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Abstract. The cohomologWH*(I", E) of an arithmetic subgroup of a connected reductive
algebraic groups defined ovelQ can be interpreted in terms of the automorphic spectruii.of
In this frame there is a sum decomposition of the cohomology into the cuspidal cohomiodagy (
classes represented by cuspidal automorphic fornS)fand the so called Eisenstein cohomology.
The present paper deals with the case of a quasi split @ohQ-rank two of a unitary group of
degree four. We describe in detail the Eisenstein series which give rise to non-trivial cohomology
classes and the cuspidal automorphic forms for the Levi components of par@eslibgroups
to which these classes are attached. Mainly the generic case will be treatede essentially
suppose that the coefficient systénis regular.

Introduction.

Let G be a connected semisimple algebraic group defined over an algebraic number field
Suppose that thE-rank of G is greater than zero. L&Rr be a maximal compact subgroup of the
real Lie groupG(R) of real points ofG, and denote b¥gr) = G(R)/Kg the associated symmet-
ric space. Le{v,E) be an irreducible algebraic representatiordR) on a finite dimensional
complex vector spade.

An arithmetic torsion free subgroup of G(F) acts properly and freely oXgr). The
quotient/” \ Xg(g, is a non-compact complete Riemannian manifold of finite volume. Our object
of concern is the cohomology* (I \Xg(R),E) of this arithmetically defined locally symmet-
ric space, its relationship with the theory of automorphic forms and certain number theoretical
guestions embodied in this relation.

The present paper deals with this circle of questions in the case of a quasi spliBfofm
Q-rank two of a unitary group of degree four.

In the case of the grouBly/F Harder initiated around 1970 a program to identify the
cohomology ofl” “at infinity”, i.e., those phenomena in the cohomology which are due to the
non compactness of the spaC&Xgr)- Langlands’ theory of Eisenstein series provided the
methological tools. Harder showed in this case that there exists a sum decomposition of the
cohomology of™

H*(M\Xs(r), E) = Housd M \Xa(R), E) © Heis(M \Xg(R): E)

into the space of classes represented by cuspidal automorphic forr@s&od the so called
Eisenstein cohomology.
By now, due to the work of Franké&], this interpretation of the cohomology bfin terms
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of its automorphic spectrum is possible in the general case of an arithmetic group defined by
congruence conditions in a connected reductive algebraic gegéip In this frame there is a
sum decomposition of the cohomology/of

H* (M\Xe(r), E) = Hausd M \Xar), E)® @ Hipy (M\Xo(r), E)

{P}e¥

into the subspace of classes represented by cuspidal automorphic for@safat the Eisen-

stein cohomology constructed as the space of appropriate residues or derivatives of Eisenstein
series attached to cuspidal automorphic forrmen the Levi components of proper parabolic
F-subgroups ofc. Thus, there is a sum decomposition where the sum ranges over tié set

of classes of associate proper parabBlisubgroups. These Eisenstein conomology classes can
be arranged according to the notion of cuspidal support for the Eisenstein series involved. This
leads to a refined decomposition of each of the subspa&gﬁ\xem), E) indexed by a class

of associate proper parabolic subgroup&athere the sum ranges over a certain set of classes of
associate irreducible cuspidal automorphic representations of the Levi components of elements
of {P} (cf. [F-S, Theorem 2.3]).

However these results do not give a description of the internal structure of the subspaces
H{'P}(I'\XG(R>,E) or account for the arithmetic nature of the classes therein. Only for a few
groups of smallF-rank e.g, GLp/F, GL3/Q or the symplectic grousp,/Q of Q-rank two
(cf. [H87], [H93], [S8], [S84, [S9], [Li-S0]), these questions are more closely examined.
These results provide evidence that the occurrence of specific types of Eisenstein cohomology
classes is related to the analytic properties of certain Euler products (or automofphitions).
Moreover, questions in and connections with arithmetical algebraic geometry play an important
role in these investigations.

In the present paper we are concerned with the case of a unitary group of degree four. Let
F/Q be an imaginary quadratic extension@f Let x — X be the non-trivial automorphism
of F/Q of order two. IfV denotes the four dimensional vector sp&endowed with the
nondegenerate Hermitian for(r,y) = xH'y whereH = (,2 '5), then the corresponding special
unitary group

SU(V,H) = {g € SLV) | gH'g=H}

is a quasi-split semisimple algebraic group defined QefFheQ-rank of G = SU(V, H) is two.

In this case, the sé&f of classes of associate parabd@esubgroups o6 coincides with the set

of conjugacy classes. Thus, the cld€3}, the two conjugacy class€$}, {P,} of maximal
parabolicQ-subgroups and the cla$By} of the minimal paraboli®-subgroups account for the
set%. In the decomposition alluded to above the cuspidal cohomology corresponds to the class
{G}.

As our main results we determine the individual constituents of the subspaces
Hipy (M\Xer)E)  (1=0,1,2)

of the Eisenstein cohomology. We describe in detail the Eisenstein series which give rise to
non-trivial cohomology classes and the cuspidal automorphic forms for the Levi components to
which these classes are attached. In this paper, the generic case is mainly dealé ywtte,
suppose that the highest weight of the represent#tioB) is regular. We will pursue the other
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case in a subsequent paper in which, in particular, as one part of the study the contribution of the
residual spectrum (as described Kohno]) is discussed. This makes an analysis of the analytic
behavior of certain Euler products necessary which naturally come up in the constant terms of
the Eisenstein series in question.

Finally we note as one example: our result in the gase? (cf. Theorem 5.6) suggests that
it might be possible to establish a relation by way of congruences between cuspidal automorphic
forms for congruence subgroupsSif, /F, F /Q an imaginary quadratic extension and forms for
SU(V,H). This would be very much in the spirit of the congruences between a Siegel modular
form and an elliptic modular form recently described by Har¢G3].

We now give an overview of the structure of this paper. In Section 1, we review the descrip-
tion of the cohomology of congruence subgroups in a connected red@tiveup in terms of
automorphic forms. We then describe the decomposition of the cohomology as alluded to above.
In Section 2, we recall the actual construction of Eisenstein conomology classes. We make es-
sential use of results ir5B83. In this context, we speak of a cohomology class “at infinity” of
type (11,w) wherertis a cuspidal automorphic representation of the Levi componeRtaofdw
ranges over the set of minimal coset representatives for the left cosets of the Weyl gPimp of
the one ofG. These two parameters play a decisive role in the following investigations.

In Section 3, the focus is on the unitary groBp(V,H). We fix the notation for the root
system, and we describe the Langlands decomposition of the parabolic subgroups. Finally, we
explicitly determine the various restrictions of specific weightgdepending on the parameter
w as above) to the Levi Cartan algebras. This is the first step towards determining the points of
evaluation for the Eisenstein series we have to consider.

Section 4 contains the results pertaining to the cohomology “at infinity”. The possible types
(rr,w) and their corresponding Archimedean componemt@re given. Section 5 contains the
complete structural description of the Eisenstein cohomology in the generic case.

In Section 6, for the sake of completeness, we discuss the cuspidal cohomology. It decom-
poses as a finite algebraic sum where the sum ranges over all cuspidal automorphic representa-
tions for which the infinitesimal character of its Archimedean component matches the one of the
representatiofe* contragradient tgv,E). Thus we are led to make explicit the classification
in [V-Z] of the irreducible unitary representation of the real Lie gr@(R) with non-vanishing
cohomology. We list these representations (up to equivalence) and determine their cohomology.

NOTATIONS. We use almost the same notations with thosdLir§2]. We denote byA,
As andA. the ring of adeles, finite adeles and infinite adeleQofespectively.

The algebraic groups considered are lineal 1§ an algebraic group defined over a fig|d
andk’ is a commutativé-algebra, we denote by (k') the group ok’-valued points oH except
in §4. In 84, H denotes the group of real-valued poiktéR). The connected component of the
identity of the groupH (R) is denoted byH(R)°. The ring ofk’-points ofn by n matrices are
denoted byMat, (k).

Let G be a connected reductive algebraic group defined QeBuppose that a minimal
parabolicQ-subgroupP, of G and a Levi decompositioRy = LgNg of Ry over Q have been
fixed. By definition, astandardparabolicQ-subgroup ofG is a parabolidQ-subgroupP of G
with By € P. ThenP has a unique Levi decompositidh= LpNp over Q such thatLp D L.

If Ag = Ag, is the maximalQ-split torus in the center dfp,, then there is a unique Langlands
decompositior® = MpApNp with Mp D Mg andAp C Ag.

