
J. Math. Soc. Japan
Vol. 56, No. 2, 2004

A construction of a family of full compact minimal surfaces in

4-dimensional flat tori

By Toshihiro Shoda

(Received Jun. 20, 2002)

(Revised Dec. 6, 2002)

Abstract. In this paper, we will construct a family of full compact oriented minimal

surfaces of genus 3 with degenerate Gauss map in 4-dimensional flat tori, which are not

holomorphic with respect to any complex structure of the tori.

1. Introduction.

A little over a hundred years ago, H. A. Schwarz constructed triply-periodic min-

imal surfaces in 3-space ([11]). This provided us with the first compact minimal surface

in a flat real 3-torus. He solved the Plateau problem of a 4-sided polygonal curve in R
3

and constructed a minimal surface via reflections across the boundary edges. In 1970,

A. Schoen described 17 triply-periodic minimal surfaces in R
3 including and inspired

by five such examples by Schwarz ([10]). Based on Schoen’s manuscript, Karcher has

written a short treatise on some of the examples of Schoen ([5]). Karcher’s manuscript

includes computer graphics images of some these examples as well as some related

interesting new examples. T. Nagano and B. Smyth extended Schwarz’ idea to the

higher dimensional case and abstractly constructed compact minimal surfaces in flat n-

tori (nb 3) ([7], [8]). There are, however, few concrete examples in this case.

On the other hand, M. Micallef has shown that an oriented stable minimal surface

in a 4-dimensional flat torus is always holomorphic with respect to some orthogonal

complex structure on the torus ([6]).

Now we consider two problems: (1) Construct concrete examples of full compact

minimal surfaces via Weierstrass representation in some flat 4-tori. (2) Prove that the

stability in Micallef ’s theorem is essential i.e. there exists a full minimal surface which is

not holomorphic with respect to any complex structure of the 4-tori. In this paper, we

obtain a family of full compact oriented minimal surfaces of genus 3 with degenerate

Gauss map in some 4-tori, which are not holomorphic with respect to any complex

structure of the tori.

The author would like to thank R. Miyaoka, A. Futaki, H. Ono, Y. Sano, A.

Noguchi and referee for their useful comments.

2. Survey.

In this section, we review some fundamental results. A lattice L in a real vector

space R
n is a discrete subgroup of maximal rank in R

n. A flat tori is a quotient Rn=L
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with a lattice L of R
n and the metric induced from the standard Euclidean metric on

R
n. Let fu1; . . . ; umg ðmb nÞ be a sequence of vectors which span R

n. In general,

fu1; . . . ; umg are not lattice vectors.

Proposition 2.1 ([2, section 6]). fu1; . . . ; umg are lattice vectors if and only if there

exist lattice vectors fv1; . . . ; vng such that

ðv1; v2; . . . ; vnÞ ¼ ðu1; u2; . . . ; umÞG1;

ðu1; u2; . . . ; umÞ ¼ ðv1; v2; . . . ; vnÞG2;

where G1 is an ðm; nÞ-matrix and G2 is an ðn;mÞ-matrix whose components are integers.

An n-periodic minimal surface properly immersed in R
n corresponds to a minimal

immersion f of a compact oriented surface M into a flat tori Rn=L. With the induced

conformal structure, M is a compact Riemann surface and f is a conformal minimal

immersion. Thus, we will treat the case where the source manifold is a compact

Riemann surface and the target manifold is a flat tori. The fundamental theorem of

minimal surfaces in flat tori is given by

Theorem 2.1 (Generalized Weierstrass Representation). If f : M ! R
n=L is a

conformal minimal immersion then, after a translation, f can be represented by

f ðpÞ ¼ R

ð p

p0

ðo1;o2; . . . ;onÞ
T ModL;

where p0 A M, superscript T means the transposed matrix and fo1;o2; . . . ;ong are

holomorphic di¤erentials on M satisfying

(1) fo1;o2; . . . ;ong has no common zeros,

(2)
Pn

i¼1 o
2
i ¼ 0 (conformal condition),

(3) Period matrix W :¼ fR
Ð
g
ðo1;o2; . . . ;onÞ

T j g A H1ðM;ZÞg is a sublattice of L

( periodic condition).

