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Abstract. In this paper we prove several necessary and su‰cient conditions for a

harmonic function in the unit ball belong to H
pðBÞ-Hardy harmonic space.

1. Introduction.

Throughout this paper Bða; rÞ ¼ fx A R
n j jx� aj < rg denotes the open ball centered

at a of radius r, where jxj denotes the norm of x A R
n and B is the open unit ball in R

n.

S ¼ qB ¼ fx A R
n j jxj ¼ 1g is the boundary of B. Let dV denote the Lebesgue measure

on R
n, ds the surface measure on S, sn the surface area of S, dVN the normalized

Lebesgue measure on B, dsN the normalized surface measure on S.

For f A C1ðBÞ we define the area integral by

Aðr; f Þ ¼

ð

rB

j‘f ðxÞj2 dVNðxÞ; r A ½0; 1Þ;

where j‘f ðxÞj ¼ ð
Pn

1 jqf ðxÞ=qxij
2Þ1=2, while

IpðrÞ ¼

ð

S

j f ðrzÞjp dsNðzÞ:

Let HðBÞ denote the set of harmonic functions on B, H
pðBÞ denote the set of

harmonic functions on B such that:

kuk
H

pðBÞ ¼ sup
0<r<1

ð

S

juðrzÞjp dsNðzÞ

� �1=p

< þy:

Elements of HpðBÞ theory can be found in [1, Chapter VI]. For elements of complex

H p theory see, for example, [2].

A function f A C1ðBÞ is said to be a Bloch function if

k f k
B
¼ sup

x AB

ð1� jxjÞj‘f ðxÞj < þy:

The space of Bloch functions is denoted by BðBÞ.

Let p > 0. A Borel function f , locally integrable on B, is said to be a BMOpðBÞ

function if

k f kBMOp
¼ sup

Bða; rÞHB

1

VðBða; rÞÞ

ð

Bða; rÞ

j f ðxÞ � fBða; rÞj
p
dVðxÞ

 !1=p

< þy
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where the supremum is taken over all balls Bða; rÞ in B, and fBða; rÞ is the mean value of

f over Bða; rÞ.

In [8] for pb 1, Muramoto proved that BðBÞVHðBÞ is isomorphic to BMOpðBÞV

HðBÞ as Banach spaces. That paper inspired us to calculate exactly BMOp norm for

harmonic functions, which is theme of the [11].

In the proof of the main result in [11], we essentially proved a generalization of

Hardy-Stein identity, see, for example, [5, p. 42]. This identity is included in the fol-

lowing lemma.

Lemma 1. Let 1 < p < þy, u A HðBÞ, then

ð

S

juðrzÞjp dsNðzÞ ¼ juð0Þjpþ
pðp� 1Þ

nðn� 2Þ

ð

rB

juðxÞjp�2j‘uðxÞj2ðjxj2�n� r2�nÞ dVNðxÞ; nb 3:

ð1Þ

We used this lemma in our investigations in [12]. In this note we continue inves-

tigate harmonic Hardy spaces H
pðBÞ using this lemma. In fact, we use the following

corollary which is identity of Hardy-Stein type.

Corollary 1. Let 1 < p < þy, u A HðBÞ, r A ð0; 1Þ, nb 3, then

d

dr

ð

S

juðrzÞjp dsNðzÞ ¼
pðp� 1Þ

n
r1�n

ð

rB

juðxÞjp�2j‘uðxÞj2 dVNðxÞ: ð2Þ

In the case of holomorphic functions in C
n, similar identity was proved in [13].

Another consequence of Lemma 1 is the following corollary (see [12, Theorem 1]).

Corollary 2. Let 1 < p < þy and nb 3. A function u A HðBÞ belongs to

H
pðBÞ if and only if

ð

B

juðxÞjp�2j‘uðxÞj2ð1� jxj2Þ dVNðxÞ < þy:

In the sequel we keep our attention to the case nb 3. Analogous results hold in

the case n ¼ 2. Formulations and proofs of these results we leave to the reader.

We say that

conðv; aÞ ¼ x j cos aa
hv; v� xi

jv� xj
a 1

� �

is the cone with vertex at v A S, axis coincident with the vector v, and half-angle a. Let

con0ðz; aÞ denote the cone with vertex at 0, axis coincident with the vector z, and half-

angle a; that is

con0ðz; aÞ ¼ y j cos aa
hy; zi

jyj jzj
a 1

� �

:

The cone con0ðz; aÞ determines a closed polar cap capðz; aÞ ¼ con0ðz; aÞVS having center

z and spherical angle a.

