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Abstract. We investigate the properties of ideals such that their corresponding
partial orders preserve stationarity. We show that these ideals exhibit many large
cardinal-like consequences. We also prove the existence of a certain non-reflecting
stationary subset of Z.A under some hypotheses.

1. Introduction.

In this paper we say that I is an ideal over S when [ is a countably complete fine
(i.e. for every ie()S {xeS:i¢x}el) ideal over S. For an ideal I, we denote the
poset of I-positive sets ordered by inclusion by P;. We refer the reader to Jech for
background about ideals, and Kunen and Kanamori for terminology from the
theory of forcing (e.g. poset, antichain, predense, generic filter, etc.).

For an uncountable regular cardinal x and a set X with |X| > k, we let Z.X denote
the set {s <= X : |s| <k}. A set W< ZX is said to be stationary in Z.X if for every
function f:A~” — Z.X, there exists a set se€ W such that s is closed under f i.e.
Va € s<”f(a) = s. The collection of non-stationary subsets of Z.X forms a x-complete
normal ideal over Z.X. This ideal is known as the non-stationary ideal over #.X. We
denote the non-stationary ideal over Z.X by NS,y. We refer the reader to Kanamori
[13, Section 25] for basic facts about the combinatorics of Z.X.

In this paper we investigate ideals for which their corresponding posets preserve
stationarity. We remind the reader that a poset P is said to be proper if P preserves
stationarity of subsets of #y, A for every uncountable cardinal 4, i.e. for every 4 > Ny,
if X = 2y / is stationary, then |p, “X is stationary in 2y A”. We will show that an
ideal whose corresponding poset is proper possesses many interesting consequences. As
an example we state one of our theorems.

THEOREM. Let J be an uncountable cardinal and & be a cardinal >22" . If there is a
A" -complete normal ideal I over P~ such that P; is proper, then NSy,; is precipitous.
Furthermore NSy, is presaturated if 240 —

We will restate and prove this theorem as later. Let us discuss some
terminology. We say that an ideal I is precipitous if for every generic filter G for P;
over the ground model V, Ultg(V'), the generic ultrapower of ¥ with respect to G,
is well-founded. We refer the reader to Jech for the definition of Ultg(V'). The
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existence of a precipitous ideal is known as a large cardinal hypothesis. For example,
see Theorem 86 of [12]. An ideal I over Z.4 is said to be presaturated if it is pre-
cipitous and forcing with P; preserves 4.

We also present a result concerning ‘“‘non-reflecting’ stationary sets.

THEOREM. Let x and A be regular cardinals such that R, < < A and 2~ = A%,
If 0 is a regular cardinal > with a measurable cardinal above, then there exists a
stationary S <= #.Hy such that for any X € [Hg];“, A S X implies that SNZ.X is not
Stationary in #.X.

Here Hy stands for the collection of sets which are hereditarily of cardinality <6.
We refer the reader to Kunen for background about Hy. The last theorem will be
presented as [Theorem 9.

The next theorem due to Gitik and Shelah [8] shows that the existence of an ideal /
such that P; is proper is always a large cardinal property. We present a different proof
which shows this result can be strengthened slightly.

THEOREM 1. If I is an ideal such that P; is proper, then I is precipitous.

Proor. For a poset P we consider the following game I'(P) due to Gray [11].
I'(P) is a two player game of length w. Player I as her first move chooses py € P and
a maximal antichain 4y in P. Then Player II chooses a countable subset B) of Aj.
Next Player I chooses another maximal antichain 4; and in response Player II chooses
countable B} < A¢ and B} < 4;. In general as their nth moves, with the exception of
the first move, Player I chooses a maximal antichain 4, and Player II chooses countable
B! < A; for each i <n. After v moves Player II wins I'(P) if and only if there exists
q < po such that for each i, By = (), _ B! is predense below g. Gray proved that P is
proper if and only if Player II has a winning strategy in I'(P). For the proof of this see
Baumgartner [2].

