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Abstract. In this paper we prove several necessary and sufficient conditions for a
harmonic function in the unit ball belong to #7(B)-Hardy harmonic space.

1. Introduction.

Throughout this paper B(a,r) = {x € R" ||x — a| < r} denotes the open ball centered
at a of radius r, where |x| denotes the norm of x € R" and B is the open unit ball in R".
S =0B={xeR"||x| =1} is the boundary of B. Let dV denote the Lebesgue measure
on R" do the surface measure on S, o, the surface area of S, dVy the normalized
Lebesgue measure on B, doy the normalized surface measure on S.

For f e C!(B) we define the area integral by

A )= | IRV, re ),
where |V/(x)] = (320 |of (x)/dx:|*) "/, while
L) = [ 1601 don(@).

Let s (B) denote the set of harmonic functions on B, #”(B) denote the set of
harmonic functions on B such that:

1/p
ooy = sup ([ o)l dow(@)) < o
O<r<1 S
Elements of #7(B) theory can be found in [1, Chapter VI|. For elements of complex
H? theory see, for example, [2].
A function f e C'(B) is said to be a Bloch function if

1/l = i‘;g(l — IXDIVf(x)| < +0.

The space of Bloch functions is denoted by #%(B).
Let p > 0. A Borel function f, locally integrable on B, is said to be a BMO,(B)
function if

1/p
1
1/l grpo, = sup <WL(W) 1f(x) = fBanl” dV(X)> <+

B(a,r)=B
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where the supremum is taken over all balls B(a,r) in B, and fp(, ) is the mean value of
f over B(a,r).

In [8] for p > 1, Muramoto proved that #(B) N 2 (B) is isomorphic to BMO,(B)N
A (B) as Banach spaces. That paper inspired us to calculate exactly BMO, norm for
harmonic functions, which is theme of the [11].

In the proof of the main result in [11], we essentially proved a generalization of
Hardy-Stein identity, see, for example, [5, p. 42]. This identity is included in the fol-
lowing lemma.

Lemma 1. Let 1 < p <400, ue #(B), then

[ W01 do (@) = o)+ ZEZD Wl A ) b,
S n(n 2) rB (1)

We used this lemma in our investigations in [12]. In this note we continue inves-
tigate harmonic Hardy spaces #7(B) using this lemma. In fact, we use the following
corollary which is identity of Hardy-Stein type.

COROLLARY 1. Let 1 < p <+, ue #(B), re(0,1), n >3, then

i u(rON? do :P(P—l)rpn P2V ()12 ¥
5| o0 doy@) = EEZZ | ) 2w P v o). @

In the case of holomorphic functions in C”, similar identity was proved in [13].
Another consequence of is the following corollary (see [12, Theorem 1]).

COROLLARY 2. Let 1 <p<+ow and n>3. A function ue #(B) belongs to
AHP(B) if and only if

J| 2ol = ) v < oo

In the sequel we keep our attention to the case n > 3. Analogous results hold in
the case n =2. Formulations and proofs of these results we leave to the reader.
We say that

con(g,0) = {x!coscxé ez X < 1}
|6 = x|

is the cone with vertex at ¢ € S, axis coincident with the vector ¢, and half-angle «. Let
conp(z,o) denote the cone with vertex at 0, axis coincident with the vector z, and half-

angle o; that is
cony(z,0) = {y|cosoc < 2 < 1}.
y

The cone cong(z,a) determines a closed polar cap cap(z,a) = cong(z,«) NS having center
z and spherical angle o.
Let %,(x) denote the Stoltz domain i.e.

F(x) = (con (% : cx) N cong (xg - oc)) U B(0, sin o).
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Let G be a subdomain of the unit disk U in the complex plane such that the
boundary of G has the only one point 1 in common with the unit circle. Assume that
there exists r € (0, 1), depending on G, such that the intersection of G with each circle
{lz| =1}, ro <r<1, is of linear measure r¢(r), where

¢(r)

liminf —= > 0
r—1 1—7"

and

: ¢(r)
1
Ty

< 00.

Let ¢ be the family of all domains G of the type described above. A typical example
of G is a triangular domain in U with one vertex at 1 which we call, for short, a tri-
angular domain at 1. Denoting

GO)={zeUlezeG}, 0€el0,2n],

we say that a holomorphic function f in U satisfies the p-Lusin property with respect
to Ge@ if

2

L, 60 = || reryer e

is summable with respect to 6 on [0,27] (0 < p < o). In Yamashita proved the
following theorem.