Let SaðxÞ denote the Stoltz domain i.e.

SaðxÞ ¼ con
x

jxj
; a

� �

V con0 x;
p

2
� a

� �

� �

UBð0; sin aÞ:
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Let G be a subdomain of the unit disk U in the complex plane such that the

boundary of G has the only one point 1 in common with the unit circle. Assume that

there exists r0 A ð0; 1Þ, depending on G, such that the intersection of G with each circle

fjzj ¼ rg, r0 < r < 1, is of linear measure rfðrÞ, where

lim inf
r!1

fðrÞ

1� r
> 0

and

lim sup
r!1

fðrÞ

1� r
< y:

Let G be the family of all domains G of the type described above. A typical example

of G is a triangular domain in U with one vertex at 1 which we call, for short, a tri-

angular domain at 1. Denoting

GðyÞ ¼ fz A U j e�iyz A Gg; y A ½0; 2p�;

we say that a holomorphic function f in U satisfies the p-Lusin property with respect

to G A G if

Lpð f ;G; yÞ ¼
p2

4

ðð
GðyÞ

j f ðzÞjp�2j f 0ðzÞj2 dxdy

is summable with respect to y on ½0; 2p� ð0 < p < yÞ. In [14] Yamashita proved the

following theorem.

Theorem A. Let f be a function holomorphic in the unit disc and let 0 < p < þy.

If f A H p, then f has the p-Lusin property with respect to a certain triangular domain of

class G. Conversely, if f has the p-Lusin property with respect to a certain triangular

domain of class G, then f A H p.

Case p ¼ 2 was previously considered by N. Lusin [7], and G. Piranian and

W. Rudin [10, Theorem 1], by the coe‰cients of Taylor expansion of f about 0.

Yamashita’s proof is di¤erent from Lusin’s, and Piranian-Rudin’s, and it is based on

Hardy-Stein identity.

First, we prove theorem of this type in the case of harmonic functions which are

defined on B. Before we formulate this result we need a definition.

Definition 1. We say that u satisfies p-Lusin property with respect to Stoltz

domain Saðz0Þ, z0 A S, if

Lpðu;SaðzÞÞ ¼

ð
SaðzÞ

ð1� jxjÞ2�njuðxÞjp�2j‘uðxÞj2 dVNðxÞ; nb 3

is summable with respect z A S, p A ð0;yÞ.

Thus, it follows that Lpðu;SaðzÞÞ < þy for almost every z A S.

The following theorem is a generalization of Theorem A.

Theorem 1. Let u A HðBÞ, p > 1. If u A H
pðBÞ, then u has the p-Lusin property
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with respect to a certain Stoltz domain. Conversely, if u has the p-Lusin property with

respect to a certain Stoltz domain, then u A H
pðBÞ.

In [6] the authors proved the following theorem: Let f be holomorphic in U .

Then, if 0 < pa 2,

f A H pðUÞ )

ð1

0

Ap=2ðr; f Þ dr < y;

while if pb 2,
ð1

0

Ap=2ðr; f Þ dr < y ) f A H pðUÞ;

where Aðr; f Þ ¼
Ð

jzjar
j f 0ðzÞj2 dxdy.

The main result in this paper is the following analogous, but slightly less perfect

result for harmonic functions in the unit ball.

Theorem 2. Let u A HðBÞ, and e > 0. Then, if p A ð1; 2�,

u A H
pðBÞ )

ð1

0

ð1� rÞðn�2þeÞð2�pÞ=2
A

p=2ðr; uÞ dr < y;

while if p > 2,

ð1

0

ð1� rÞðn�2þeÞð2�pÞ=2
A

p=2ðr; uÞ dr < y ) u A H
pðBÞ:

Since complex analytic methods (the factorisation of zeros) are not available to

establish sharp lower bounds for the integral average IpðrÞ in terms of the maximal

function MðrÞ there is an e loss at one point.

2. Proof of Theorem 1.

In order to prove Theorem 1 we need an auxiliary result which is incorporated in

the following lemma.