We will show that if an ideal 7 over Z is not precipitous then Player I has a winning
strategy in I'(P;). Suppose an ideal [ is not precipitous. Assume for some I-positive
set X that X |kp, “{[t,]|n € w) is a descending sequence in {Ultg(V),E>.” In par-
ticular for each new, X|p,i,€ V. Let A be a maximal antichain in {Y e P;:
Y <X, YIfy] = [to] for some fyeV} Let Ag=A,U{Z—-X} if Z-X¢I. If
Z — X el, then let A9 = A(. It is easy to see that 4, is a maximal antichain in P;.
As her first move let Player I choose X and A4y. If Z — X ¢ I, as her nth move (n > 1),
let Player I choose 4, = A, U{Z — X} where 4] is a maximal antichain in {Y € P; :
Y = X, 3fy € V such that Y |[fy] = [t,]}. If Z— X eI let Player I choose A, = A,

We want to show this is a winning strategy for Player I. Suppose Player II chooses
a countable B = A4; for all i <n as his nth move.

CLAIM. There is no Y < X such that for each i, | ) - B! is predense below Y.

new-—i
PrOOF OF CLAIM. Suppose otherwise. Assume that ¥ < X and B; = Unew_[Bf
is predense below Y for all i. For each i let (X, : m < w) enumerate elements of B;.
Let Xg = X and for m > 1, X,, = X,, — | J,_,, Xx. By the definition of B; for each m
there exists fy, € V' such that X, |p, [fxm] = [¢;]. Define g; by gi =, ., [, | Xm.
Now we claim that Y |tp, [§;] = [#;]. Suppose otherwise. Then 3Z < Y : Z |tp, [g;] # [#].

Since B; is predense below Y there is some X, € B; such that X,,NZ is I-positive.
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Then X,,NZp, [fy,] = [#:]. Since X,,NZ <= |J,_, X« there is some k < m such that
XyNZNX, is Ipositive. Clearly X,,NZN Xy kp, [fx,] = [#] A 6] = [fx]. So XuN
Z 0 Xy ltp, [g;] = [t:] contradicting Z Itp, [g;] # [i]-

Therefore for each i € w there is some g; € V' such that Y |tp, [§;] = [t;]. For each
iewlet Wi={aeY :gis1(a)egi(a)}. We know that for each iew, Y I[g; . ]E[d;]
Thus YN(),_, Wi is Lpositive. But if ae(),_ W; then go(a)>gi(a)>ga(a)---.
This contradiction completes the proof of Claim. O

Therefore Player I has a winning strategy in I'(P;). So by Gray’s thorem P; is not
proper. []

REMARK. The above proof of shows that if I is an ideal such that
Player 1 does not have a winning strategy in I'(P;), then [ is precipitous. Since this
hypothesis is weaker than “P; is proper’, we proved a slightly stronger result.

2. Stationary preserving ideals.

In Matsubara we adopted the proof of Theorem 4 in Galvin-Jech-Magidor [7]
to show the following result:

THEOREM 2. [If K is a supercompact cardinal > an uncountable regular cardinal o,
then Ircois, <) “For every i > 0" there is a 6" -complete normal fine ideal I over Py i such
that Py is < o-strategically closed” where Coll(d, <k) is the Levy collapse causing k to be
ot

For the definition of “< J-strategically closed” we refer the reader to Apter-Shelah
[1]. It is well-known that every w-strategically closed poset is proper. Therefore after
Levy collapsing a supercompact cardinal to 6", %5 A carries a 6 "-complete normal fine
ideal I such that P; is proper. From now on by a x-ideal over #.4 we mean a k-
complete normal fine ideal over #,4. Furthermore we say that an ideal 7 is “proper” if
P; is proper. The existence of a “proper” 6'-ideal on 2/ implies a certain reflection
principle.

DerFINITION.  If S 15 a stationary subset of #y, 4 and X < A, then we say that S
reflects to X if SNZ2y X is stationary in 2y X.

The following is a slight generalization of the Reflection Principle due to Foreman,
Magidor, and Shelah [6].

DeriniTION.  The Reflection Principle at 4 to size ¢ holds if the following prop-
osition is true:
Every stationary set S = %y, 4 reflects to some X e [1]5 such that 6 = X.

THEOREM 3. If there exists a “proper” 5" -ideal over P50, then for every A such that
6" < A <0 the Reflection Principle at J. to size & holds.

