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Abstract. The structure of the ring of Hodge cycles on a certain family of
abelian varieties of CM-type is investigated. This leads to an interesting combinato-
rial problem related to posets based on complete p-ary trees. A complete solution to
the problem is given for the case p = 2.

1. Introduction.

In [3] we investigated the structure of the Hodge rings of abelian varieties of CM-
type where the corresponding CM-fields are cyclic extensions of Q of degree 2pq with
p, q distinct odd primes. Through our efforts to generalize the results obtained there to
the cases of arbitrary abelian CM-fields of non-squarefree degree, we come across the
fact that there is an essential combinatorial difficulty already for the cases of prime-
power degree. More precisely, we come to realize that we should understand as fully
as possible the cases of CM-fields of degree 2pn, n ≥ 2, with p an arbitrary prime,
such that their Galois group are isomorphic to Z/2Z × Z/pnZ. (The corresponding
abelian varieties will be called of p-power type for simplicity.) We, however, have found
that unexpectedly our theory on the kernels of lowering operators for ranked posets
developed in [2] helps us greatly to understand the structure of Hodge rings of those
abelian varieties. The main purpose of the present paper is to describe how the theory
gives us a proper perspective for the study, and to apply it to a complete classification
of degenerate CM-types for the cases of abelian varieties of 2-power type. (The more
general p-power cases will be treated separately in the forthcoming paper.) Our result
enables one to understand a true mechanism which lies behind mysterious phenomena
observed in some examples in [4, (3.12)] of degenerate abelian varieties of 2-power type
(see Example in the last section). Furthermore as an application of our classification,
we show that for any n ≥ 3, the minimum of ranks of Hodge groups among those for
simple 2n-dimensional abelian varieties of 2-power type is equal to 2n−1 + 2. As is the
case in [2], [3], our problem can be formulated in purely combinatorial terms, and the
first four sections are devoted to the study of the raised kernels of lowering operators for
a certain family of posets. More precisely, let p be an arbitrary prime number and let
P (p) =

∐
0≤i<∞ P (p)(i) denote the ranked poset based on the complete p-ary tree. Let

V (i) =
{ ∑

a∈P (p)(i) na[a];na ∈ Z
}

be the free Z-module generated by P (p)(i), and for
any i > j, let Li,j : V (i) → V (j) (resp. Rj,i : V (j) → V (i)) be the lowering (resp. raising)
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operator defined by Li,j([a]) =
∑

b∈P (p)(j),b≤a[b] (resp. Rj,i([c]) =
∑

b∈P (p)(i),b≥c[b]). For

any subset I ⊂ [0, n], let K
(n)
I =

∑
i∈I Ri,n(Ker(Li,i−1)) ⊂ V (n) and call it the raised

kernel. The problems we have in mind are the following:

(a) What kinds of sign-vectors are there in K
(n)
I ?

(b) What kinds of (0,1)-vectors are there in K
(n)
I ?

(Here an element
∑

na[a] is said to be sign-vector (resp. (0,1)-vector) if na ∈ {±1} (resp.
na ∈ {0, 1}) for any a). We give a complete solution to these problems when p = 2 by
providing

(A) an algorithm to construct all sign-vectors (resp. (0,1)-vectors) in K
(n)
I ,

(B) an algorithm which computes a generating function for the numbers of sign-vectors
(resp. (0,1)-vectors) in K

(n)
I .

These results translate into the ones for Hodge cycles as

(A′) an algorithm to construct all degenerate CM-types for the CM-fields K with
Gal(K/Q) ∼= Z/2Z ×Z/2nZ,

(B′) an algorithm to enumerate all Hodge cycles on the corresponding abelian varieties.

These number-theoretical results are explained in the last section.
The plan of this paper is as follows. Section two reviews and extends a part of

the theory of lowering operators for ranked posets developed in [2]. In Section three
we introduce a ranked poset P (p) for any prime number p and investigate the structure
of the kernels of the lowering operators. In Section four we focus our attention to the
poset P (2), and investigate various subsets related to the raised kernels of lowering
operators. Here we come across an interesting family of Laurent polynomials which
emerge as counting functions of certain combinatorial objects. (See Examples 4.11, 4.12
for concrete examples.) In Section five, we translate the combinatorial results into those
for Hodge cycles on abelian varieties of 2-power type.

The author would like to thank the referee for his/her useful comments.

2. Ranked poset and related operators.

In this section we review and extend a part of the theory developed in [2], and fix
some notation.

Let P =
∐

0≤i<∞ P (i) be an arbitrary ranked poset (=partially ordered set) with
P (i) the set of elements of rank i. When convenient, we add the minimum element 0 to
P , and endow it with level −1 : P (−1) = {0}. We assume that each P (i) is a finite set.
For any i ≥ 0, let

V (i) =
⊕

a∈P (i)

Z[a]

be the free Z-module with basis [a], a ∈ P (i). For any pair i, j of nonnegative integers
with i ≥ j, let
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Li,j : V (i) → V (j)

be the Z-linear map defined by

Li,j([a]) =
∑

b∈P (j)

b≤a

[b] ∈ V (j),

and let L0,−1 = 0 : V (0) → {0}. We call Li,i−1 the lowering operator at level i. Similarly
we define

Rj,i : V (j) → V (i), 0 ≤ j ≤ i

by

Rj,i([a]) =
∑

b∈P (i)

a≤b

[b] ∈ V (i),

and call Ri,i+1 the raising operator at level i. A ranked poset P =
∐

0≤i<∞ P (i) is said to
be regular if for any a ∈ P (i), both numbers #{b ∈ P (i−1); b ≤ a} and #{c ∈ P (i+1); c ≥
a} depend only on i. For a regular ranked poset, we set

`i = `i(P ) = #{b ∈ P (i−1); b ≤ a},
ri = ri(P ) = #{c ∈ P (i+1); c ≥ a}.

For any i ≥ 0 we introduce a natural nondegenerate inner product 〈, 〉 on V (i) by〈 ∑
a∈P (i) na[a],

∑
a∈P (i) ma[a]

〉
=

∑
a∈P (i) nama ∈ Z. For any Z-submodule M of V (i),

we denote the orthogonal compliment of M by M⊥. The following proposition can be
easily checked.

Proposition 2.1. For a regular ranked poset, we have

〈
Li+1,iRi,i+1[a], [a]

〉
= ri, for any a ∈ P (i), i ≥ 0,

〈
Ri−1,iLi,i−1[a], [a]

〉
= `i, for any a ∈ P (i), i ≥ 1.

The lowering and raising operators are dual to each other in the following sense.

Proposition 2.2. For any i ≥ 1, v ∈ V (i), w ∈ V (i−1), we have

〈
Li,i−1v,w

〉
=

〈
v, Ri−1,iw

〉
.

Proof of Proposition 2.2. By linearity, it suffices to show this when v = [a] ∈
V (i), w = [b] ∈ V (i−1) with a ∈ P (i), b ∈ P (i−1). The left hand side is equal to
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〈
Li,i−1[a], [b]

〉
=

〈 ∑

c∈P (i−1)

c≤a

[c], [b]

〉
=

{
1, if b ≤ a,

0, otherwise.

On the other hand the right hand side is equal to

〈
[a], Ri−1,i[b]

〉
=

〈
[a],

∑

d∈P (i)

b≤d

[d]

〉
=

{
1, if b ≤ a,

0, otherwise.

Hence they are the same and the proposition is proved. ¤

We introduce several objects of our main concern. For any i ≥ 0, let

Sign(i) =
{ ∑

a∈P (i)

na[a] ∈ V (i);na ∈ {±1} for any a

}
⊂ V (i).

The elements of Sign(i) are called sign-vectors at level i. Similarly let

Bit(i) =
{ ∑

a∈P (i)

na[a] ∈ V (i);na ∈ {0, 1}
}

.

The elements of Bit(i) are called (0,1)-vectors at level i. Let

K(i) = Ker(Li,i−1) ⊂ V (i),

S(i) = (K(i))⊥ ∩ Sign(i).

Furthermore for any subset I ⊂ [0, n], let

K(n)
I =

⊕

i∈I

Ri,n(K(i)) ⊂ V (n),

S(n)
I = Sign(n) ∩ (

K(n)
I

)⊥ ⊂ V (n),

E(n)
I =

{
v ∈ Bit(i) ∩ (

K(n)
I

)⊥; v is indecomposable
}
-{0}.

(Here an element v ∈ Bit(i)∩(K(n)
I )⊥ is said to be indecomposable if it cannot be written

as v = v1+v2, v1, v2 ∈ Bit(i)∩(K(n)
I )⊥-{0}.) By the definition, we have S(n)

I =
⋂

i∈I S(n)
{i},

E(n)
I =

⋂
i∈I E(n)

{i}. Our main objective is to determine the structures of these three

subsets K(n)
I ,S(n)

I ,E(n)
I ⊂ V (n) as explicitly as possible, when the poset P is based on

the complete p-ary tree with p an arbitrary prime number.
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3. Ranked poset P (p) and the kernel of lowering operators.

In this section we introduce a ranked poset P (p), and investigate the kernels of
lowering operators.

3.A. Definition of P (p).
For any prime number p, let P (p)(i) = Z/piZ, i ≥ 0, and P (p) =

∐
0≤i<∞ P (p)(i).

A partial order on it is defined by the rule that

a ≥ b if and only if

a ∈ P (p)(i), b ∈ P (p)(j), with i ≥ j and a(mod pj) = b.

Thus the poset P (p) is based on the complete p-ary tree with root P (p)(0) = {0}. This
poset is regular since

`i = `i(P (p)) = #{b ∈ P (i−1); b ≤ a} = 1, i ≥ 1,

ri = ri(P (p)) = #{c ∈ P (i+1); c ≥ a} = p, i ≥ 0.

In particular, we have an important formula

Li+1,iRi,i+1 = p.idV (i) holds for any i ≥ 0.

From now on we use the symbols V (i),K(i), . . ., introduced in the previous section, as
those for the poset P (p).

3.B. Structure of the kernel K(i).
For any Z-algebra R, we identify a R-valued function f : Z/piZ → R with the

element
∑

a∈P (p)(i) f(a)[a] ∈ (V (i))R = V (i) ⊗Z R, and denote the latter by f too. In
this sense a character χ ∈ Hom(Z/piZ,C∗) is regarded as an element of (V (i))C . The
following proposition says a little more.

Proposition 3.1. For any i ≥ 0, every character χ ∈ Hom(Z/piZ,C∗) of con-
ductor pi belongs to (K(i))C . Moreover they constitute a C-basis of (K(i))C .

Proof of Proposition 3.1. Since both assertions are obvious when i = 0 (recall
that the lowering operator L0,−1 is defined to be the zero map), we assume i > 0.
For the first assertion, it suffices to show, by the nondegeneracy of the inner product,
that 〈Li,i−1χ, [b]〉 = 0 holds for any b ∈ P (i−1). By Proposition 2.2 we know that
〈Li,i−1χ, [b]〉 = 〈χ,Ri−1,i[b]〉, and this is, by definition, equal to

〈
χ,Ri−1,i[b]

〉
=

∑

a∈P (p)(i)

a≥b

χ(a) =
∑

a∈P (p)(i)

a(mod pi−1)=b

χ(a)

= (const.) ·
∑

0≤j≤p−1

ζj
p (since the conductor of χ is assumed to be pi)

= 0.
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For the second assertion, note that Li,i−1 : V (i) → V (i−1), i ≥ 1, are surjective. Hence
the dimension of the C-vector space (K(i))C is equal to #(Pi) − #(Pi−1) = pi − pi−1,
which is equal to the number the characters of conductor pi. Hence they constitute a
basis of (K(i))C . This completes the proof of Proposition 3.1. ¤

As a corollary, we have the following.

Corollary 3.1.1. V (i) =
⊕

0≤j≤i Rj,i(K(j)), where the summands are mutually
orthogonal. In particular, for any subset I ⊂ [0, i], we have

(
K

(i)
I

)⊥ = K
(i)
[0,i]−I .

If we extend the scalar to C, then each summand Rj,i((K(j))C) has a C-basis

{χ ∈ Hom(Z/piZ,C∗); χ is of conductor pj}.

Next we construct a Z-basis of K(i).

Proposition 3.2. For each pair (s, t) of integers with 0 ≤ s ≤ pi−1 − 1, 1 ≤ t ≤
p− 1, let

v
(i)
(s,t) = [s]− [s + tpi−1] ∈ V (i).

Then {v(i)
(s,t); 0 ≤ s ≤ pi−1 − 1, 1 ≤ t ≤ p− 1} constitute a Z-basis of K(i).

Proof of Proposition 3.2. It follows from the very definition of the lowering
operator Li,i−1 that every v

(i)
(s,t) belongs to the kernel K(i). Moreover, since each of

elements [a] with pi−1 ≤ a ≤ pi − 1 appears as a summand of v
(i)
(s,t); 0 ≤ s ≤ pi−1 − 1,

1 ≤ t ≤ p − 1 once and only once. Hence the latter elements are linearly independent.
This completes the proof of Proposition 3.2. ¤

Combining this proposition with Corollary 3.1.1 we obtain the following.

Proposition 3.3.

V (i) =
⊕

1≤j≤i

〈
Rji

(
v

(j)
(s,t)

)
; 0 ≤ s ≤ pj−1 − 1, 1 ≤ t ≤ p− 1

〉
Z
⊕Z.R0,i([0])

(orthogonal direct sum).

3.C. Structures of (K(i))⊥ and S(i).
The following proposition shows that there is a simple Z-basis of (K(i))⊥.

Proposition 3.4. Let wu = Ri−1,i([u]) for each u ∈ P (i−1). Then {wu;u ∈
P (i−1)} constitute a Z-basis of (K(i))⊥. In particular, w =

∑
a∈P (i) na[a] ∈ (K(i))⊥ if

and only if the coefficients na for a ≥ b ∈ P (i−1) depend only on b.
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Proof of Proposition 3.4. Let v ∈ K(i). Then by duality we have

〈v,wu〉 = 〈v, Ri−1,i([u])〉 = 〈Li,i−1v, [u]〉 = 0.

Moreover the elements wu, u ∈ P (i−1) are obviously linearly independent, and the num-
ber of these is equal to #(P (i−1)) = pi−1, which is the right rank of the complement
(K(i))⊥. This completes the proof of Proposition 3.4. ¤

Now we can investigate the sets S(i) = (K(i))⊥ ∩ Sign(i), i ≥ 0. The following
proposition is a direct consequence of Proposition 3.4.

Proposition 3.5. For any b ∈ P (i−1), let eb = Ri−1,i([b]) ∈ V (i). Then

S(i) =
{ ∑

b∈P (i−1)

εbeb; εb ∈ {±1}
}

.

Every element of S(i) is invariant under the natural action of pi−1Z/piZ ∼= Z/pZ on
P (i) = Z/piZ. In particular, the number of its elements is #(S(i)) = 2pi−1

.

4. Orthogonal complements: The case of P (2).

In this section, we focus our attention solely to the poset P (2), and investigate the
structure of S(n)

I and E(n)
I for this poset.

4.A. Structure of S(n)
I .

It follows from Proposition 3.2 for p = 2 that the kernel K(i)
{i} = K(i) is spanned

by v
(i)
(s,1) = [s] − [s + 2i−1], 0 ≤ s ≤ 2i−1 − 1. We write v

(i)
s = v

(i)
(s,1) for simplicity. We

introduce two operators Eeven and Eodd which will play a fundamental role. Let Eeven :
P (2) → P (2) denote the map defined by a(mod 2i) 7→ 2a(mod 2i+1) for any a ∈ P (2)(i).
Similarly let Eodd : P (2) → P (2) be the map defined by a(mod 2i) 7→ 2a + 1(mod 2i+1).
Note that both maps are injective and order-preserving. They raise the level of every
element by one. Furthermore we have a disjoint sum decomposition

P (2) = P (2)(0)
∐

Eeven(P (2))
∐

Eodd(P (2))

and accordingly

V (i) = Eeven(V (i−1))⊕ Eodd(V (i−1)), i ≥ 1. (4.1)

Note here that Supp(Eeven(V (i−1))) ∩ Supp(Eodd(V (i−1))) = ∅, where we define
Supp

( ∑
a∈P (2)(i) na[a]

)
= {a ∈ P (2)(i);na 6= 0} ⊂ P (2)(i). Hence the right hand side

of (4.1) is actually an orthogonal direct sum with respect to 〈, 〉. The inner products on
both sides are related by the formula

〈
Eeven(w1) + Eodd(w′1), Eeven(w2) + Eodd(w′2)

〉
V (i) = 〈w1, w2〉V (i−1) + 〈w′1, w′2〉V (i−1)



62 F. Hazama

for any w1, w2, w
′
1, w

′
2 ∈ V (i−1). Furthermore one can check that the natural commuta-

tivity relations

Eeven ◦Ri−1,n−1 = Ri,n ◦ Eeven , Eodd ◦Ri−1,n−1 = Ri,n ◦ Eodd (4.2)

Eeven ◦ Ln−1,i−1 = Ln,i ◦ Eeven , Eodd ◦ Ln−1,i−1 = Ln,i ◦ Eodd (4.3)

hold. By using these formulas, one can check easily the validity of the following simple
criterion for an element of V (n) to belong to

(
K(n)
{i}

)⊥.

Proposition 4.1. Let i ∈ [2, n]. Then an element v ∈ V (n) belongs to
(
K(n)
{i}

)⊥ if
and only if v is expressed as:

v = Eeven(w) + Eodd(w′), w, w′ ∈ (
K(n−1)
{i−1}

)⊥
. (4.4)

Since S(n)
I =

⋂
i∈I S(n)

{i}, Proposition 4.1 implies the following.

Proposition 4.2. Suppose that I ⊂ [2, n]. Then

S(n)
I = Eeven

(
S(n−1)

I−1

)
+ Eodd

(
S(n−1)

I−1

)
,

where I − 1 = {i− 1; i ∈ I} ⊂ [1, n− 1].

When I ∩ {0, 1} 6= ∅, we need a little more care. First we deal with the case
I ∩ {0, 1} = {1}. For any v =

∑
a∈P (n) va[a] ∈ V (n), let

w(v) =
∑

a∈P (n)

va ∈ Z,

and call it the weight of v. Note that if s ∈ Sign(n), then −2n ≤ w(s) ≤ 2n and w(s) is
always even. For any subset T ⊂ V (n) and an integer w, we let

T (w) = {s ∈ T ;w(s) = w}.

Proposition 4.3. Suppose that I ∩ {0, 1} = {1}. Then

S(n)
I =

∐

−2n−1≤w≤2n−1

(
Eeven

(
S(n−1)

I−{1}−1(w)
)

+ Eodd

(
S(n−1)

I−{1}−1(w)
))

.

In particular, when I = {1} and n ≥ 2, we have

S(n)
{1} =

∐

−2n−1≤w≤2n−1

(
Eeven

(
Sign(n−1)(w)

)
+ Eodd

(
Sign(n−1)(w)

))
.
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When I = {1} and n = 1,

S(1)
{1} = {[0] + [1],−[0]− [1]}.

Proof of Proposition 4.3. For any v ∈ V (n), it follows from the definition of
Kn
{1} that v ∈ (

Kn
{1}

)⊥ if and only if v = Eeven(u)+Eodd(u′) with w(u) = w(u′). Hence
the assertion follows from Proposition 4.2. ¤

The case I ∩ {0, 1} = {0} is treated similarly, since K(n)
{0} is generated by the all-one

vector 1(n) =
∑

a∈P (2)n [a].

Proposition 4.4. Suppose that I ∩ {0, 1} = {0}. Then

S(n)
I =

∐

−2n−1≤w≤2n−1

(
Eeven

(
S(n−1)

I−{0}−1(w)
)

+ Eodd

(
S(n−1)

I−{0}−1(−w)
))

.

Remark 4.5. Let ι
(n)
1,−1 : V (n) → V (n) be the automorphism defined by

ι
(n)
1,−1

(
Eeven(u) + Eodd(u′)

)
= Eeven(u)− Eodd(u′).

The two preceding propositions show that ι
(n)
1,−1 induces a bijection between S(n)

{1,i1,i2,...,ik}
and S(n)

{0,i1,i2,...,ik} for any subset {i1, i2, . . . , ik} ⊂ [2, n].

The next proposition deals with the case I ⊃ {0, 1}.
Proposition 4.6. Suppose I ⊃ {0, 1}. Then

S(n)
I = Eeven

(
S(n−1)

I−{0,1}−1(0)
)

+ Eodd

(
S(n−1)

I−{0,1}−1(0)
)
.

Equivalently we have

S(n)
I = Eeven

(
S(n−1)

I−{0}−1

)
+ Eodd

(
S(n−1)

I−{0}−1

)
.

Therefore if we define {0, j1, . . . , j`}− 1 to be {j1− 1, . . . , j`− 1}, then the same equality
as in Proposition 4.2 holds.

Proof of Proposition 4.6. For any v ∈ V (n), we have the following series of
equivalences

v ∈ (
K(n)
{0}

)⊥ ∩ (
K(n)
{1}

)⊥ ⇐⇒ 〈v,1〉 =
〈
v, ι

(n)
1,−1(1)

〉
= 0

⇐⇒ v = Eeven(u) + Eodd(u′) with w(u) = w(u′) = 0.

This concludes the proof of Proposition 4.6. ¤
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The four propositions, Proposition 4.2, 4.3, 4.4, and 4.6 provide us with an effective
recursive algorithm to generate all the elements of S(n)

I once a subset I ⊂ [0, n] is given.

4.B. Generating algorithm for S(n)
I .

We show that there is a simple inductive algorithm which generates all elements in
S(n)

I .
Let P(X) denote the set of all subsets of X for any set X. Let two operators

L,R : P(V (i)) → P(V (i+1)), i ∈ [0, n− 1] be defined by

L(T ) = Eeven(T ) + Eodd(T ),

R(T ) =
∐
w

(
Eeven(T (w)) + Eodd(T (w))

)
.

For any subset I ⊂ [1, n], we define b(I) ∈ {1, 1}n by

b(I) = ε1 · · · εn, where εi =

{
1, if i ∈ I,

1, if i /∈ I.

We call elements of {1, 1}n binary vectors, and b(I) the binary expression of I. Note
that b defines a one-to-one correspondence between P([1, n]) and {1, 1}n. Furthermore
to any binary vector b, we attach an operator

Gb = X1 · · ·Xn : P(V (0)) → P(V (n)), where Xi =

{
L, if bi = 1,

R, if bi = 1.

Then the contents of Propositions 4.2 and 4.3 are translated into the following formula,
which gives us a simple algorithm which generates all elements in S(n)

I .

Theorem 4.7. Suppose that I ⊂ [1, n]. Then S(n)
I = Gb(I)({[0],−[0]}).

4.C. Weight enumerator for S(n)
I .

Our objective here is to enumerate the elements of S(n)
I . It is convenient for us to

introduce the weight enumerator W
(n)
I (x) ∈ Z[x, x−1], defined by

W
(n)
I (x) =

∑

−2n≤w≤2n

#
(
S(n)

I (w)
)
xw.

In particular, we have

#
(
S(n)

I

)
= W

(n)
I (1). (4.5)

Note that when I ⊃ {0}, every element in S(n)
I is of weight zero, hence the corresponding

weight enumerator is actually a constant. For ease of description, we define two operators,
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which correspond to L and R introduced above. For any Laurent polynomial f(x) =∑
−N≤n≤N anxn, let

[2](f)(x) =
∑

−N≤n≤N

a2
nx2n.

Furthermore let

B(f)(x) = (f(x))2,

and let Bi = B ◦ · · · ◦B︸ ︷︷ ︸
i times

.

Proposition 4.8. Suppose that I ⊂ [1, n]. Let I = {i1, . . . , ik} with i1 < · · · < ik.
Then

W
(n)
I =

(
Bi1−1 ◦ [2] ◦Bi2−i1−1 ◦ [2] ◦Bi3−i2−1 ◦ [2]◦
· · · ◦ [2] ◦Bik−ik−1−1 ◦ [2] ◦Bn−ik

)
W (0),

where W (0)(x) = x + x−1.

Proof of Proposition 4.8. We show this when k = 3, because it indicates a
general pattern most clearly, and it is easy to extend it to the argument applicable for
the general case. Let I = {i1, i2, i3}, i1 < i2 < i3. When i1 ≥ 2, applying Proposition
4.2 i1 − 1 times, we obtain

W
(n)
{i1,i2,i3} =

(
W

(n−1)
{i1−1,i2−1,i3−1}

)2 = · · · = (
W

(n−i1+1)
{1,i2−i1+1,i3−i1+1}

)2i1−1

= Bi1−1
(
W

(n−i1+1)
{1,i2−i1+1,i3−i1+1}

)
.

Note that the equality obtained here is valid also for the case i1 = 1 since B0 is the
identity map by definition. Then Proposition 4.3 shows that

W
(n−i1+1)
{1,i2−i1+1,i3−i1+1} = [2]

(
W

(n−i1)
{i2−i1,i3−i1}

)
.

Applying Proposition 4.2 i2 − i1 − 1 times, we obtain

W
(n−i1)
{i2−i1,i3−i1} =

(
W

(n−i2+1)
{1,i3−i2+1}

)2i2−i1−1

= Bi2−i1−1
(
W

(n−i2+1)
{1,i3−i2+1}

)
.

Then Proposition 4.3 implies that

W
(n−i2+1)
{1,i3−i2+1} = [2]

(
W

(n−i2)
{i3−i2}

)
.
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Applying Proposition 4.2 i3 − i2 − 1 times, we obtain

W
(n−i2)
{i3−i2} = Bi3−i2−1W

(n−i3+1)
{1} .

Finally Proposition 4.3 gives us the equality

W
(n−i3+1)
{1} = [2]

(
W (n−i3)

)
.

Hence we complete the proof when k = 3, and by quite a similar reasoning, we obtain
the assertion for the general case. ¤

Note that when I ⊃ {0}, the weight polynomial is a constant. Let c(f) denote the
constant term of a Laurent polynomial f . Then by the very definition of the weight
polynomial, we have the following.

Proposition 4.9. Suppose that I ⊃ {0}. Then W
(n)
I = c(W (n)

I−{0}).

The content of Proposition 4.8 can be expressed again by binary expression more
neatly. Let 1 ∈ {1, 1} (resp. 1 ∈ {1, 1}) acts on Z[x, x−1] through B (resp. [2]).
Then we have the following restatement of Proposition 4.8 using binary expressions. Let
W (m) = BmW (0), m ≥ 1.

Theorem 4.10. Suppose that I ⊂ [1, n]. Then W
(n)
I = b(I)W (0).

Now we examine a few examples.

Example 4.11. The case n = 2. The weight polynomials are computed as follows.

W
(2)
{2}(x) = (1 1)W (0)(x) = (B1 ◦ [2])W (0)(x) =

(
(x + x−1)[2]

)2

= (x2 + x−2)2 = x4 + 2 + x−4,

W
(2)
{1}(x) = (1 1)W (1)(x) = (B0 ◦ [2])W (1)(x) =

(
(x + x−1)2

)[2]

= (x2 + 2 + x−2)[2] = x4 + 4 + x−4,

W
(2)
{0}(x) = c(W (2)) = c

(
(x + x−1)4

)
= 6,

W
(2)
{1,2}(x) = (1 1)W (0)(x) = (B0 ◦ [2] ◦B0 ◦ [2])W (0)(x) =

(
(x + x−1)[2]

)[2]

= (x2 + x−2)[2] = x4 + x−4,

W
(2)
{0,2}(x) = c

(
W

(2)
{2}

)
= 2,

W
(2)
{0,1}(x) = c

(
W

(2)
{1}

)
= 4,

W
(2)
{0,1,2}(x) = c

(
W

(2)
{1,2}(x)

)
= 0.
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Hence it follows from (4.5) that

#
(
S(2)
{2}

)
= 4, #

(
S(2)
{1}

)
= 6, #

(
S(2)
{0}

)
= 6,

#
(
S(2)
{1,2}

)
= 2, #

(
S(2)
{0,2}

)
= 2, #

(
S(2)
{0,1}

)
= 4, #

(
S(2)
{0,1,2}

)
= 0.

Therefore the total of elements of
⋃

I 6=∅ S(n)
I is computed as follows:

#
( ⋃

I 6=∅
S(n)

I

)
= #

(
S(2)
{2}

)
+ #

(
S(2)
{1}

)
+ #

(
S(2)
{0}

)−#
(
S(2)
{1,2}

)−#
(
S(2)
{0,2}

)

−#
(
S(2)
{0,1}

)
+ #

(
S(2)
{0,1,2}

)
= 8.

Example 4.12. The case n = 3. The weight polynomials are as follows. (We state
the results only, because they can be computed similarly.)

W
(3)
{3}(x) = (1 1 1)W (0)(x) = x8 + 4x4 + 6 + 4x−4 + x−8,

W
(3)
{2}(x) = (1 1 1)W (0)(x) = x8 + 8x4 + 18 + 8x−4 + x−8,

W
(3)
{1}(x) = (1 1 1)W (0)(x) = x8 + 16x4 + 36 + 16x−4 + x−8,

W
(3)
{0}(x) = c(W (3)) = c

(
(x + x−1)8

)
=

(
8
4

)
= 70,

W
(3)
{2,3}(x) = (1 1 1)W (0)(x) = x8 + 2 + x−8,

W
(3)
{1,3}(x) = (1 1 1)W (0)(x) = x8 + 4 + x−8,

W
(3)
{0,3}(x) = c

(
W

(3)
{3}

)
= 6,

W
(3)
{1,2}(x) = (1 1 1)W (0)(x) = x8 + 16 + x−8,

W
(3)
{0,2}(x) = c

(
W

(3)
{2}

)
= 18,

W
(3)
{0,1}(x) = c

(
W

(3)
{1}

)
= 36,

W
(3)
{1,2,3}(x) = (1 1 1)W (0)(x) = x8 + x−8,

W
(3)
{0,2,3}(x) = c

(
W

(3)
{2,3}

)
= 2,

W
(3)
{0,1,3}(x) = c

(
W

(3)
{1,3}

)
= 4,

W
(3)
{0,1,2}(x) = c

(
W

(3)
{1,2}

)
= 16,

W
(3)
{0,1,2,3}(x) = c

(
W

(3)
{1,2,3}

)
= 0.
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Therefore we have

#
(
S(3)
{3}

)
= 16, #

(
S(3)
{2}

)
= 36, #

(
S(3)
{1}

)
= 70, #

(
S(3)
{0}

)
= 70,

#
(
S(3)
{2,3}

)
= 4, #

(
S(3)
{1,3}

)
= 6, #

(
S(3)
{0,3}

)
= 6, #

(
S(3)
{1,2}

)
= 18,

#
(
S(3)
{0,2}

)
= 18, #

(
S(3)
{0,1}

)
= 36,

#
(
S(3)
{1,2,3}

)
= 2, #

(
S(3)
{0,2,3}

)
= 2, #

(
S(3)
{0,1,3}

)
= 4, #

(
S(3)
{0,1,2}

)
= 16,

#
(
S(3)
{0,1,2,3}

)
= 0.

Hence the total of degenerate sign-vectors is equal to

16 + 36 + 70 + 70− (4 + 6 + 6 + 18 + 18 + 36) + (2 + 2 + 4 + 16) = 128.

The binary expression also enables one to know at once what the degrees of weight
enumerators are. (Here the degree of a symmetric Laurent polynomial amxm + · · · +
amx−m, m ≥ 0, is defined to be m.)

Proposition 4.13. For any subset I ⊂ [1, n], the weight enumerators W
(n)
I have

the common degree 2n.

Proof of Proposition 4.13. This is simply because both operators “1” and “1”
raise the degree of a given Laurent polynomial by two. ¤

4.D. Primitivity of sign-vectors.
An element a ∈ P (2)n = Z/2nZ acts on V (n) naturally by the rule

a.

( ∑

b∈P (2)n

nb[b]
)

=
∑

b∈P (2)n

nb[a + b].

A sign-vector S ∈ Sign(n) is said to be nonprimitive, if a.S = ±S for some a ∈ P (2)n −
{0}. When it is not nonprimitive, it is called primitive. Since 2n−1Z/2nZ is the maximal
proper subgroup of Z/2nZ, we have the following.

Proposition 4.14. A sign-vector S ∈ Sign(n) is nonprimitive if and only if
2n−1.S = ±S.

By the definition of the tree structure of P (2), the pairs (a, a+2n−1), 0 ≤ a ≤ 2n−1−1
constitute all the last branches of P (2)(n). Hence for any S ∈ Sign(n), we have

2n−1.S = S if and only if S ∈ S(n)
{n},

2n−1.S = −S if and only if S ∈ S(n)
{0,1,...,n−1}.
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Therefore we have the following criterion for nonprimitivity. (Note that S(n)
{n} ∩

S(n)
{0,1,...,n−1} = S(n)

[0,n] =∅.)

Proposition 4.15. A sign-vector S ∈ Sign(n) is nonprimitive if and only if S ∈
S(n)
{n}

∐
S(n)
{0,1,...,n−1}. In particular the number of nonprimitive sign-vectors in Sign(n) is

equal to 22n−1
+ 22n−1

= 22n−1+1.

4.E. The structure of E(n)
I .

Our objective here is to investigate what kind of (0,1)-vectors are in (K(n)
I )⊥. They

can be investigated in a similar way to that for S(n)
I = Sign(n) ∩ (K(n)

I )⊥. We define two
operators Li, Ri : P(Bit(i−1)) → P(Bit(i)), i ≥ 1, by

Li(C) =
⋃

c∈C

(
L−1

i,i−1({c}) ∩Bit(i)
)
,

Ri(C) = Ri−1,i(C),

for any C ∈ P(Bit(i−1)). When the domain is understood, we write L = Li, R = Ri.

Theorem 4.16. For any I ⊂ [1, n], rewrite the string b(I) = e1 · · · en ∈ {1, 1}n by
the rule

ei 7→
{

Li, if ei = 1,

Ri, if ei = 1,

and denote the resulted string by Φ(e). Let St(n)
I = ι(Φ(e)), where ι reverses the order

of a string. Then we have

E(n)
I = St(n)

I ({[0]}).

Proof of Theorem 4.16. We prove this by induction on n. When n = 1, there
are two binary expressions 1 and 1, which correspond to the subset I =∅ and I = {1},
respectively. The corresponding sets of (0,1)-vectors are given by

E(1)
∅ = {[0], [1]}, E(1)

{1} = {[0] + [1]}.

On the other hand, it follows from the definition that

Φ(1) = L, Φ(1) = R,

and hence

St(1)
∅ = L, St(1)

{1} = R.
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Therefore

St(1)
∅ ({[0]}) = L({[0]}) = L−1

10 ({[0]}) ∩Bit(1) = {[0], [1]},

St(1)
{1}({[0]}) = R({[0]}) = R01({[0]}) = {[0] + [1]}.

This shows that the assertion holds for n = 1. Now assume that n ≥ 2 and the assertion
holds true for n − 1. First we treat the case e1 = 1. Then Φ(e) = L1X2 · · ·Xn, hence
St(n)

I = Xn · · ·X2L1, where Xi (2 ≤ i ≤ n) stands for R or L. Since e1 = 1 implies
1 /∈ I, a similar proof to that for Proposition 4.2 gives the equality

E(n)
I = Eeven

(
E(n−1)

I−1

) ∐
Eodd

(
E(n−1)

I−1

)
. (4.6)

By the induction hypothesis, we have E(n−1)
I−1 = St(n−1)

I−1 ({[0]}). Moreover we see that
St(n−1)

I−1 = Xn · · ·X2 by the definition. Hence

E(n−1)
I−1 = Xn · · ·X2({[0]}).

Furthermore by the commutativity relations (4.2) and (4.3), we have

Eeven ◦Xn · · ·X2 = Xn · · ·X2 ◦ Eeven ,

Eodd ◦Xn · · ·X2 = Xn · · ·X2 ◦ Eodd .

Hence (4.6) implies that

E(n)
I =

(
Xn · · ·X2 ◦ Eeven({[0]}))

∐(
Xn · · ·X2 ◦ Eodd({[0]}))

=
(
Xn · · ·X2({[0]}))

∐(
Xn · · ·X2({[1]}))

= Xn · · ·X2L1({[0]})

= St(n)
I ({[0]}).

Thus we see that the assertion holds when e1 = 1. Next we treat the case e1 = 1. Then
Φ(e) = R1X2 · · ·Xn, hence St(n)

I = Xn · · ·X2R1, where Xi (2 ≤ i ≤ n) stands for R

or L. