem 9) r
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We conclude this paper by raising the following questions:

Question 1. Is it consistent to have a ‘‘proper’’ lþ-ideal over PlþHy for some

singular l?*

Of course by Theorem 7 a positive answer to this question implies the consistency

of the precipitousness of NS@1l for some singular l.

Question 2. Can we drop some conditions from the hypothesis of Theorem 9?

References

[ 1 ] A. Apter and S. Shelah, On the Strong Equality between Supercompactness and Strong Compactness,

Trans. Amer. Math. Soc., 349 (1997), 103–128.

[ 2 ] J. Baumgartner, Applications of the Proper Forcing Axiom, Handbook of set-theoretic topology

(K. Kunen and J. E. Vaughan, eds.), 913–959, Elsevier 1984.

[ 3 ] D. Burke and Y. Matsubara, The extent of strength in the club filters, Israel J. Math., to appear.

[ 4 ] Q. Feng and T. Jech, Local clubs, reflection, and preserving stationary sets, Proc. London Math. Soc.,

58 (1989), 237–257.

[ 5 ] Q. Feng and M. Magidor, On reflection of stationary sets, Fund. Math., 140 (1992), 175–181.

[ 6 ] M. Foreman, M. Magidor and S. Shelah, Martin’s Maximum, saturated ideals and nonregular

ultrafilters I, Ann. of Math., 127 (1988), 1–47.

[ 7 ] F. Galvin, T. Jech and M. Magidor, An ideal game, J. Symbolic Logic, 43 (1978), 284–292.

[ 8 ] M. Gitik and S. Shelah, Forcings with ideals and simple forcing notions, Israel J. Math., 68 (1989),

129–160.

[ 9 ] N. Goldring, Woodin cardinals and presaturated ideals, Ann. Pure Appl. Logic, 55 (1992), 285–303.

[10] N. Goldring, The entire NS ideal on Pgm can be precipitous, J. Symbolic Logic, 62 (1997), 1161–1172.

[11] C. Gray, Ph. D. dissertation, University of California, Berkeley, 1982.

[12] T. Jech, Set Theory, Academic Press, New York, 1978.

[13] A. Kanamori, The Higher Infinite: large cardinals in set theory from their beginnings, Perspect. Math.

Logic, Springer-Verlag, Berlin, 1994.

[14] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.

[15] Y. Matsubara, Stronger Ideals over Pkl, to appear in Fund. Math.

[16] S. Shelah, Proper Forcing, Lecture Notes in Math., 940, Springer-Verlag, 1982.

[17] S. Shelah, Around classification theory of models, Lecture Notes in Math., 1182, Springer-Verlag,

1986.
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