Lemma 2. Let Saðz0Þ, z0 A S be a Stoltz domain in B, wðx; zÞ the characteristic

function of SaðzÞ, z A S, that is wðx; zÞ ¼ 1 if x A SaðzÞ and wðx; zÞ ¼ 0 otherwise, and

fðxÞ ¼

ð

S

wðx; zÞ dsðzÞ; x A B:

Then

fðxÞ � cað1� jxjÞn�1:

Proof. Let x A B be fixed. Then fðxÞ is the surface measure of a polar cap. Let

b denote its half angle. By well known formula we have

fðxÞ ¼ s cap
x

jxj
; b

� �� �

¼ sn�1

ð b

0

sinn�2 y dy:

S. Stević342



From this, for b A ½0; p=2�, we obtain

sn�1

n� 1

2

p

� �n�2

b n�1
a sn�1

ð b

0

sinn�2 y dya
sn�1

n� 1
bn�1:

Let c denote the side of the triangle in which other two sides have lengths 1 and

r ¼ jxj, and where the angle between c and the side which has length 1 is a. Then b

is the angle between the sides with length 1 and r. Let us show that for x such that

jxj > sin a, the inequalities

c1ba 1� jxja c2b; ð3Þ

hold, for some c1; c2 > 0.

By the cosine theorem we obtain

jcj ¼
1� r2

cos aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � sin2 a
p :

On the other hand by the sine theorem we have

sin b

ð1� r2Þ=ðcos aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � sin2 a
p

Þ
¼

sin a

r
:

Hence

1

2
tan aa

sin b

1� jxj
a

2

cos a
;

from which (3) follows in this case. For x A Bð0; sin aÞ the inequalities (3) are trivial.

From which the result follows. r

Proof of Theorem 1. Let Saðz0Þ, z0 A S be a Stoltz domain in B and wðx; zÞ the

characteristic function of SaðzÞ, z A S. It is clear that

fðxÞ ¼

ð

S

wðx; zÞ dsðzÞ; x A B

is the surface measure of the set fz j x A SaðzÞg and that fðxÞ is a radial function i.e.

fðxÞ ¼ fðjxjÞ.

We have

Lp ¼

ð

S

Lpðu;SaðzÞÞ dsðzÞ

¼

ð

B

ð

S

wðx; zÞ dsðzÞ

� 	

ð1� jxjÞ2�njuðxÞjp�2j‘uðxÞj2 dVNðxÞ:

By Lemma 2 we have
ð

S

wðx; zÞ dsðzÞ � cað1� jxjÞn�1:

Thus, integral Lp is equiconvergent to the integral
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ð

B

ð1� jxjÞjuðxÞjp�2j‘uðxÞj2 dVNðxÞ:

By Corollary 2 we obtain our result. r

3. Proof of the main result.

We divide the proof of Theorem 2 into several steps. The following lemma is an

inequality of Riesz-Fejér type, see [3], [4] and [9].

Lemma 3. Let u A HðBÞ and e > 0. Then

ð r

0

ðr� rÞn�2þe
MðrÞp dra cp;n; er

n�1þeIpðrÞ; p > 1;

for some cp;n; e > 0, which depends only on p; n and e, and all r A ð0; 1Þ, where

MðrÞ ¼ Mðr; uÞ ¼ supfjuðxÞj j jxj ¼ rg:

Proof. We may suppose that r ¼ 1 and uð0Þ ¼ 0. By Poisson integral formula

we have

uðxÞ ¼

ð

qB

1� jxj2

jx� zjn
uðzÞ dsNðzÞ; x A B:

By Jensen’s and Harnack’s inequalities we obtain

juðxÞjpa

ð

qB

1� jxj2

jx� zjn
juðzÞjp dsNðzÞa

2kukp
H

pðBÞ

ð1� jxjÞn�1
;

i.e.

juðxÞjpð1� jxjÞn�1
a 2kukp

H
pðBÞ:

From this we obtain

M pðrÞð1� rÞn�1
a 2kukp

H
pðBÞ; for r A ð0; 1Þ:

Multiplying the last formula by ð1� rÞ�1þe and then integrating from 0 to 1 we obtain

the desired inequality. r

Lemma 4. Let u A HðBÞ, and e > 0. If p A ð1; 2�, and uð0Þ ¼ 0,

IpðrÞb cp;n; e

ð r

0

Aðr; uÞ

rn�1

� �p=2

ðr� rÞðn�2þeÞð2�pÞ=2
dr;

while if p > 2,

IpðrÞa 2ðp�2Þ=2juð0Þjðp
2�pþ2Þ=2 þ cp;n; e

ð r

0

Aðr; uÞ

rn�1

� �p=2

ðr� rÞðn�2þeÞð2�pÞ=2
dr;

for some cp;n; e > 0 which depends only of p; n and e.

Proof. If p A ð1; 2�, then
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Aðr; uÞ ¼

ð

rB

j‘uðxÞj2 dVðxÞaMðrÞ2�p

ð

rB

juðxÞjp�2j‘uðxÞj2 dVNðxÞ:

From this and by Corollary 1 we obtain

pðp� 1Þ

n
Aðr; uÞaMðrÞ2�p

rn�1I 0pðrÞ;

where I 0pðrÞ is derivative of IpðrÞ.

Multiplying by ðr� rÞðn�2þeÞð2�pÞ=p
and applying again Hölder’s inequality and

Lemma 3 we obtain

pðp� 1Þ

n

� �p=2ð r

0

Aðr; uÞ

rn�1
ðr� rÞðn�2þeÞð2�pÞ=p

� �p=2

dr

a

ð r

0

ðr� rÞðn�2þeÞð2�pÞ=2
MðrÞð2�pÞp=2ðI 0pðrÞÞ

p=2
dr

a

ð r

0

ðr� rÞn�2þe
MðrÞp dr

� �ð2�pÞ=2

ðIpðrÞ � Ipð0ÞÞ
p=2

a cð2�pÞ=2
p;n; e IpðrÞ;

as desired.

For p > 2, by Corollary 1 we have

d

dr

ð

S

juðrzÞjp dsNðzÞ ¼
pðp� 1Þ

n
r1�n

ð

rB

juðxÞjp�2j‘uðxÞj2 dVNðxÞ

a
pðp� 1Þ

n
r1�nMðrÞp�2

ð

rB

j‘uðxÞj2 dVNðxÞ

¼
pðp� 1Þ

n
r1�nMðrÞp�2

Aðr; uÞ:

By integration we obtain

IpðrÞa juð0Þjp þ
pðp� 1Þ

n

ð r

0

r1�nMðrÞp�2
Aðr; uÞ dr:

By Hölder’s inequality and Lemma 3 we get

IpðrÞa juð0Þjp þ
pðp� 1Þ

n

ð r

0

ðr� rÞn�2þe
MðrÞp dr

� �ðp�2Þ=p

�

ð r

0

Aðr; uÞ

rn�1

� �p=2

ðr� rÞðn�2þeÞð2�pÞ=2
dr

 !2=p

a juð0Þjp þ
pðp� 1Þ

n
cðp�2Þ=p
p;n; e IpðrÞ

ðp�2Þ=p

�

ð r

0

Aðr; uÞ

rn�1

� �p=2

ðr� rÞðn�2þeÞð2�pÞ=2
dr

 !2=p

:
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Hence

IpðrÞ
2=p
a juð0Þjðp

2�pþ2Þ= p þ
pðp� 1Þ

n
cðp�2Þ=p
p;n; e

ð r

0

Aðr; uÞ

rn�1

� �p=2

ðr� rÞðn�2þeÞð2�pÞ=2
dr

 !2=p

:

From this the result follows in this case. r

Proof of Theorem 2. It is an easy consequence of Lemma 4. r

Corollary 3. Let u A H
pðBÞ and e > 0. Then for p A ð1; 2�

lim
r!1

ð1� rÞððn�2þeÞð2�pÞþ2Þ=p
Aðr; uÞ ¼ 0:

Proof. For u A H
pðBÞ, p A ð1; 2�, it follows from Theorem 2 that

ð 1

0

ð1� rÞðn�2þeÞð2�pÞ=2
A

p=2ðr; uÞ dr < y:

Since Aðr; uÞ is nondecreasing we have

Aðr; uÞp=2
ð1

r

ð1� rÞðn�2þeÞð2�pÞ=2
dra

ð1

r

ð1� rÞðn�2þeÞð2�pÞ=2
A

p=2ðr; uÞ dr

i.e.

ð1� rÞððn�2þeÞð2�pÞþ2Þ=2
Aðr; uÞp=2a cp;n; e

ð 1

r

ð1� rÞðn�2þeÞð2�pÞ=2
A

p=2ðr; uÞ dr ! 0;

as r ! 1, from which the result follows. r

A more precise result holds in the case of functions holomorphic in the unit disk,

namely if f A H pðUÞ, 0 < pa 2, then

lim
r!1

ð1� rÞ2=pAðr; f Þ ¼ 0;

see Theorem 2 in [15].
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