Conversely, every minimal surface in R
n=L is obtained by the above construction.

Next, we review the theory of Gauss map ([3]). Let Gn;2 denote the Grassmannian

of oriented 2-planes in R
n. Let f : M ! R

n=L be an immersion of a compact Riemann

surface into a flat tori. The generalized Gauss map G : M ! Gn;2 is defined by GðpÞ ¼

f�ðTpMÞ, which is obtained by parallel translation of the tangent space TpM to the

origin of R
n. Recall that Gn;2 is identified with the quadric Qn�2 HCPn�1 defined by

f½w� A CPn�1 jw � w ¼
P

iðw
iÞ2 ¼ 0g, where � is the complex bilinear inner product. If z

is a local complex coordinate on M, then fzðpÞ is a homogeneous coordinate for

GðpÞ. If the Gauss image lies in a hyperplane of CPn�1, that is, if there exists a non-

zero vector A A C
n (and can be considered A A CPn�1) such that A � fz 1 0, we call the

Gauss map is degenerate. We can normalize this non-zero vector A A CPn�1 as follows.

Lemma 2.1 ([3, p. 28, Proposition 2.4]). To each point A ¼ ða1; . . . ; anÞ A CPn�1,

nb 3, one may assign a real number t lying in the interval 0a ta 1 with the following

properties:
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(I) A is equivalent under the action of SOðnÞ to ðt; i; 0; . . . ; 0Þ;
(II) t ¼ 0 , A is a real vector (i.e. ða1; . . . ; anÞ ¼ lðr1; . . . ; rnÞ, l A C , ri A R,

i ¼ 1; . . . ; n.)

(III) t ¼ 1 , A A Qn�2.

(IV) if t; t 0 correspond to vectors A;A 0, then A and A 0 are equivalent under SOðnÞ if
and only if t ¼ t 0.

The nature of a minimal surface with a degenerate Gauss map depends strongly on

the nature of the hyperplane containing its Gauss image, or equivalently on the nature

of vector A.

In the case n ¼ 4, Weierstrass representation can be reduced to the following.

Theorem 2.2 ([3, Theorem 4.7]). If f : M ! R
4=L is a conformal minimal immer-

sion with degenerate Gauss map, then f can be represented by

R

ð p

p0

1; it;
1

2

�1þ t2

F
þ F

� �

;
i

2

�1þ t2

F
� F

� �� �T

o;

where F is a meromorphic function on M, t A ½0; 1� is a constant, o is a holomorphic

di¤erential on M such that

o; ito;
1

2

�1þ t2

F
þ F

� �

o;
i

2

�1þ t2

F
� F

� �

o

� �

are holomorphic di¤erentials on M and

W ¼ R

ð

g

1; it;
1

2

�1þ t2

F
þ F

� �

;
i

2

�1þ t2

F
� F

� �� �T

o j g A H1ðM;ZÞ
( )

is a sublattice of L. Conversely, every minimal surface in R
4=L with degenerate Gauss

map is obtained by the above construction.

Remark 2.1. In the case of t ¼ 0, the above minimal surface lies in R
3=L. In the

case of t ¼ 1, f is holomorphic with respect to some complex structure of the tori (see

Proposition 4.6 b) and the proof of Theorem 4.7 in [3]) (We now consider the surface

that satisfy the periodic condition).

3. Construction.

Let M be the hyperelliptic Riemann surface defined by the equation

w2 ¼ z8 þ 14z4 þ 1:

Then M is of genus 3 and can be considered as a branched double cover of the

z-plane, the branch points occuring at the 8 points aekpi=4 and a�1ekpi=4 where a ¼
ð1þ

ffiffiffi

3
p

=
ffiffiffi

2
p

Þ and k A f1; 3; 5; 7g. Identifying the z-plane with S2 via stereographic pro-

jection, we have these branch points at corners ðG1=
ffiffiffi

3
p

;G1=
ffiffiffi

3
p

;G1=
ffiffiffi

3
p

Þ of a cube

inscribed inside S2. It is well-known that we can write out a basis for the holomorphic

di¤erential on M by fdz=w; zðdz=wÞ; z2ðdz=wÞg.
Since we immerse M minimally into some 4-torus, its Gauss image lies in CP3.

Thus the Gauss map degenerates (p. 50 in [3]) and we can use the Weierstrass rep-
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resentation given by Theorem 2.2. We substitute F ¼ z, o ¼ zðdz=wÞ and obtain

f : M ! R
4 by

p 7! R

ð p

F ¼ R

ð p

z; itz;
�1þ t2 þ z2

2
;
ið�1þ t2 � z2Þ

2

� �T
dz

w
:ð4Þ

In the case t ¼ 0, the minimal surface (4) thus obtained is the Schwarz surface and in the

case t ¼ 1, f is holomorphic with respect to some complex structure of the tori. Since

F ¼ z; itz;
�2þ t2

4
ð1� z2Þ þ t2

4
ð1þ z2Þ; i t

2

4
ð1� z2Þ þ i

t2 � 2

4
ð1þ z2Þ

� �T
dz

w
;

we can use Marty’s periodic calculations (p. 185 in [9]). We consider the closed curves

g1 U g2, g3 U g4:

g1ðtÞ ¼ ðzðtÞ;wðtÞÞ ¼ ð�ti;wðtÞÞ where t A ½�y; 0� and wðtÞ > 0;

g2ðtÞ ¼ ðt;wðtÞÞ where t A ½0;y� and wðtÞ > 0;

g3ðtÞ ¼ ð�ti;wðtÞÞ where t A ½�1; 1� and wðtÞ > 0;

g4ðtÞ ¼ ðe ti;wðtÞÞ where t A � p

2
;
p

2

h i

and wð0Þ > 0;

and we can verify

R

ð

g1Ug2

F ¼ A

2
; 0;

t2

4
B;� t2

4
B

� �T

R

ð

g3Ug4

F ¼ 0;� t

2
B; 0;

t2 � 2

4
A� t2

4
B

� �T

;

where

A :¼
ð

y

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2 þ t4
p and B :¼

ð

y

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2 þ t4
p :

Note that A > B.

A homology basis can be obtained by applying the rotation ðz;wÞ 7! ðiz;wÞ to

g1 U g2, g3 U g4. We obtain the period matrix W defined by

W ¼

0

B

B

B

B

B

B

B

B

B

B

B

B

@

A

2
0 �A

2
0

A

2
0

0 � t

2
B 0 � t

2
B 0 � t

2
B

t2

4
B 0

t2

4
B

t2 � 2

4
Aþ t2

4
B � t2

4
B 0

� t2

4
B

t2 � 2

4
A� t2

4
B

t2

4
B 0

t2

4
B � t2 � 2

4
Aþ t2

4
B

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Now we choose
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t2 ¼
A=2

ðm=2nÞBþ ðA� BÞ=4
A ð0; 1Þ i:e:

m

n

t2

2
Bþ

t2 � 2

4
A�

t2

4
B ¼ 0

� �

;ð5Þ

for m=n A N su‰ciently large. We may assume m and n are prime (i.e. ðm; nÞ ¼ 1).

Now we consider two cases, n is even or odd.

First, let n be even. Since ðm; nÞ ¼ 1, there exist integers x and y such that

nxþmy ¼ 1:ð6Þ

Note that m and y are odd. Since ðm; nÞ ¼ 1, we obtain ðm; n=2Þ ¼ 1. Thus there

exist integers x 0 and y 0 such that

n

2
x 0 þmy 0 ¼ 1:ð7Þ

Moreover as ðm; 2Þ ¼ 1, there exist integers x 00 and y 00 such that

2x 00 þmy 00 ¼ 1:ð8Þ

Now we consider three matrices:

Leven :¼

A=2 0 0 0

0 tB ðy=2ÞtB 0

0 0 ð1=nÞðt2=2ÞB ð1=nÞðt2=2ÞB

0 0 0 �ð1=nÞðt2=2ÞB

0

B

B

B

@

1

C

C

C

A

;