Proor. If T is a stationary subset of #y 4 then {xe 2y 0:xNA1eT} is a sta-
tionary subset of #y, 0. It is also known that the projection of a stationary subset of
Py, 0 onto Py, X with X; € X < 0 1s stationary in #x, X. For the proofs of these facts,
see Foreman-Magidor-Shelah [5]. From these facts it is easy to see that the Reflection
Principle at 6 to size 0 implies the Reflection Principle at A to size J for every A such that
T <1<0.
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Let S be a stationary subset of 2y, 0 in V. Let I be a 6" -ideal over %50 such that
P; is proper. Let G be a P;-generic filter over V. Let j: V — M =~ Ultg(V') be the
corresponding generic elementary embedding.

Now work in V[G]. Since P; is proper, S is stationary in #y,0. Define S* =
{j"x:x€eS8}. Since j|80is a bijection between 6 and ;j”6, we know that S* is stationary
n ‘@Nl ] ”0.

Define a map f on (#:0) by f(a) = SNPya. It is easy to see that S* <
[f] < (25, j"0)™. Thus M k= “[f] is stationary in 2y, j”0.” Therefore {a e (Z50)" :
SN Py,a is stationary in Py,a} € G. So it is clear that {a € %50 : SN Py, a is stationary
in 2ya} ¢ 1. Hence there exists some X €[]’ such that S reflects to X and d < X.

[l

The Reflection Principle at N, to size N; implies that the continuum is at most N,
(Shelah and Todorcevi¢ [18]). This gives the following corollary.

COROLLARY 4. If there exists a “proper” Np-ideal over Py, A, then 2% < R,.

Magidor proved that if for every regular 4 > X, the Reflection Principle at 4 to size
N; holds then NSy,, the nonstationary ideal on Ny, is presaturated i.e. NSy, is precipitous
and X, remains a cardinal through forcing with Py, . The following corollary is also
immediate.

COROLLARY 5. If for cofinally many 1’s Py, A carries a “proper” Rp-ideal, then NSy,
is presaturated.

It turns out that under some conditions for ¢ sufficiently large the existence of
a “proper” A'-ideal over 2+ implies the presaturation of NSy ;. We will present a
result that is more general, using the following concept:

DerINITION.  Let 0 and x be uncountable regular cardinals such that x <o. We
say that a d-ideal over %4 is % A-stationary preserving if the following hold:

(1) [ is precipitous,

(2) If S is a stationary subset of .4, then there exists some X € P; such that

X |tp, “S remains stationary in #.A4”.

REMARK. By an argument similar to the one given at the beginning of the proof of
Theorem 3, if P; preserves every stationary subset of .4 as in the sense of (2) then it
preserves every stationary subset of #.B for every B < A.

The proof of the next lemma follows Foreman-Magidor-Shelah [6], Goldring [9]
and closely. Although all of the ingredients of the proof of the following lemma
can be found in [9] and [10], since the theorems below depend on its proof we have
decided to present the lemma below.

LeMMA 6. Let k and O be uncountable regular cardinals and 7 a cardinal such that
247 < 0. If there exists a P.Hy-stationary preserving A" -ideal over P+ Hy, then NS, is
<K
precipitous.  Furthermore NS, is presaturated if 2* = A".

PrOOF. Let I be a # Hy-stationary preserving A*-ideal over 2+ Hj.
Let § = (Hy,€, 4y,...> where 4y stands for a well-ordering of Hjy.
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Ciam 1. C={NeZHy:N<9HA VAe N [/f enumerates a maximal antichain in
NS, = 3B edom(A)(NNie A(B) ANNL=SkS(NU{BY)NA)]} contains a club subset
of P.Hy. Here Sk®(NU{B}) stands for the Skolem hull of NU{B} in 9.

Proor oF CramMm 1. Suppose otherwise 1.e. #.Hy— C is stationary in #.Hy. By
the usual normality argument there is some A* which enumerates a maximal antichain
in NS,, such that S={NePHy: A* € N AVSedom(A*)(NNieA*(f)=NNA#
SkS(NU{BY)NA)} is stationary in Z.Hy. Let G be a P;-generic filter over V such that
S remains stationary in V|[G]|. Let j be the corresponding generic elementary embed-
ding from V into M. 1t is clear that M | “S is stationary in #.H, and |H)|=2."
Let f be a function in M such that f is a bijection from 4 to H, .