THEOREM A. Let f be a function holomorphic in the unit disc and let 0 < p < 4o0.
If f e HP, then f has the p-Lusin property with respect to a certain triangular domain of
class 4. Conversely, if f has the p-Lusin property with respect to a certain triangular
domain of class %, then f e H?.

Case p =2 was previously considered by N. Lusin [7], and G. Piranian and
W. Rudin [10, Theorem 1], by the coefficients of Taylor expansion of f about 0.
Yamashita’s proof is different from Lusin’s, and Piranian-Rudin’s, and it is based on
Hardy-Stein identity.

First, we prove theorem of this type in the case of harmonic functions which are
defined on B. Before we formulate this result we need a definition.

DeriniTION 1. We say that u satisfies p-Lusin property with respect to Stoltz
domain S,({y), (o€ S, if

Ly(u, 84(0)) = J (1= )" ()" Vu(x)|* dV(x), n=3

o

is summable with respect { € S, p e (0, 0).
Thus, it follows that L,(u,S,({)) < +oo for almost every (e S.

The following theorem is a generalization of Theorem A.

THEOREM 1. Let ue #(B), p> 1. If ue #P(B), then u has the p-Lusin property
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with respect to a certain Stoltz domain. Conversely, if u has the p-Lusin property with
respect to a certain Stoltz domain, then ue #7(B).

In [6] the authors proved the following theorem: Let f be holomorphic in U.
Then, if 0 < p <2,

1

feHP(U) :>J AP (r, f)dr < o,
0

while if p > 2,

JIAP/Z(r,f)dr< w = feH(U),
0

where A(r, f) = J|z\§r 1f7(2))? dxdy.
The main result in this paper is the following analogous, but slightly less perfect
result for harmonic functions in the unit ball.

THEOREM 2. Let ue #(B), and ¢ > 0. Then, if pe(1,2],

1
ue #"(B) = J (1 — )l 20D 2 () dr < o0,
0

while if p > 2,

1
J (1 — ) 20@P2 22 (r y) dr < o0 = ue #7(B).
0

Since complex analytic methods (the factorisation of zeros) are not available to
establish sharp lower bounds for the integral average [,(r) in terms of the maximal
function M (r) there is an ¢ loss at one point.

2. Proof of Theorem 1.

In order to prove we need an auxiliary result which is incorporated in
the following lemma.

Lemma 2. Let S,(Cy), (o €S be a Stoltz domain in B, y(x,{) the characteristic
Sfunction of S,({), (€S, that is y(x,{) =1 if xe S,({) and y(x,{) =0 otherwise, and

p(x) = Jsm, 0do(0), xeB.

Then
P(x) =< cu(1— |x)" .

PrOOF. Let x € B be fixed. Then ¢(x) is the surface measure of a polar cap. Let
f denote its half angle. By well known formula we have

#(x) = a(cap (% ﬂ)) — G, Jf sin"2 0 do.
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From this, for € [0,7/2], we obtain

Op—1 2 n-2 p Op—1
“ (—) gt < J’HJ sin" 2 0d0 < "—lﬁ”_l.
0

n—1\=n n—

Let ¢ denote the side of the triangle in which other two sides have lengths 1 and
r = |x|, and where the angle between ¢ and the side which has length 1 is . Then S
is the angle between the sides with length 1 and r. Let us show that for x such that
|x| > sina, the inequalities

af <1 —|x| <ap, (3)

hold, for some cy,c; > 0.
By the cosine theorem we obtain

1 — 2

|e| = :
coso + V12 — sin’«

On the other hand by the sine theorem we have

sin f8 _sino

(1 —r2)/(coso.+ V12 —sin’ ) o

Hence

sin f§ 2
—tano < < ,
2 1 —|x|] = cosua

from which (3) follows in this case. For x € B(0,sina) the inequalities (3) are trivial.
From which the result follows. ]

Proor oF THEOREM 1. Let S,({y), (o € S be a Stoltz domain in B and y(x,{) the
characteristic function of S,({), {€S. It is clear that

$(x) = J x(x,0)da({), xeB
s
is the surface measure of the set {{|x e S,({)} and that ¢(x) is a radial function i.e.
p(x) = ¢(|x]).
We have

L= | Ly(ws.0) do(0
S

N JB USX(X’ ‘) da({)} (1 - ’x’)27n|”<x)’p72|vu(x)|2 dVy(x).
By Lemma 2 we have
[ 25,00t = es1 = ).