G1 :¼

0

B

B

B

B

B

B

B

B

@

my 00 � ðn=2Þmy 00ðxþ yÞ þ x 00 0 xþ y X

�ðn=2Þy 00ð1� ðn=2ÞxÞ �1 0 ð1� ðn=2ÞxÞy 0 þ ðn=2Þx 0y 00ð1� ðn=2ÞxÞ

�ðn=2Þmy 00ðxþ yÞ 0 xþ y my 0ðxþ yÞ þ ðn=2Þmx 0y 00ðxþ yÞ

ðn=2Þmyy 00 0 �y �myy 0 � ðn=2Þmx 0yy 00

x 00 0 0 �x 0x 00

ðn2=4Þxy 00 �1 0 �ðn=2Þxy 0 � ðn2=4Þxx 0y 00

1

C

C

C

C

C

C

C

C

A

;

where X ¼ x 0 þmy 0ðxþ yÞ �mx 0y 00 þ ðn=2Þmx 0y 00ðxþ yÞ � x 0x 00,

G2 :¼

1 0 �1 0 1 0

0 �ðn=2Þx �ðn=2Þy �ðn=2Þðxþ yÞ 0 ðn=2Þx� 1

0 �m n n�m 0 m

n=2 m �n=2 0 �n=2 �m

0

B

B

B

@

1

C

C

C

A

:

Then, we directly obtain

Leven ¼ WG1; W ¼ LevenG2;ð9Þ

by (5), (6), (7) and (8).

Next, consider the case where n is odd. Since ðm; nÞ ¼ 1, there exist integers x and

y such that

nxþmy ¼ 1:ð10Þ

Since ðn; 2Þ ¼ 1, there exist integers x 0 and y 0 such that

2x 0 þ ny 0 ¼ 1:ð11Þ
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Moreover as ð2m; nÞ ¼ 1, there exist integers x 00 and y 00

nx 00 þ 2my 00 ¼ 1:ð12Þ

Now we consider three matrices:

Lodd :¼

A 0 0 ðx 00=2ÞA

0 ðt=2ÞB 0 0

0 0 ð1=nÞðt2=2ÞB x 00ðt2=4ÞB

0 0 0 �ð1=nÞðt2=4ÞB

0

B

B

B

@

1

C

C

C

A

;

G 0
1 :¼

0

B

B

B

B

B

B

B

B

@

1 �ðm� nÞy 0 xþ yþ ðm� nÞyy 0 x 00 � ðm� nÞy 0y 00

0 �x 0 x 0y y 00 � x 0y 00

0 �ðm� nÞy 0 xþ yþ ðm� nÞyy 0 �ðm� nÞy 0y 00

0 �ny 0 �yþ nyy 0 �ny 0y 00

1 0 0 0

0 �x 0 x 0y �x 0y 00

1

C

C

C

C

C

C

C

C

A

;

G 0
2 :¼

my 00 �mx 00 �my 00 0 1�my 00 mx 00

0 �1 0 �1 0 �1

nmy 00 �nmx 00 nð1�my 00Þ n�m �nmy 00 nmx 00

n 2m �n 0 �n �2m

0

B

B

B

@

1

C

C

C

A

:

Then, we directly obtain

Lodd ¼ WG 0
1; W ¼ LoddG

0
2;ð13Þ

by (5), (10), (11) and (12).

Thus, by Proposition 2.1, (9) and (13), we can construct a family of full compact

oriented minimal surfaces in some 4-dimensional flat tori

f : M ! R4=Leven

f : M ! R4=Lodd

via (4).

Remark 3.1. By Remark 2.1 and (5), these minimal surfaces are not holomorphic

with respect to any complex structure of the tori. Moreover, non-holomorphicity

follows from Theorem 2.3 in [1].

Remark 3.2. By (5), the parameter t A ð0; 1Þ of minimal surfaces with degenerate

Gauss map can be taken densely in ð0; 1Þ because Q is dense in R. Thus, we construct

a dense family of compact oriented minimal surfaces of genus 3 with degenerate Gauss

map in some 4-tori, which are not holomorphic with respect to any complex structure of

the tori.

Remark 3.3. The Schwarz surface have the associated minimal surface fy for a

dense set of angles y A S1. This fact can be proved by the symmetries of a cube

(Theorem 6.2 in [4]). The lattice of the minimal surface defined by (4) is not a cube.

Thus, it is di‰cult to see that they have the associated minimal surface.
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