Now work in M. Let T={NeZAi: f"NeSA(f'"N)NA=N}. Then T is a
stationary subset of Z.4. Since crit(j) = (A7)", j(4*) is an enumeration of a maximal
antichain in NS,;. Therefore there exists some a* € dom(j(A*)) such that j(4*)(a*) N
T ¢ NS,;.

Let D={Nej(#H) :N<j9),a*eN, and N is closed under f,f' and
JjIH)}. Tt is clear that D is club in #.j(H,"). Thus there exists some N € D such
that NNAie j(A)(a*)NT. Let N*=f"(NNA). From NNieT we get N €S.
Since N is closed under f and j I H, we know that j”N*(=j(N*)) = N. Note that
since N is also closed under f~!, we have j(N*)NA=NNA So j(N*)Nj(1)
(= j(N*)N2) belongs to j(A*)(x*). From N < j($), j(N*) S N, and «* € N we see
that SK/®(G(N)U{*)Nj(A) = NNjA) =NNAi=jN*)NjA). So clearly Sk/(®
(JINHYU{a* )N j(A) = j(N*)N j(4). We can now conclude j(N*) ¢ j(S). By the ele-
mentarity of j we have N* ¢ S. This contradiction completes the proof of Claim 1.

[

CLamm 2. NS, is precipitous.

PrOOF. Let S be a stationary subset of Z.A. Let (W, |n < ®) be a sequence of
maximal antichains in Pys,, [S={X:X =S and X is stationary in #A}. Assume
Wo=>Wy>--->W,>--- where W; > W;,; denotes that every X € W;,| is a subset
of some Y e W;. We would like to show that there exists a sequence of sets X 2
Xi2---2X,2-- such that X, € W, for each n, and () _ X, # .

Let # be a regular cardinal >0 such that C e H, where C is the club set from
Claim 1. Let 4, be a well-ordering extending 4y. Let $* = <{(H,,€,4,,...). Let
C*={NeZ?H,:N<9H",Ce N,NNkex}. Clearly C* is a club subset of Z.H,.

SuBcLamMm. If N € C* and A € N is an enumeration of a maximal antichain in NS,;,
then there is some [ € dom(A) such that NNJe A(B) and NN =Sk (NU{B}) N

For a proof of the Subclaim we refer the reader to p. 292 of Goldring [9].

Let Sand <W, |n < ) be as above. Suppose Ny € C* such that S, (W, |n < w) €
No, and NgNieS. Let /fo e Ny be an enumeration of the maximal antichain W, U
{#— S} (or simply W, if #.— S is nonstationary.) By the Subclaim there is
some f, € dom(Ay) such that NoNAe Ao(f,) and NoNi = SkS (NoU{B,})N A Since
NoNieS we must have Ay(fB,) € Wo. Let Xo = Ao(f,) and Ny = Sk (NoU{B,}).
So Xy e Ny. Since N; e C* we can repeat the procedure as follows:
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By W)Xy we denote the set {X e W;: X < Xo}. Then W) | XoU{ZA— Xo}
1S a maximal antichain. Let ffl e N; enumerate this antichain. Then there exists
B, € dom(A4,) such that NyNie A,(f,) and N;Ni=Sk® (N;U{B,})NAi Since NN
Je Xy we know Aj(f,) e Wi | Xo. Let X; =Ay(f,) and N, = SkS (N, U{B}). The
above procedure will produce a sequence of sets Xo 2 X; 2--- 2 X, =2 --- such that
X, € W, for each n and NoNie (), _, X (Claim 2) [

Cram 3. Suppose </fOC |a < A) is a sequence of enumerations of maximal antichains
in NSy;,. Assume B is a stationary subset of #... Then S ={N e P.Hy: N <9 Ao e
NNA3peN NNieA,(f) A NNAie B} is stationary.

Proor oF CrLamMm 3. Let D be an arbitrary club subset of #.Hy. We will show
that SND # . Let $* be as in the proof of Claim 2 and C be as in Claim 1.
Let E={N € #.H, N < 9" {d,|a<i>eN,0,C,De N, NNHye D and NNk e}
Clearly E is a club subset of #.H, and E = C*. Since B is stationary, there is some
Ny € E such that NoNAe B. By the Subclaim if N € E and A e N is an enumeration
of a maximal antichain in NS,;, then there is some f € dom(A) such that NN e A(p)
and NNLi=Sk® (NU{B})NA By induction we can define a sequence (N, |y <
0.t.(NoNA)) of elements of E such that NoNA= N,N A for each y < 0.t.(NgyN 1) and
Vae NoNa 3pel, oy Ny NoNied,(B). Let N* =, vny Ny N Hp.  From
UKO.L(NOM)NyeE we see N*eD. Since Yae N*NA(=NogNAi) IBeN* NoyNie

A,(p), and N*NAi=NyNAie B, we conclude N* € SND. (Claim 3) [

From now on we will assume that 2*° = A*. Therefore we can assume that if A

1s an enumeration of a maximal antichain in NS,; then dom(/f ) < A". Presaturation of
NS, follows immediately from the next claim.

CLAIM 4. Let {A, oo < A) be a sequence of enumerations of maximal antichains in
NS, and B be a stationary subset of #.A. There exists some stationary subset D of B
such that for each o < A

{8 € dom(A,) : DN A, () is stationary}| < i.

Proor. Let S be as in Claim 3. Let G be a P;-generic filter over V' and
j:V — M be the corresponding generic elementary embedding such that

M E “S is stationary in #.H, ”.

Since M k= |H,'| = A there is some g€ M such that g is a bijection from 1 to H, .
We will work in M for a while. Let S* ={N eS:N is closed under g and g~!'}.
Note that S* is a stationary set such that if N e S* then NNi=g¢g N.

Let E={NNAi:NeS*}={g"”N:NeS*}. So E is a stationary subset of
B(c j(B)) € ZA.

We will show that for every a < A= j(1)

—

{8 < dom(j(A,)): j(A,)(B)NE is stationary}| < A. ©)

We will show that if j(4,)(B)NE is stationary for some f < dom(j(A,)) < j(A1)")
then f < (A1) ie. {B < dom(j(A,)): j(A,)(B)NE is stationary} = (7). Then since
AN =4 (in M), this gives (). Let T ={g"x:xe j(4,)(f)NEYN{N e 2.Hy:
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xeN}. Since E={g""N:NeS*}, T is a stationary subset of S*. Therefore if
N e T then there is some y € N such that Nﬂ/IeA:((y). By the usual normality
argument there are stationary 7* = T and f* < (A7)" such that if N e T* then f* e N
and NNie A,(p").
Note that A,(8") € j(A,() = J(A)(B). So {NNi:NeT*}< j(A)p). O
the other hand {NNZ:NeT*}={g"N:NeT"} ={g7"g"x:xe j(4.)(F)NE} =
JANBNE. Thus f=p" < ()"
We now have M k= 3E < j(B) [E is stationary AVa < j(A)(|[{f < dom(j(A,)) :
j(4,)(B)NE is stationary}| < j(4))]. Thus by the elementarity of j, we are done.
(Claim 4) ]

(Cemma 6) [

To carry out the arguments in the proof of [Lemma 6, it is enough to have a
precipitous ideal over 2,:5 for § > |Hy| = 2= that preserves stationary subsets of Z,.J.

=

/\

THEOREM 7. Let A be an uncountable cardinal and 6 be a cardinal 22221. If there

is a “proper” )" -ideal over P+, then NSy, is precipitous. Furthermore NSy, is pre-
N,
saturated if 2*° = it.

Unfortunately, for x > 8, the hypotheses of cannot be realized. For
k = 4 =N, the following theorem of Feng and Magidor shows the impossibility of our
hypotheses.

THEOREM OF FENG-MAGIDOR [5]. If 0> (2")"" is regular, then there exists a
stationary S < Py, Hy such that for any X € [HQ]NZ, wy S X implies that SN Py, X is not
stationary in Py, X.

Let S be a “non-reflecting” stationary subset of #y,H, as in Feng-Magidor.
Suppose I is a precipitous Nz-ideal over Zy,Hy. Let F: Py, Hy — V be defined by
F(X)=SN2wX. So llp, “Ulty(G) k= ‘[F] is not stationary in Zy,j"H)””. Let G
be an arbitrary P;-generic filter over V. Then in V[G], [F] is a nonstationary subset of
Py, j"H, . Tt is easy to see that {j”y:ye S} = [F]. Thus S cannot stay stationary in
V[G]. Feng and Magidor obtained their theorem by proving that the negation of their
conclusion implies the presaturation of NSy, and invoking Shelah’s theorem which
refutes the presaturation of NS, for every successor cardinal >N,. For general x > N,
and A we will imitate their proof using the following result.

THEOREM 8§ (Burke-Matsubara [3]). If k is a regular cardinal >R, and A a regular
cardinal >k, then NS, cannot be presaturated.

ReMARK. Even when x = / the same conclusion as in [Theorem 8§ holds provided
is a successor cardinal >N, using the above mentioned theorem of Shelah.

The following is our result on ‘“‘non-reflecting” stationary sets.

THEOREM 9. Let k and ) be regular cardinals such that N, <k < A and 2+~ = %,
If 0 is a regular cardinal >2" with a measurable cardinal above, then there exists a
stationary S < #.Hy such that for any X € [Hg];“, A< X implies that SN#.X is not
stationary in #.X. Furthermore the same conclusion holds even if we replace “x < A by
“n=2L=0" for some 5.
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ProOOF. Suppose otherwise. Let x, 4, and 0 be as in the hypothesis of our
theorem. Let 0 > 0 be a measurable cardinal. We are assuming the following:

(x) For every stationary S < #.Hy, there exists X € [Hg]i such that SN2.X is
stationary in #.X and 1< X.

We will show that () implies the presaturation of NS,; thus deriving the desired
contradiction.
We will use the following notion:

DErFINITION.  C = #,Hy is Z-club if

(i) if ay:a < i) is a =-chain from C then (J,_,a,€C,

(i) C is unbounded in %, H,.

We say T = #,Hy is A-stationary if TN C # J for every A-club C = Z,H,.

By adopting the proof of Theorem 3.1 and Corollary 3.2 in Feng-Jech [4], we can
show the following claim.

CLAM 1. Assume () holds. If S < P.Hy is stationary then R(S) = {X € [Hy]" :
SNZ.X is stationary in #.X and X =2 1} is a J-stationary subset of %+ Hy.

Let & be a bijection from Hy to #.Hy. Given a stationary S = Z.Hy, let R(S)" =
R(S)N{X e [Hy)" :Yae X h(a) < X AVte ZX h™'(/)e X}. So R(S)" is stationary
in #;+Hy for every stationary S < #.H,.

Now we carry out the arguments given in the proof of [Lemma 6 Note that
if for every stationary S < Z.Hy there exists some generic elementary embedding
Js: V. — M, = Ult(V,Gy) such that M, = “S is stationary in Z.H,”, then we can carry
out the same proof. Furthermore this M, need not be entirely well-founded. If
Js(0) e wip({ My, EY) where wfp({M,,E)) is the well-founded part of {M,, E)> and
(M, E) E“S is stationary”, then these arguments will survive.

In order to obtain such a generic “elementary embedding” we use Woodin’s
stationary tower forcing [19].

Let 6 be a measurable cardinal >0. Suppose S < Z.Hy is stationary. There
is some Ramsey cardinal £ such that 6 <& <d. So p={X <= V:: XNHyeR(S)" A
|IXN¢El =¢&} e Ps. We refer the reader to Woodin for the definition of P.s. Let
G be a P_s-generic object containing p. Let j: V' — M be the corresponding generic
“elementary embedding.” Note that j(¢) =¢&. Thus all of the pertinent parts are in
wfp(M).

The following claim completes the proof:

CLamm 2. The function Fs: p — V defined by Fs(X)=SNZ.(X N Hy) represents
{j/"v:yeS} in M.

Proor. Clearly {j"y:ye S} < [Fs]. Suppose [g] € [Fs]. We may assume that
g:P(Vp) — V where & < f<6.

Then g={Xc<cV3: XNVceprgX)eSNZ(XNHy)}eG. If Xegqg then
h~'(g(X)) e XN Hy. Thus by the normality, there exists some ae€ Hy such that
g ={X<Vy: Xeqnh'(9g(X))=a}eG. Therefore [g] = j"h(a) where h(a) e S.

(Claim 2) []

(Theorem 9) [
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We conclude this paper by raising the following questions:

QUESTION 1. Is it consistent to have a “‘proper” A" -ideal over P.+Hy for some

singular A7*

Of course by a positive answer to this question implies the consistency

of the precipitousness of NSy,; for some singular A.

[1]

QUESTION 2. Can we drop some conditions from the hypothesis of
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