The Lie algebras of the group of the real points (&R), L(R),...) are expressed by cor-
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responding Euler Fraktur (e.g. [,...). The complexification of the real Lie algehyas denoted
by gc. We putap, = X*(P) ® R, whereX*(P) denotes the group d@-rational characters d?.
We letd, = dp . Similarly ap = X, (P) ® R, a5 = X(P) ® RwhereX.(P) denotes the group of
Q-rational cocharacters. By the natural pairingigiinda,, one has direct sum decompositions
ap = ap @ af andd, = dp @ G5, respectively. Leti? be the intersection of, andag. Similar
notation is used foag. By Mp resp.mp, we denote the intersectiomker(x) resp.nker(dy) of
the kernels of all rational charactexsof P. Thena$ = ap N'mg. We denote by:b,g C X*(Ap)
the set ofQ-roots of Ap and byA,? the set of simple roots im,?. Then the open Weyl chamber
in a$ is defined and is denoted §§S)*. The set of absolute roots B(C), the set of its simple
roots and the absolute Weyl groupléfare denoted byp(H), A(H) andWy respectively.

We choose a maximal compact subgrdgipof G(A) of the form K = KrC with C C
G(As), which we suppose igood position. ThenG has the lwasawa decompositiG{A) =
Lr(A)Np(A)K for a given standard parabol@-subgroupP of G and the standarbeightfunc-
tion Hp: G(A) — ap is defined in a usual way.

Let % (g) be the universal enveloping algebragofind letZ(g) be its center. Any element
D in % (g) defines a differential operator on the sp&¥Ac(R)°\G(A)) of smooth complex
valued functions o\ (R)°\G(A) by right differentiation with respect to the real component of
g € G(A). This operator is denoted Hy— Df. It commutes with the action @&(R) given by left
translation. IfD € 2°(g), this operator also commutes with action&(R) by right translation.

ACKNOWLEDGMENT. The first named author would like to thank the Department of
Mathematics of the University of Vienna for its hospitality during his stays in 2001 resp. 2002.
Authors’ work is supported in part by FWF Austrian Science Fund, grant number P16762-N04.

1. Cohomology and automorphic forms.

1.1.

Let G be a connected reductive algebraic group defined Qyégt Ag denote the maximal
Q-split torus in the centeZg of G, and letC be an open compact subgroup®@fAs). Then the
double coset space

Xc i= G(Q)Ac(R)"\G(A)/KrC Y

has only finitely many connected components each of which has thelfQ@(R)° /Kg for an
appropriate arithmetic subgroup of G. We fix a finite dimensional algebraic representation
(v,E) of G(C) in a vector spac&. Suppose (for the sake of simplicity) th&g acts onE by a
central characteye. We may consider the cohomology groups

H*(Xc,E) )

of Xc with coefficients in the local syste defined by(v,E). For example, these cohomology
groups are defined as the cohomology of the de Rham complexvafued currents oXc. By
passing over the open compact subgroGps G(As) one has a direct system of cohomology
groups. The corresponding inductive limit

H*(G,E) =limH*(Xc,E) 3)

C

is defined and carries a natural structure @B(&(Q)) x G(A;)-module.
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1.2.

The cohomology group$#i*(G,E) have an interpretation in relative Lie algebra co-
homology. LetC®(G(Q)Ac(R)°\G(A)) be the space of smootKg-finite functions on
G(Q)Ac(R)°\G(A); it carries a natura(g, Kr, G(As))-module structure. There is an isomor-
phism between thémg, Kr)-cohomology ofC”(G(Q)Ag(R)°\G(A)) ® E and the cohomology
of the de Rham complex dE-valued currents 06(Q)Ag(R)°\G(A)/Kgr which computes the
inductive limitH* (G, E). One has an isomorphism G{ A;)-modules

H*(G,E) ~H*(mg,Kr,C”(G(Q)Ac(R)*\G(A)) © E)(Xe) (4)
where theG(A;)-action on the right hand side is twisted by the charagteattached tqv,E).

1.3.
Without altering the cohomologyl* (G, E), the space

C*(G(QAc(R\G(A))

may be replaced by the subspageof smooth complex valued functions of uniform moderate
growth. By definition, &*-function

f: G(QAc(R)*\G(A) —C
isinVg if
— f is Kr-finite

— There exists a constaat> 0, ¢ € R, such that for all elemenf3 € % (g) there isrp € R
with

IDf(g)] <rpllg||® forallgec G(A). (5)

The spacé&/; carries in a natural way the structure of@Kg, G(Ar))-module.

Let ¢ be the set of classes of associate paral@tgubgroups ofs. For {P} € ¢ denote
by Vs ({P}) the space of elements Vg which are negligible alon® for every parabolidQ-
subgroupQ € €, Q ¢ {P}, i.e, givenQ = LN for all g € G(A) the functionl — fg(lg) (where
fo denotes the constant term éfwith respect toQ) is orthogonal to the space of cuspidal
functions onAg(R)°L(Q)\L(A). The space¥s({P}), {P} € ¢, are submodules with respect to
the (g, KR, G(A¢))-module structure. Finally, proved by Langlandd [see also B-L-S, 2.4]),
the spac&/c has a decomposition as a direct sun{@ig, G(A¢))-modules

Vo= P Vs({P}). (6)

{P}e®

The inclusionVg — C*(G(Q)Ac(R)°\G(A)) induces an isomorphism on the level (gf Kr)-
cohomologyij.e., one gets in view of the decomposition

H*(G,E)= @ H*(me,Kr,Va({P}) ®E)(Xe). ©)
{P}e¥

Let Z(g) be the center of the universal enveloping algebra of the Lie algebfas and
let # C Z(g) be the annihilator of the dual representati&nin 2 (g). The space oKg-finite
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smooth functions of uniform moderate growthMg which are annihilated by a power gf is
denoted by« . For a given clas§P} € € we put

%E{p} = 9k ﬁVG({P}). (8)

The spaces (resp. the spacest (py) are(g, Kr, G(Ar))-modules. There is a decomposition of
<& as a disjoint sum ofg, Kr, G(A¢))-modules

o= P Sy )
{P}e?

The inclusione — Vg of the spaces of automorphic forms @n(with respect tq v, E)) in the
spacé/s of functions of uniform moderate growth induces, By Theorem 18], an isomorphism
on the level ofimg, Kr)-cohomology. One obtains the decomposition

H*(G,E)= @ H*(me,Kr, % p} ®E)(Xe). (10)
{P}e?

As exhibited in F-S] there is a refinement

k=P B SEpre (11)

{P}e%’”(pe qJE'{p}

of the decomposition (9) where for a given clgd®} in the set¢” of associate paraboliQ-
subgroups o6 the second sum ranges over the®glp, of classesp = { ¢} qc(py Of associate
irreducible automorphic representations of the Levi components of elemefiist ofOne can

give two alternative definitions of the spacef () , One by use of the concept of the constant
term, the other one in terms of Eisenstein series or residues of such. For details we refer to Sec-
tion 2.2, respectivelyH-S, Section 1.5]. This decomposition ofg, along the cuspidal support
implies a corresponding one in cohomology

H'GE)= @ & H*(me,Kr %k (p)o®E)(Xe) (12)
{P}G%(PECDE#{F;}

The cuspidal cohomology to be denoted by
Heus( G, E) 1= H* (mg, KR, 9% (6} ® E)(XE) (13)

is, by definition, the summand indexed by the cl§&§ € € in this decomposition. The natural
complement to the cuspidal cohomologyHn (G, E) is called the Eisenstein cohomolog.,
one has, by definition,

Hés(GE)= @ P H*(me Kr, 9 (p),o ©E) (Xe)- (14)
{P}G%ﬂ, (S mE'{p}
{Pr#{G}

2. Construction of Eisenstein cohomology classes.

2.1. Eisenstein series.
Let {P} € ¥ be a class of associate parabdesubgroups ofs represented by a standard
parabolicQ-subgrouP = LpNp. Let @ = { @} e (p; b€ a class of associate irreducible cuspidal
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automorphic representations of the Levi components of elemefii}of.e., by definition, given
Q € {P}, ¢ is afinite set of irreducible representationd gf A) which are unitary modulo the
center, such that for eacli € ¢, the central charactey,;: Ag(A) — C* is trivial on Aq(Q)
and such thatt occurs in the cuspidal spectruhﬁusp(LQ )\Lo(A))x, (with respect toxr).
Moreover, certain compatibility conditions as specifiedrrd, 1.2], have to be satisfied, and we
suppose that for eadle ¢ its infinitesimal character coincides with the onesst Recall that
the set of all collectiong = {@q}qc(py cOnstitute®e (py for a given{P} € €.

Consider an irreducible representatiare ¢, for a givenQ € {P} and a given collection
@ € @¢ (py. Let Tbe the unitary representation

fi(l) = e WrHel () 1 e Lo(A) (15)
and letWg 7 be the space of smookg-finite functions

f: Lo(Q)Ng(A)AQ(R\G(A) — C (16)

such that for any € G(A) the functionf(lg) of the variablel € Lo(A) belongs to the space
Lguspn(LQ(Q)AQ(R)O\LQ(A)) of cuspidal automorphic forms which transform accordingtto
For f € Wo 7, there is the Eisenstein series depending on the complex para?mer@ defined

(at least formally) by

E(f.A)9)=ES(F.A)g9)= 5 e idf(y) geGA).  (17)
y€Q(Q\G(Q)

If the real part of the complex parameter is sufficiently regular and lies inside the positive Weyl
chambet(&%)* defined byQ the Eisenstein seridS(f,A)(g) converges uniformly ig. The map

A — E(f,A)(g) is holomorphic in the region of absolute convergence and has a meromorphic
continuation to all oﬁg. Its singularities lie along certain root hyperplanes.