Thus, integral L, is equiconvergent to the integral
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L(l = X)) "2 Vu(x)|* d V().

By we obtain our result. O

3. Proof of the main result.

We divide the proof of [Theorem 2| into several steps. The following lemma is an
inequality of Riesz-Fejér type, see [3], [4] and [9].

LemMMA 3. Let ue #(B) and ¢ > 0. Then

,
J (r— p)"_2+8M(p)p dp < cp7n7gr"*1+slp(r), p>1,
0

for some ¢, , . >0, which depends only on p,n and ¢, and all r € (0,1), where
M(r) = M(r,u) = sup{lu(x)| | |x| =r}.

PrOOF. We may suppose that r =1 and u(0) =0. By Poisson integral formula
we have

I —|xf?

u(x) = LB L u(()doy({), xe€B.

By Jensen’s and Harnack’s inequalities we obtain

u)l" < J LBl oy don(y < e
o lx =" -
ie.
()l (1= [x)"" < 2l -

From this we obtain

MP(p)(1 = p)"™" < 2ullygy, for pe(0,1)
Multiplying the last formula by (1 — p)_H’3 and then integrating from 0 to 1 we obtain

the desired inequality. O
LEmmA 4. Let ue #(B), and ¢ > 0. If pe(1,2], and u(0) =0,

' o (p,u P2 n—2+¢)(2—
Ip(l’) ZCP7”73JO( p(n—l >) (V—p)( e p)/zdp7

while if p > 2,

r p/2
o) < 20 2R [ (D) e R,
0

for some c, , . >0 which depends only of p,n and e.
p7 b

Proor. If pe(1,2], then
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&i(r,u)zj

rB

Vu(x)|*dv(x) < M(F)“J ()" V() |* dViv ().

rB

From this and by we obtain

@ﬂ(n u) < M(r)* "D (),

where [,
Multiplying by (r—p

emma 3 we obtain
/2 or /2
p(p—1Y A (p,u Hee) (2
( ( . )) J < ( )(r—p)( 2+4¢)(2 p)/p) dp

o\ pr!

(r) is derivative of I,(r).

)r=2192=P)/P and applying again Holder’s inequality and

- J (1 — p) "R 41 () P11 ()12

r (2-p)/2
< (J (r=p)" 2 M(p)” dp) (L,(r) — I,(0))?/?

<200,
as desired.
For p>2, by we have
d -1 g
[ o dow© = ZEZrn [ 2w P avit)
rls n rB
<oe=l) — D onpg -2 J Vu(x)|> dVy(x)
rB

_olp=l) PM (R (1 ).

By integration we obtain

50) < O+ LLZD [ st (o) 2t ) dp.

By Holder’s inequality and [Cemma 3 we get

_ r (r=2)/p
1) <l + 2L ([ = py2easpyr ap

r P/2 2/])
" (L (ﬁfp (r,lO_,lu)> (r — p)2H9C))2 dp)

< |u(0)|” + plp—1) c(p—Z)/p[p(,,)(p—2)/1J

- n p7n’8

2/p
r &f P/2
o (L( p(f_,lu)> (r — p)-2H9C))2 dp) .
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Hence

2/p
—1 T of p/2
L") < u(0)|7* P2 %c@zw JO (M) (r— p) D2 4

p,n,é pn—l
From this the result follows in this case. ]
PrOOF OF THEOREM 2. It is an easy consequence of [Lemma 4. ]

COROLLARY 3. Let ue #?(B) and ¢ >0. Then for pe (1,2]
lim(1 — p){("=2H9C=PID/P o7 y) = 0.

r—1

ProoF. For ue #7(B), pe(1,2], it follows from Theorem 2 that

1
J (1— r)("_2+5)(2_P)/2ﬂp/2(r, u) dr < oo.
0

Since .o/ (r,u) is nondecreasing we have

1 1

(1= p)r2+0C-n)12 g, J (1= )22 ypi2( )y 1) i

r

A (r, u)p/ZJ

r

ie.
1
(1 _,,)((n72+s)(2—p)+2)/2ﬂ(r7 u>p/2 < CP’MJ (1 _p)(n72+6)(27p)/2&{p/2(p7u) dp — 0,

r

as r — 1, from which the result follows. ]

A more precise result holds in the case of functions holomorphic in the unit disk,
namely if fe H’(U), 0 < p <2, then

lim(1 = r)*?A(r, f) = 0;

r—1

see [Theorem 2 in [15].
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