2.2. The spacesz py,q-

For a given collectiomp = {¢q} € @¢ (p) We consider € ¢, Q € {P}. Then there exists
a polynomial functiorg on 68 such that for anyf € W 7 the functiong(A )EQ(f A) is holomor-
phic in a neighborhood gf;; in ag If we choose Cartesian coordina@s$A ),...,z(A) on 68

the functionqg(A )EQ(f,)\) has a Taylor expansion negy given by
q(A)ES z iy, ()Z(A =X+ 2 (A = xm)". (18)

_____ ir (f) where the
i1,...,ir run from zero to |nf|n|ty and wheré ranges through the spad, 7. Another choice of
the ponnomiaI functiorg does not alter the space: (p) ,. By the functional equations of the
Eisenstein series involved and the compatibility conditions imposed on the elememis iis
also independent of the choices of the representafMes{ P} resp.ir € @. Note thatez (p) 4

is spanned by all possible residues and derivatives with respect to the parAréteisenstein
series attached to cuspidal automorphic forms of tgpévaluesi in the positive Weyl chamber
defined byQ for which the infinitesimal characteg:+ of E* is matched.
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2.3.

Let Q = LoNg be a standard parabol@-subgroup ofG so thatQ € {P} for a given choice
of an associate clag$} € €. The symmetric algebr‘a‘(ﬁg) of 68 may be viewed as the space
of polynomials onag and thu5a8 acts on it by translations. The symmetric algebra may also
be interpreted as the space of differential operators with constant coefficiear@s Bor a given
TT € ¢ the spacé\p 7 Q¢ S(ag) carries the structure of @, Kr, G(A¢))-module (F, p. 218]).
There is an isomorphism dfj, Kr, G(As))-modules between the spadg, i ®c S(ELS) and the
sum ofm;; copies of the induced representation

G(As K =G
|ndQ Indgﬁz krrLo(R [HT®C S(63)] (19)

whereH;; denotes the representation space correspondimyct@yn and occurring with multi-
plicity myin Lgusp(LQ )\Lo(A))x,- Then the map (as defined in 2.2)

Wo. 7t ®c S(35) — F (p).0
aa aC! (20)

f®d/\" — W(Q(A)ES(M)) (Xn)

becomes under this identification a homomorphisnigoKg, G(As))-modules. For (20)¢ de-
notes a multi-index an@“/dA“ denotes the derivative of order with respect to a Cartesian
system of coordinates 0“18

Thus as a first step, in order to understand the cohomological contribution of the spaces
e (P}, IN the decomposition

H'GE)~ @ @ H*(me,Kr % (py.o®E)(Xe) (21)
{P}e? 9 Pe (p)

it is necessary to determine the cohomological spaces
H* (me,Kr,Wo #® S(AH) ®E) Qe {P}, me . (22)

The second step regards a careful analysis of the map induced by (20) on the cohomological
level.

2.4. Classes of typgm,w).
Using the interpretation of thig, Kr, G(A¢))-moduleWg 7#® S(&S) as the sum ofn;; copies
of the induced representation

G(As K G
IndQ |nd§ﬂRQ ke Lo(R) [HT®@c S(E3)] (23)

as given in 2.3, the analysis of the cohomology of Wg# ® S(ag) leads to a study of the
cohomology of

° G K ~G
H (mg,KR,mdQ IndﬁmRQ KeLo(R) [HT@c S(E5) ©E]). (24)

By use of Frobenius reciprocity this space is equal to €fp[ 256])

Indo ) H* (1o, Kr N Lo(R), Hr ® H* (ng, E) © S(3§)). (@3)



SU(2,2) and their automorphic cohomology 365

The ng-cohomology is well understood by the following result of Kosta#t,(b.1]). Leth be

a Cartan subalgebra gf contained inlg,. The highest weight of the given irreducible finite
dimensional representatiqw, E) of G(C) is denoted by\. Then the Lie algebra cohomology
of ng with coefficients inE is given as glg, KRN Lg(R))-module by the sum

Hq(nQ’ E) = @ FNW (26)
wew®
tw)=q
where the sum ranges over the elememnis the set
WO = {weWs |w (AL,) Cc @'} (27)

of minimal coset representatives for the left cdsgt\Ws with length/(w) = g, and where~,,
denotes the irreducible finite dimensiorig, Kr N Lg(R))-module of highest weight

Pw =W(A +p) —p. (28)

The weightsuy, are all dominant and distinct.
This result implies a further decomposition of (25) as a sum W/ér One obtains

G . ~
P Indga ) H* (1o, Kr N Lo(R), Hrr Fiu, ® (i) (29)
wewe

This allows us to introduce the notion of a cohomology class of typa), w € W?. By
definition, it is a class contained in the summand in (29) indexed& lByW?. Note that the
infinitesimal character of the representation contragradieif jés given byx = —w(A +p)|,

b a Cartan subalgebra ing so thatb + ag = h. Thus, for given non-trivial cohomology class of
type (1T, w) the infinitesimal charactey,; of the Archimedean component ofis

Xn= Xfw(A+p)|b_ (30)

3. The unitary group.

Let F be a quadratic imaginary extension@f Letx — X be a nontrivial involution of /Q.
LetVE be ann-dimensional vector space endowed with non-degenerate hermitian form

(x,y) =xH'y.

The groupU (H) (resp.SU(H)) is a unitary group (resp. special unitary group) defined er
that is,

U(V,H) ={g € GL(V) | gH'g =H},
SU(V,H) = {g € SL(VE) | gH'g = H}.

Let us assuma& = 2m is even. If we takeHy = (,m 'm), thenSU(Hm) becomes a quasi-split
algebraic group of rankn which we denoteSU(m,m). In the following we letm= 2, i.e., we
consider the algebra@-groupG = SU(2, 2) of rank two.
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3.1. Roots and parabolic subgroups.
Let

T = {tap =diaga,b,a *,b™}) € G| a,bc Q*}
be aQ-split torus and let

e(tap) =a, e(tap) =h.

Puta; = e1/e;, a2 = €. Then the root systen® of G becomes{ai™t, a5, (a1a2)*Y,
(a2az)*1} which is of typeC,. We fix once and for all the simple rooni,Q = {aq,02}. The
conjugacy classes @-parabolic subgroups @ are parametrized by the subsetsﬁé?. Namely

let the subsets béy = &, J1 = {az2}, = {a1} andJz; = A(? and let the standard parabolic sub-
groups to be? = Py, whereP; is described as follows: We 1& = (N,c;kera)?, and letZ(S)
be the centralizer 08;. ThenP; is the semidirect of its unipotent radidd} by Z(S;). Note
that the characters af in U; are exactly the positive roots which contain at least one simple
root not inJ. In particularP, is a minimal parabolic subgroup aid = G itself. The Langlands
decomposition oP; is denoted byP; = L;jN;.

Now letJ = &. ThenPy is described as follows.

Ao=T,
Lo = {diagia,b,a *,b 1) |a,bc F,abe Q*},
Mo = {diag(a,a *,a,a™*) € Lo | Af q(@) = 1},
0 (31)

No =

Oo**

*
*
0
*

O O O *

0
0
0

The case 0f; = {a,} is as follows.

A = {diaga, 1,a *,1)},
x 0 0 0

L= |0 un O up u=(uj) €U(1,1),

1= 0 0 )(tl 0 xf1~detu:1,xeF s
0 uxy 0 Uoo
x 0 0 O
o 0 U1 0 Ui B (32)

Mi=31lo o x o |EtlFRM=1,,
0 uy 0 ux
0 * x =x
0O 0 = O . . _ .

Ny = o0 o0 ol ( N;(R) is 5-dimensional, non-abelian.
0O 0 = O
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The case 08, = {a1} is as follows.

A, = {diagla,a,a t,a 1)},
L, = { ('8‘ tA—O_1> | Ac Maty(F), detA) € Q~ },

My = { ('8‘ tA—O_1> | Ac Maty(F), det(A) = il} : (33)

*
t) , N2(R) is 4-dimensional abelian.
0

o O O o
o O O o
O O *¥ ¥

In particular, we have
Lo(R) ~ Z/2Z x (Rx0)®% x C),
L1(R) ~ R* xCY x SU(1,1), (34)
L2(R) ~ R.o x S5 (C).
3.2. The absolute root system and compatible order.

Let h be the Lie algebra ofo(R). Then it is a Cartan algebra containinng Let
gj(diag(ay, az,a3,a4)) = a;. Put

Br=e&—&, Po=&—6&, [B=¢&—¢&.
Then the absolute root systef(gc, hc) of gc with respect tdyc is given by
®(ac,bc) = +{B1, B2, B3, B+ B2, B2+ B3, Br + B2+ Bz}

This is of As-type. By definition, a compatible order with respecﬂ@ forces the simple roots
of gc,hc to be

A = {B1,B2, B3}

The compatible simple roat also fixes the positive syste™ (gc, hc). The root systeme(P;)
of the parabolic subgroupg(C) are then

®(Ry) = " (gc,bc), P(P1) = ®@(R) \ {B2},
®(P2) = {B2, BL+ B2, B2+ B3, B+ B2+ B3}

The Weyl groupMs of G(C) is generated by the simple reflectiagiss,, s3 defined by the simple
rootsf1, 32, B3, respectively. If we identif\Wg with the symmetric group of degree 4 by

“a reflection with respect tgy — ;" — (ij) (a mutual permutation)
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thens;, s, 53 are given by(12), (24), (34) respectively. The Weyl groly; of L;(C) (j=0,1,2)
are identified with subgroups ¥,

Wo =1, Wi = (), Wb = (51, g).

Let WP be the set of minimal coset representativeS\pfWg defined in 2.4. A computation
shows

WP =W, WP w2 = {1},

WP ={1} U {s1, %} U {13, 5192, 3%} U {S153%2, $19253, S35251 }

(35)
U{s199%2, S1585251 } U {S19253%51

WP —{1} U {sp} U {251, 288} U {S2S851 } U {81652}

3.3. Fundamental weights.
Let w1, w2, w3 be the fundamental weights defined by the simple rdotsamely

w1 =1/43e1— & —&3—&4) = 1/4(3B1+ 20> + B3),
Wy =1/2(e1+ & — &3 — €4) = 1/2(B1+ 22+ Bs), (36)
w3 =1/4(e1+ &2 —3e3+€4) = 1/4(B1+ 202+ 3B3).
In the following, we express the weights by using coordinates
(C1,C2,C3) := C1w1 + C22 + C3ws.

Itis regular if and only ifc; > 0, c; > 0 andcg > 0. The simple roots are iA are given in these
coordinates by

B1:(27_la0)a BZZ(_lazv_l)’ B3:(07_172)'

Let pp denote the half sum of the roots(P) of the parabolic subgroup(C). One obtains in
terms of these coordinates

p=pr=(111), pp =(3/2,0,3/2), pp,=(0,2,0).

3.4. The restriction of weights to the Levi Cartan subalgebra.

By the theorem of Kostant, we have an interest on the restriction of weights w(A +
p) — p for w e WP to the Cartan subalgebra of the each Levi subalgebra.

Take a Levi Cartan subalgebsa by bj = mj b such that) = bj +t;. Identify bj with its
image inh* via the restriction map. Through this identification the root syste(i;) of M;(C)
is defined by the following simple roots.

AMo) =9, AMy1)={B}, AMz)={B1,Bs}

We take as a fundamental weight of Levi subalgebras in a usual manner.
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w:=(1/2,0,-1/2) (€ bg,b7)
wo1=(1/2,0,1/2) (€ tp)

woz = (—1/2,1,-1/2) (€ t5,b1)
wz21=(1,-1/2,0) (€b3)

w2 =diag(0,0,—1/2,1/2) = (0,—1/2,1) (€b3)

Then it follows

(c1—c3)ax (j=0)
(€1,2,C3)[6; =  Cooz+ (C1—Ca)ex  (j=1) (37)
C1(W21 + C3W22 (i=2)

and for the split part

(C1+Co+C3)wo1+Cowoz  (j=0)
¢ =1q(C1+Cc2+Ca)-pr /3 (1=1) (38)
(Cl+2C2+Cg)'pp2/4 (j :2).

(C1,C2,C3)

The coordinates dfiy(A) = W(A + p) — p as well as its restriction to each Cartan subalge-
bra are shown in Table 1, 2 and 3.

4. Cohomology at infinity.

As explained in Section 2, we should determine which cohomology class of{ type
remain non zero in the summand of (29). In this section we compute the cohomology
H*(mj, KL, He® Fu) whereKLj =KrNL;(R) andu = py, for all standard parabolic subgroups
P, and for all irreducible cohomological unitary representatitms,;) of M;. For notationG,

L, M are the groups of real points ag = G(C), Lc = L(C), Mc = M(C).

4.1. The minimal parabolic Py (j = 0).
Recall that_g consists of diagonal elements aklg has the identification

Mo > diagize-z %,z e-2%) — (g,2) € {+1} xCY
which is compact. Leken be the unitary character &g defined by
Xen(€,2)=¢€%2" (e=0,1,ne 2Z).
Givenu € bg with g = (1, o, p3) as in 3.3, we have an isomorphism

F(lllallz-,lls) = Xuig, b1 —H3-

LEMMA 4.2, Let u = (u1, U2, u3) € hg be the highest weight of the irreduciblg c-
moduleF,,. Then

C g=0n=pz—p,e=yy (mod 2,

HY(mo, Mo, Xen ® Fyu) = {o otherwise
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Table 1. py for w e WP,

weWwh Hw

? e ?- w1 ?- w2
1 (€1,C2,C3)

C1 —Cgz, C1 +Cp+Cg, Co
Sy (—c1—2,c1+C2+1,c3)

—C1—C3—2, Co+c3—1, ci+Cr+1
S (Cl+02+l,—02—2,C2+03+l)

C1—Ca, C1+C2+C3, —Cp—2
S3 (c1,c2+c3+1,—c3—2)

1 t+C3+2, Ci+c—1 C2+c3+1
1S3 (-1 —2,c1+Cp+C3+2,—C3—2)

—Cy +Cg, Cr—2, Ci+Cr+C3+2
SIS (—c1—c2—3,c1,c0+C3+1)

7C]_72C27C374, C372, C1
S (C2,—C1—C2—3,Cc1+Cr+C3+2)

—C1—C3—2, Co+c3—1, —C1—C—3
B (c1+c2+1,c3,—Cp—Cc3—3)

C1+2Co+C3+4, C1—2, C3
S (ci1+C+C3+2,—Cr—C3—3,C2)

Ci+C3+2, Ci+cr—1, —Cp—C3—3
1951 (—Cp—2,—c1—2,c1+Cr+C3+2)

—C]_—2C2—03—4, C3—2, —C1—2
S (cit+Cr+C3+2,—C3—2,—Cr—2)

C1+2c+Cc3+4, C1—2, —C3—2
S18S (-c1—c2—3,cp+Cp+C3+2,—Cp—C3—3)

—C1+Cg, —Cp—4, Ci+Co+cC3+2
S19%3 (—C1—Cp—C3—4,¢1,C7)

—01—202—03—4, —03—47 C1
3551 (C2,C3,—C1 —Cp—C3—4)

C1+2c+Cc3+4, —C1—4, C3
S (co+c3+1,—cp—Ccp—c3—4,cp+Cp+1)

—C1+Cg, Cy— 2, —C1—C—c3—4
S1925382 (-C1—C—c3—4,c1+C+1,-C—2)

—C1—C3—2, —Cp—C3—5, ci+C+1
$39S1 (cg+c3+1,—c3—2,—cp—Cp—3)

C1+2c+cCc3+4, —C1—4, —C3—2
S1S35S1 (—cp—2,cp+c3+1,—cp—Ccr—Cc3—4)

C1+C3+2, —C1—Cy—5, Cr+cC3+1
$5153% (C3,—C1—C2—C3—4,C1)

—C1 +Cg, —Cy—4, —C1—C—C3—4
S19S3S1 (—-Cp—c3—3,—c1—2,c1+Cp+1)

—C;|_—202—03—4-7 —03—4—7 —01—2
$19%3%51  (—C2—C3—3,62,—C1—C2—3)

C1—C3, —C;|_—Cz—03—67 C2
$5153%5 (€3, —C2—C3—3,—C1—2)

C1+C3+2, —C1—C—5, —Cp—C3—3
99918 (—C3—2,—-C1—C2—3,¢1)

—C]_—C3—2, —Cz—C3—5, —C]_—C2—3
S1983951S (—C3—2,—C2—2,—C1—2)

C1—C3, —C;|_—C2—C:g,—67 —02—2
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Table 2. py, for we W,

w e Wh

Hw

?- w2 ?- ?-m
1 (c1,62,C3)

Cy, C1 —Ca, (c1+cp+c3)/3
Sy (-c1—2,c1+C2+1,C3)

Cci+Cr+1, —C1—C3—2, (co+c3—1)/3
3 (c1,c0+C3+1,—Cc3—2)

Co+C3+1, C1+C3+2, (c1+cp—1)/3
S1S3 (=c1—2,c1+Cr+C3+2,—C3—2)

Ci+C+C3+2, —cCi+Cg, (c2—2)/3
SIS (=c1—c2—3,c1,c0+C3+1)

Cq, —Ccp—2c,—c3—4, (c3—2)/3
B (cp+c2+1,c3,—Co—Cc3—3)

Ca, C1+2c+Cc3+4, (c1—2)/3
SEES) (—C1—C2—3,c1+C2+C3+2,—C2—C3—3)

Ci+C+C3+2, —Ci+Cz, (—c2—4)/3
S15283 (—Cc1—C2x—C3—4,¢1,C2)

C1, 701720270374, (7C374)/3
3551 (Cp,C3,—C1—Cr—C3—4)

C3, C1+2Co+C3+4, (—c1—4)/3
1S (-c1—cp—c3—4,c1+Cp+1,—Cr—2)

Cc1+C+1, —C1—C3—2, (—Ccp—c3-5)/3
S (=Cp—2,c0+C3+1,—Cp—Cp—C3—4)

Co+cC3+1, C1+C3+2, (-c1—c2—5)/3
S19%3%81  (—C2—C3—3,62,—C1 —C2—3)

C2, C1 —Cs, (—C1—C2—c3—6)/3

Table 3. iy for w e WP,

weWwPz

?- W21 ?- Wy ?p2
1 (c1,62,C3)

C1, C3, (c1+2cp+c3)/4
S (c1+Cr+1,—Ccp—2,co+C3+1)

C;|_+C2+].7 Cz+03+1, (Cl+C372)/4
S5 (co,—Cp—Cp—3,c1+Cr+C3+2)

Co, Ci1+cp+c3+2, (—ci+cz3—4)/4
$S3 (c1+cr+C3+2,—Cp—c3—3,C2)

C1+C+C3+2, Cp, (c1—c3—4)/4
351 (co+c3+1,—Ccp—Cr—c3—4,c1+Cr+1)

Cr+C3+1, Ci+Cr+1, (-c1—c3—6)/4
98188 (€3,—C1—C2—C3—4,¢1)

Cs, C1, (—c1—2cp—c3—8)/4
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4.3. The maximal parabolicP; (j = 1).
The groupM; is identified withMg x SU(1,1) via the map

z
-1 -1
€-z*u £-Zz*u
M; 3 1 121 (£,2 (uij)) € Mo x SU(L, 1).
ez 1 uy ez 1 upy
The finite dimensional representatibp restricted tdVl; is given by

Pty t12.113) = Xpip, p—piz @ SYm2.

In order to detect the representationd/afwith non-zero Lie algebra cohomology we proceed as
follows: we takea* = (; ') € Lie(SU(1,1)). ThenR- a* is the compact Cartan subalgebra. Take
the dual elementr of a*. Then the absolute root system becorfig®a}. We fix the positive
system so thadr becomes the fundamental weight. Then the discrete series represebtatibn
SU(1,1) is described by its Blattner parameker (|k| > 2,k € Z), whose infinitesimal character
is given by(]k| — 1)a. By conjugation ofSU(1,1)c, it is identified with(|k| — 1) woz. Because
the non trivial cohomological unitary representationsStf(1,1) are nothing but the discrete
series representations, thosevbf with non-zero cohomology are then

{Xen®Di, Xen®1| k| >2,keZ,e=0,1,ne Z}.
So we have the lemma.

LEMMA 4.4. Let u = (u1, U2, u3) € hg be the highest weight of the irreduciblg c-
moduleF,. Then we have

c d=Ln=p3—pu, K =p+2
HI(m1, KL, Xen ® Dk @ Fy) = ande= i (mod 2)
0 otherwise.

C q_—072,e_—u2—_0,||—_u3—u1,
( 1 LlaXe.,n® 0y [J) {0 t rwi .

4.5. The maximal parabolicP; (j = 2).
For the Levi subgroup, we consider the identification

Ly = diagA,'A™Y) — (A'A™Y) € S(GLy(C) x GL2(C))(~ Lag).

ThenMj can be seen as the subgroup of eleméAtsA—1) with detA = +1. Take the two fold
covering

p: SL(C) x SLy(C) x C* — S(GL(C) x GLa(C))

by p(91,9»,2) = (z- 94,2 g,). Since a representation of the left-hand side factors thrgugly
when the kernel acts trivially, the irreducible finite dimensional representatio88zth(C) x
GL(C)) are given by symmetric tensor representations
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Tlug,upiug) = SyrﬂJl (gl) ® Smez (92) ®Z°

with conditionuyg,u; € Z>0,u3 € Z,uU1 + Uz + Uz € 2Z. The representations & are given by
their restriction. For given the highest weight= (L, U2, U3), we have

Flunpops) = FH1w21+H2w22+(H1+2H2+H3)PP2/4 = Ty, pgipa +240-+ i3]

aslL, c-module.

To describe cohomological representations, we prepare the notation for principal series rep-
resentations 08L,(C)? (cf. [G-S]). Let Q be the minimal parabolic subgroup bj with its
split torusAq with Lie algebraag = Rdiag(1,—1,-1,1). The root system of is given by
{£(wo1+ wo2)}. Along the Levi decompositio® = LgNg, the principal serie$(e,n,v) is
defined by the underlyinfgc, K)-module of the set af?>-functionsf on M, satisfying

f(mang = (Xen(m) ®a" " ©1)f(g), mane MgAgNg

withe=0,1,ne Z, v € C. Note thatMo = Mo. The only equivalence is the cas@,ny, v1) ~
| (el, —Ny, —Vl).

The computation of the cohomology of the principal series is outlined as folldvs\(]
11.3.3]). Becausel; is of A x As-type, the Weyl group of., is isomorphic toZ/2Z%? and
contains the elements of lengdhl,1 and2. Let Kg be the maximal compact subgroup @f
Let iy, uuy) Pe theLqc-module of highest weighjtiy, uz; us]. In fact, as one-dimensiondq-
module we have

Vi tpiug] = X(uy+up—ug) /2,01y
If the (m2, K, )-cohomology for principal series is non-zero, then it holds
Hq<m25 KL27 I (e7 n, V) ® T[Ul,UQQUg]) = (Xe,n ®VU’)KQ

and one of the following set of conditions is satisfied:

(1) g=0,1,v=—u; —Up—2,n=—up + Up, U = [ug, Up; Ug],
2)g=12,v=u1—u,n=u+U+2,U = [—us — 2,Up; Us],
3)g=1,2,v=ux—u;,n=—uU;—Up—2, U = [ug, —Up — 2;Ug],
4 gq=23,v=u+UWp+2,n=u;—Uy U =[-U;—2,—Uy—2;ug|.

As a conclusion we have the lemma.

LEMMA 4.6. Given the highest weight = (uy, U2, 43) € bg of the irreduciblel, ¢ mod-
ule F, we have

(1) If mis one-dimensional,

C =03 nm=1m=p3=0, €22,
HY(mo, K, Hr®F,) =< C q=0,3, m=det puy = p3 =0, o € 2Z+1,
0 otherwise

(2) If m=1(en,v), HY(my,K,,Hr®Fy) is isomorphic to
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4=01Lv=——lz—2,n=—p + Uz,e= > (mod 2

a=12v=p—pgn=p+u+2,e=p+pp+1 (mod2

q=1,2,v=p3—h,n=—(h+ U3 +2),6= o+ l3+1 (mod 2

g=23,v=p1+Us+2,n=L — Us,e= 1+ o+ 3 (mod 2
0 otherwise.

Furthermore if we assume thatis unitary, it follows

LEMMA 4.7. (1) If mis one-dimensional, the conclusion is the same as in Lef6i{a)
(2) If m=1(en,v), the equalityu; = p3 is necessary for the non-vanishing of the coho-
mology. Precisely,

HO®(mp, Ky, Hr @ Fy) =0

v=0,n==£(2U1+2), th = Uz,
HY¥2(ma, KLy He@Fy) = ¢~ ande= i +pp+1 (mod 2
0 otherwise.

This assertion also follows from the use of the Cartan involuti@W], 11.6.12]). The
Cartan involutiond, = 8., of L, acts on the fundamental Cartan subalgebra, and so on its dual.
In this casef(wo1) = —wo2, B2(wo2) = —wo1. Modulo by the Weyl group, it determines an
automorphism on the weight space.

4.8. (Dg,W)-type for we WP,

Let A = (cy,Cp,C3) be the highest weight dE. AbbreviateH%(m1,K.,,V) to HY(V) for
simplicity. By Lemma 4.4, one can deduce which type of clagses) contributes to the Eisen-
stein cohomology. In particular, if we takeas a discrete serid3 of M1, the non-zero classes
are listed as follows.

o {(W) =5W=515%%S], /(W) =0w=1.
H (Xcy—c1-c3 @ Da(cp2) @ Fuuy) = C.

o /(W) =4W=59%%, /(W) =1w=s5.

HY (Xer+ ot Loy tegs2 ® Dot (cy+c,+3) @ Fu,) =C.
o (W) =4W=35%95, {(W) =1w=s3.

HY(Xeptcs11—c1-c-2® Dt (cp+ca+3) @ Fuy) =C.
o /(W) =3W=55%, /(W) =2W=SSs.

H(Xe, 4 0pt gt 2,005 @ Dai(ci+cp+ca+4) @ Fuy) =C.
o (W) =3W=59%, {(W) =2W=5%.
H 1(Xcl,cl+202+03+4 ® D¢ 12) ®Fu,) =C.

o (W) =3W=5%5], {(W) =2W=s%.

Hl(XC3,7017202*C3*4 ® Di(C3+2) 02y FIJW) =C.
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4.9. (1(e,n,v),w)-type for we W,

From Lemma 4.7, we find the cohomology classes which will not vanish. Werna®
a principal series oM,. Then the nonzero classes are listed below. For simplicity we write
Hq(V) = Hq(mz,KL27V).

o /(W) =4wW=55%, /(W) =0w=1. c=cy =csis the only case
HY¥2(1(c+co+1,4+2(c+1),0) ® Fy,) =C.
o /(W) =3W=95551, £{(W) =1w=s5p. C=C; =C3is the only case
HY2(1(c,+2(c+ 2 +1),0)@ Fy,) =C.

o /(W) =2 W=s5 W= SS3. There is no cohomology dfi (e,n,v),w)-type which is
nonzero.

We remark the cas& € W2 with length2. By Table 3, we havquw|g,3 =Cowo+ (C1+Co+

C3+ 2)wyp Or (C1+C2 + C3 + 2)wo1 + Cowzz. In both casesy = py does not satisfy the neces-
sary condition in Lemma 4.7 (2). Thus holds the vanishing of the cohomology classes of type
(I(e,n,v),w).

5. Eisenstein cohomology — The generic case.

5.1.

The algebrai@-groupG = SU(2,2) hasQ-rank two. There are four conjugacy classes of
parabolicQ-subgroups ofs. These can be represented by the standard para@editbgroups
as defined in Section 3. Since a maximal parab@lsubgroup ofG is conjugate to its opposite
the associate class Bfcoincides with its conjugacy class. Thus, the associate clé&egP; },
{P:}, {Ro} account for the set’. By 1.3, the cohomology spat¢* (G, E) decomposes into the
cuspidal cohomologiig,s{ G, E) and the Eisenstein cohomology

Héis(Ga E) = @ @ H.(mG, KR,%E,{p},(p(@ E). (14 biS.)
{P}e€, pc P (p
{PI#{G}

If C C G(As) is an open compact subgroup, one gets the cohomology of the space
Xc = G(Q)Ac(R)*\G(A)/KrC (39)

by taking theC-invariantsH* (G, E)¢ = H*(Xc,E) in H*(G,E) under theG(As)-module struc-

ture. The spac¥c may be viewed as the interior of a compact spdgeawith corners called the
Borel-Serre compactificationRphlfs] §1 in the adelic frame work). The inclusio — Xc is a
homotopy equivalence so that the corresponding cohomology spaces coincide. The boundary of
Xc is denoted by (Xc). The pair(Xc,d(Xc)) gives rise to a long exact sequence in cohomology

S HE (X E) S H (Xe, E) S HA (0(Xe).E) — - (40)

The interior cohomology is, by definition, the image of the cohomology with compact supports
under the natural map’. It is denoted byH; (Xc,E). The interior cohomology contains the
cuspidal cohomology,e., HgsdXc, E) C H{ (X, E).
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The absolute rank of the real Lie grou@$R) andKg coincide, and the dimension of the
corresponding symmetric spakgr) = G(R)/Kr is equal

dimXgR) = dimG(R) — dimKg = 8.
Thus the virtual cohomological dimension of an arithmetic subgfowb G is equal
ved(lMn) = dimXgR) — rankg(G) = 6.
The constantp(G(R)), in general defined by
do(G(R)) = 1/2(dimXg(R) — (rankG(R) — rankKg))

turns out to be equal four. Note tHatG(R)) = rankG(R) — rankKgr = 0. As a consequence of
the general result irLj-S2, 5.6], we obtain the following.

THEOREMS5.2. LetG = SU(2,2) be the quasi-split special unitary group @ rank two
defined in Section 3, and suppose that the highest weight of the given finite dimensional repre-
sentation(v,E) of G(C) is regular. LetC C G(As) be an open compact subgroup. Then one
has

HI(X,E) =0 (j <do(G(R)=4)
and the restriction map
rl: HI(Xc,E) — H)(d(Xc),E)
is an isomorphism fof > go(G(R)) +10(G(R)) = 4.

In these degrees.€., ] = 5,6, note that otherwise the cohomology vanishes above the vir-
tual cohomological dimension) the cohomoldgy(Xc,E) is spanned by regular Eisenstein co-
homology classes.

5.3.
Given an associate cla§B} € ¥ of a proper paraboliQ-subgroup of5, we now determine
the internal structure of the corresponding subspace

P H*(me,Kr, 7 (p) o ®E) (41)
Q€ Pe (py

in the decomposition (14bis.) of the Eisenstein cohomoldgy(G,E). Let ¢ = {@}qc(py be
a class of associate irreducible cuspidal automorphic representations of the Levi components of
elements in{P}. The actual construction of the elementsaf (p, , is given by the map

W7t @c S(88) — F& (P10 (20 bis.)

whereTt € ¢ denotes an irreducible cuspidal automorphic representation. By assumption the
highest weight\ of the representatiofv, E) (determining the coefficient system in cohomology)
is regular. This implies, byg94 4.9] that the highest weight
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Hw=WA+p)—p, weW?

of each of the modules,,,, w € W?, in the decomposition of

9ng.E)= P Fyu, (26 bis.)
wewe
tw)=q
as a(lg,KrNLg(R))-module is regular. Thus, as proved B94 Section 2], a non-trivial coho-
mology class in the summand

] Ind *(lg,KrNLo(R), Hr @ Fy, ® S(a§)) (29 bis.)
wewQ

of type (11,w) indexed byw € WQ corresponds to a cuspidal representatios @ whose
Archimedean component is tempered.

We consider an Eisenstein sertesf, A ) attached to a non-trivial cohomology class of type
(mw), me g, we W, with f € Wo 7. As shown in B83 3.4, 4.3] the analytic behavior of the
Eisenstein series(f,A) at the point

A= —WIA + D) g

is decisive in order to get a non-trivial cohomology class containett img, Kr, % (p) ¢ @ E).
The elemend, is real and uniquely determined oy, w). One has

THEOREMG5.4 ([S83 4.11]). If the Eisenstein serieB(f,A) attached to a class of type
(mw), Te @, We WQ with f e Wo 7 is regular at the pointA, then the Eisenstein series
evaluated af\y gives rise to a non-trivial conomology clais(f, Aw)] € H* (mg, KR, £ (p} ¢ ®
E).

Such a class is called a regular Eisenstein cohomology class.
As for the case 0BU(2,2) we compute\, for standard parabolic subgroups using (38). See
Table 4, 5 and 6.

THEOREMb5.5. Let{P;} € ¥ be the associate class represented by the standard maximal
parabolicQ-subgroupP; of G. Suppose that the highest weighof the representatiofv, E) is
regular. Then the summand

P HYme,Kr, 7 (p} o ®E) (42)
€ Pe pyy

in the Eisenstein cohomolodrg (G, E)

(1) is built up in the degreeg = 6,5,4 by regular Eisenstein cohomology classes attached
to classeg,w), w € W?, Q € {P}, I(w) = g— 1 and it a cuspidal automorphic repre-
sentation olg. The Archimedean componentmfs the formrg, = X¢ n ® D¢ where the
parameterg e, n) are uniquely determined by the highest weightdepending onv. The
discrete series representati@y has parametek € Z uniquely determined up to sign by
L (cf. §4.8).

(2) vanishes otherwise.
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Table 4. Ay = ag1wo1 + agowgy for A = (c1,Cp,c3), w € Wh,

w 201 ao2

1 —C—C—Cc3—3 —-Cc—-1

S1 —Cp—C3—2 —C1—Cp—2
S —C1—C—C3—3 C+1

S3 —C1—Cp—2 —Cp—C3—2
1S3 —Cc2—1 —C—C—C3—3
1S —c3—1 - -1

S —Cp—C3—2 C1+C+2
3 - -1 —c3—1

$S3 —C1—C—2 Cr+C3+2
1995 —c3—1 c1+1

8B —-c—1 cz+1

13 c+1 —C1—Cr—Cc3—3
19253 c3+1 -1

S c1+1 —c3—1

381 —c—1 C1+Cr+C3+3
SIS Cp+C3+2 —C1—Cp—2
$HBHS c1+1 c3+1

$1539S1 Ci+Co+2 —Cp—C3—2
1B c+1 C1+Cx+C3+3
1B c3+1 c1+1
SIHBHS C1+Cr+C3+3 —c-—1
B C1+C+2 Co+C3+2
S19S153S Cp+C3+2 C1+Cr+2
19SS, C1+Cr+C3+3 c2+1

Table 5. Ay = a3 - p1 for A = (c1,C,¢3), W WP, Table 6. Ay = az- po for A = (c1,¢p,¢3), we WP,

aq

1

S1

83

$183
S
8B
$153%2
S$152S3
8B9S1
198BS
1839251
199395

—C1—C2—03—3)/3
—02—03—2)/3
—Cl—C2—2)/3
70271)/3
70371)/3
—Cl—l)/3
c2+1)/3
c3+1)/3
ca+1)/3
C2+C3+2)/3
c+c2+2)/3
Cc1+Cx+c3+3)/3

o~~~ o~~~ o~ o~ o~ o~ —~

w &

1 (—C1—2c;—c3—4)/4
S (—c1—c3—2)/4

81 (c1—c3)/4

$S3 (—c1+ca)/4

958 (a+c+2)/4
9915382 (C1+2c,+c3+4)/4




SU(2,2) and their automorphic cohomology 379

PROOF. LetA be the highest weight @i, E); it is given in coordinates with respect to the
fundamental weighte) (i = 1,2,3) by (c1,Cp,¢3). The assumption that is regular is expressed
byc >1fori=1,23.

The setW™ of minimal coset representatives for the left codéts\Ws contains twelve
elements altogether. Of interest for us are only the elements

(1) s12s3551 Of length 5
(2) s19:3%, resp.si 3525 of length 4
() 139, resp.s1$Ss, resp.s3s2s: of length 2.

In the first resp. second case the point of evaluakigifor the Eisenstein serids( f, A ) attached
to the non-trivial cohomology classes of ty(® w), 1 an irreducible cuspidal representation in
@ (Q € {P1}) whose Archimedean component is tempered is given by

Aw=[(c1+C2+C3+3)/3]- po, f(w) =5
Aw = [(c2+c3+2)/3] - po, f(w) =4
Aw=[(c1+C2+2)/3]- po, L(w) = 4.

SinceA is regular, these points lie inside the region of absolute convergence of the Eisenstein
series so thdE (f,A) is holomorphic afy. Then the clasgE( f, Ay )] is a non-trivial cohomology
class inH‘W+1(mg, Kr, % (py o ® E) of degree’(w) + 1. For a giverw € W™ there is only one
possible choice for the Archimedean compormnt= X n® Dy of the representatiormoccurring
in the type(rr,w) of the class we started with. The parametgrs) resp. the minimaKg-type
of the discrete series representatippcan be read off from the list given in 4.8.

In the third case of an element of length 3 the poisare given by

Aw = [(C2+1)/3]pq. resp.[(cs +1)/3]pq, resp.[(c1 + 1)/3]pq-

If Aw lies inside the region of absolute convergence of the defining sége ¢ >2i=1,2,3)
one gets as above a non-trivial cld&$f, Ay)] in H4(mg, KR, 9 (p},o @ E) Of degree 4.

If the Eisenstein serig5(f,A) has a pole al,, one gets by taking the residue a closed form
ResE(f,A) representing a cohomology classHn(G, E) which is square integrable. Under the
regularity condition such a class is an element in the cuspidal cohomolog$f. $ection 2]).

But a residue of an Eisenstein series cannot represent a cuspidal class. Thus the class represented
by ResE(f,A) is trivial. O

THEOREM5.6. Let{P:} € ¥ be the associate class represented by the standard maximal
parabolic Q-subgroupP, of G. Suppose that the highest weight= (cy, ¢z, c3) of the represen-
tation (v, E) is regular. Then the summand

P HYme,Kr, 7 (p,},¢ O E)
PE P (py)

in the Eisenstein cohomolodrg, (G, E)

(1) is built up in the degreeq = 6,5,4 and in the case&; = c3 by regular Eisenstein coho-
mology classes attached to clasgasw), w € WP, Q € {P>}, £(w) = 4 or £(w) = 3, and
T a cuspidal automorphic representationof Lo. The Archimedean componentmfs
of the formrt, = 1 (e n,v) where the parameters of the principal series representation is
uniquely determine¢up to the sign oh) by the highest weighi,, (cf. §4.9).
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(2) vanishes otherwise.

PROOF. The setW™ contains six elements altogether. Of interest for us are only the
elements

(1) 5183, of length4
(2) sps351 Of length3

(3) 251, resp.s;ss of length2.

Note that by 4.9, cohomology classes of typew) can only occur in the cases (1) and
(2) if the highest weight\ = (c;,¢p,c3) satisfies the condition; = c3. For A regular, as we
suppose, there are no cohomology classes of type) with /(w) = 2. Thus, we are reduced to
the first two cases. Then the point of evaluatiqrfor the Eisenstein serids(f,A) attached to a
non-trivial class of typgrr,w), rman irreducible cuspidal representationg (Q € {P.}) whose
Archimedean component is tempered is given by

Aw = [(CL+2c2+c3+4)/4] - po, /(w) =4
Aw = [(CL+C3+2)/4] - po, L(w) =3.

Except forc; = c3 = 1 this point lies inside the region of absolute convergence of the Eisenstein
series so thaE(f,A) is holomorphic af\y. Then[E(f,A)] give rise to non-trivial cohomology
classes irH*(mg, KR, ¢ (p,),o ® E). For a giverw € WP there are only two possible choices
for the Archimedean componerg, = | (¢,n,w) of rroccurring in the typém, w) of the class we
stated with. The corresponding parameters are given in 4.9. O

5.7.

In the case of the associate cld$%} represented by the standard minimal parabQic
subgrou@® of G we have to assume some familiarity with the results obtaine894|[

Given a pailQp C Q of parabolicQ-subgroups irfs with Qp € {Py} and a maximal parabolic
Q-subgroupQ there is the following relation between the corresponding \8&s resp.WQ of
minimal coset representatives for the left cossigg\Ws resp.Wo\We ([S94 4.7)). Letw?Q/Qo
be the set of representatives of minimal length for the left cosetipgfin Wg. Forw € W
there exist uniquely determined elemenwf¥ 2 in W2/ andw® in W such that

w=w¥.wQ and £(w)=L(WY)+wR). (43)

Under the assumption that the highest weighaf (v, E) is regular it is shown $94 6.3,7]) that
a necessary condition for a class of typew) to give rise to a non-trivial Eisenstein cohomology
class inH*(G,E) is that the inequality

((wR/%) > (1/2)(dimNgy (R)/ dimNo(R)) (44)

is satisfied. As usudis(R) denotes the group of real points of the unipotent radi¢abf a
parabolicQ-subgroupS. In our case, the right-hand side of (44) takes the v8j(ffor Q of P,
resp.3/4 for Q of type P.. Thus, the condition reads &6/ @) > 1. As a consequence, if a
givenw € W is also an element iW®, i.e., one hasv?®/ = 1 in the decomposition (43), the
condition is not satisfied.
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This argument leads us to compare theWs&t with the setdV™ resp.W™ as given in 3.2
when we analyse the possible Eisenstein cohomology classes attached to a non-trivial cohomol-
ogy class of typé,w), w e WP, Of interest for us are only the elements of length 6, 5 and 4 in
W<,

The unique elementg in WP of length6 is not contained iW"? i = 1,2. The correspond-
ing point of evaluation is

/\WG = (Cl +C2+C3+ 3) wWo1+ (Cz + 1)w02.

One haspp, = 3wp1 + wo2 SO thatAy,, lies in the region of absolute convergence of the corre-
sponding Eisenstein series. By 5[E(f,Ay;)] is a non-trivial regular Eisenstein cohomology
class inH%(mg, KR, & (py}.0 @ E).

There are three elementsWi of length 5. The elemersiS;S3s>s; =: salso lies inW™ so
that a class of typérr, w) with w = s cannot be lifted to a class id* (G, E). The two other ones

W =519515% W = 9815981
are not contained in any of the s&¥', i = 1,2. The corresponding poinfs, are given by
Aw = (C2+ €3+ 2)wo1 + (C1 + C2 + 2) o2
Awr = (C1+ C2 +2)wo1 + (C2 + €3 + 2) Woz-

As above the classes of tyjya, w) with w=w or w = w" give rise to Eisenstein cohomology
classes iH®(mg, KR, 9 (p},o ® E) in the generic case.

There are five elements WP of length 4. The elemergs;Sss; also lies inWP2, the
elementss; S35 resp.s;$,S3s; also lie inWPL, The remaining elements WP of length 4 are

S=s55%5 and ' =59,

they are not contained in any of the s&§, (i = 1,2). The corresponding points of evaluation
are given by

A¢ = (C3+1)wo1+ (C1+ 1) wo2
Agr = (C1+ 1)wo1+ (c3+ 1) wo2.

Forcy > 2 andcs > 2 classes of typérr,w) withw= s orw=g’ give rise to Eisenstein cohomol-

ogy classes iH*(mg, KR, ¢ (p},9 ® E). Forcy = 1 or cg = 1 possible residues of Eisenstein
series cannot contribute to the total cohomoldt(G,E) by an argument similar to the one

in 5.5 or 5.6: They cannot be lifted to the intermediate strata corresponding to the classes of
maximal parabolic subgroups. We summarize this discussion in the following theorem.

THEOREMb5.8. Let{R} € ¥ be the associate class represented by the standard minimal
parabolicQ-subgroupR, of G. Suppose that the highest weight= (cy, ¢y, c3) of the represen-
tation (v, E) is regular. Then the summand

B HYme Kr.Ae (R0 ®E)
P P (R

in the Eisenstein cohomolodig (G, E)
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(2) is built up in degree 6 by regular Eisenstein cohomology classes attached to classes
(1, Wg), Wg the unique longest element W<, Q € {Py}, ¢(Wg) = 6, and 1T a cuspi-
dal automorphic representation at. The Archimedean componentmis determined
via 4.1 by the highest weight,, as given in Tabld.

(2) is built up in degree = 5,4 by regular Eisenstein cohomology classes attached to classes
(T, w) with w equals

W = 51981535 or W = 58153581 for q =5,
resp.
S =955 or 8 = 5,535,5; for = 4.

In each case, the Archimedean componentigfdetermined vid.1 by the corresponding
weightpy, as given in Tabld.
(3) vanishes otherwise.

6. Cuspidal cohomology.

For the sake of completeness we also consider the{¢glse- {G} with G = SU(2,2). By
the very definition the corresponding summand is cuspidal cohomology

HausdG.E)= @ H*(mg,Kr, 9 (6}, @ E).
¢E¢E>{G}

It may be rewritten by using the irreducible unitary representatioasg as a finite algebraic
sum

P [H*(me,Kr,Hr, ©E) @ Hy ™™

me dJE‘{G}

Xmeo = XE*
where the sum ranges over all cuspidal automorphic representatien®g (g, for which the
infinitesimal charactey, of its Archimedean component matches the one of the representa-
tion E* contragradient t&. Thus we are led to determine all irreducible unitary representations
of the real Lie group(R) with non-vanishing mg, Kr)-cohomology. These are classified (up
to equivalence) in\-Z]. The representations in question are associated to vaflestable
parabolic subalgebragof gc. Consider one of these and let= Ic © u be af-stable Levi de-
composition. Theric is the complexification of a real subalgebiraf g. The normalizer ofy
in G(R) is connected, it coincides with the connected Lie subgroup(&) with Lie algebral.
Starting off from one dimensional unitary representaficof this group one obtains (if a positiv-
ity condition for the differential is satisfied) via cohomological induction an irreducible unitary
representation to be denotdg(A ). The representations so obtained exhaust (up to infinitesimal
equivalence) all irreducible unitary representation&@R) with non-zero cohomology.

Following [V-Z], we list the 8-stable parabolic subalgebras and the cohomological repre-

sentations o8U(2,2) in §6.1.

6.1. O-stable parabolic subalgebras.
In the setting of Section 3, we specify the Cartan involutibiby 8(g) = 'g~* and the
maximal compact subgrouir by the set ofo-fixed elements. PUY = 1/v/2(3? 2). Let
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Table 7. Kc-conjugacy classes @ -stable parabolic subalgebrasgof

3 X =3XE Puy e = X =3 Xi§ Puy Npe

0 X=0 0 l(ag) x1=x4>x2=x3 [1,1;0

I X1 >Xp >X4>X%3 [0,0;4] VI X4 >X3>X1 >Xo [0,0;—4]

I(a) X1 =X >X4>X3 [0,0;4] Vi@ xg=X3>Xx1>X [0,0;—4]

I(b) XxX1>X=xa>x3 [1/2,1/2;3 VI(b) xa>xg=x1>x2 [1/2,1/2;-3
I(c) Xx1>X>x4=x3 [0,0;4 VI(c) X4>X3>x =X [0,0;—4]
l(ab) xg=%=x4>x3 [0,1;2 Vi(ah) xg=x3=x1>% [1,0;-2]
l(a x1=x2>x4=x3 [0,0;4 Vli(a xg=x3>x1=x2 [0,0;—4]
I(be) x1>x2=x4=x3 [1,0;2] Vi(bc) x4 >x3=x1=% [0,1;—-2]

Il X1>X4>X%>X%X3 [1,1;2] V X4 >X1>X3>% [1,1;2

@ xx=xa>%>x3 [1/2,3/2;1]] V(a3 Xg=X1>X3>X2 [3/2,1/2;-1]
lc) x1>xa>%=x3 [3/2,1/2;1] V(c) Xa>X1>X3=X2 [1/2,3/2;—1]
1l X1 > X4>X3> X2 [2,0;0 v X4 > X1 > X2 > X3 [0,2;0]

M) x3>xa=x3>x% [2,0;0 V(b)) xa>x31=%>x3 [0,2;0

Ad(Y) be a Cayley transform defined by Thenh’ := Ad(Y)h becomes a compact Cartan
subalgebra in the Lie algebtaf Kr. We identify (h')* with h* by the Cayley transform and so
with the root systemp = ®(gc, hc). Then a computation shows that the compact roots (resp.
noncompact roots) are{ By, Bz} (resp. £{p1+ B2+ B3, B2, B2 + B3, B1 + B2}). We define &-
stable parabolic subalgebra in the following way. Note that the fundamental Cartan subalgebra
in our case is itself compact. Take € /—1(h')*. Put(Ix)c (resp. ux) be the sum of root
spacegig of roots B such that(3,x*) = 0 (resp.(B,x*) > 0). Thenqy = (Ix)c + ux- becomes
a 6-stable parabolic subalgebra determinedchy

TheK¢-conjugacy classes of tiestable parabolic subgroups are found in TableHN ]).
It says the spacg¢/—1(h')* is divided into 26K¢-conjugacy classes modulo the compact Weyl
group; there aré openKc-orbits=j (j =1,...,VI), while the others appear in their closuigg,,
(x = (a),(b),(c),(ab), (ag), (bc), (abg). These orbits correspond to tkg-conjugacy classes of
6-stable parabolic subalgebras one by one, independent of the choite &;.

6.2. Hodge type of the cohomological representations.

Let q be af-stable parabolic subalgebra determineddyy Assume that the unitary char-
acterA € =; of Ic is good and integral with respect tpandg ([K-V, 0.49]). Then there is
an irreducible unitary representation determined dy ), whose underlyindg, K)-module is
denoted byA,(A). It belongs to the set of discrete series representations if and drily ébm-
pact. Its infinitesimal character and the mininkatype are given by + pc andA + 2py,npe
respectively.

Let A be the highest weight of the finite dimensional representgtioft) of G, taken
as a dominant integral weight with respect to the given positive system Bssume thatA
coincides with the highest weight of the contragradient representatiBnrafmely A = —wgA
with the longest elementis. In our setting of coordinate$3.3), the dual of(ci,cy,c3) is
(€3,C2,C1). By [V-Z, Theorem 5.5, Proposition 6.13], tiig, K)-cohomology ofA,(A) and its
Hodge type are detected. We list the result in Table 8. (Note that not all representations are
going to appear for a giveR, and that they are not necessarily distinct, for exampéed|(a)
of A = 0 give an equivalent representation.) By Poircduality, A;(A) which contributes to
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Table 8. The degreg(< 4) and the Hodge typép, q)
of (g,K)-cohomologyH9(g,K,Aq(A) @ E).

HY (p.a) types ofAq(A)
H*  (4,0) 1, 1(a), 1(c), I(ac)
(3,1) 11, 1(ab), I(bc)
(2,2) 11,11 (b), IV, IV (b), lll (ag), triv.
(1,3) V, Vi (ab), VI (bc)
(0,4) VI, Vi(a), VI(c), VI (ac)
H3 (3,0) I(b)
(2,1) I1(a), l(c)
(1.2) V(a),V(c)
(0,3) VI (b)
H2 (2,0) I(ab), 1(bc)
(1,1) Il (ac), triv.
(0,2) VI (ab), VI (bc)
H® (0,0) triv.

H(P9 also contributes t&1(“~94-P). Note that, if the highest weight is regular, the cuspidal
cohomology coincides with?>-cohomology and the discrete serids<(1,1l,...,VI) only happen
as non-trivial cohomology classes.

6.3. The minimalK-type of A;(A).

Because the minima{-types of the representatiofg(A) are usually of interest, we sum-
marize the coordinate expression of its highest weights. The maximal compactKjistigo-
morphic toS(U (2) x U(2)), so the set of the isomorphism classes of irreducible representations
K of K is by use of Weyl's trick the same as the set of the classes of irreducible finite dimensional
representations d¥GL;,(C) x GL(C)) which has already appeared§ja.5. Take the basis of
the Cartan subalgebtg as

11 v 111 v 0 1
Up= = Up= = Us =
! 2<|' |'>’ 2 2<|’ —|'>’ 3 (12 o)’

with I’ = diag(1, —1). Then we can relate the elemefit®f /—1(h')* with the highest weights
[uz, Uz; ug] Of T[uy,up;us) by

For example, the compact rogBs, B3 and the noncompact roots are represented?h; 0],
[0,2;0] and [+1,41;2], respectively. The highest weight of the minini&itype of A;(A) is
given byA +2p, . and thep, n can be read off from Table 7.
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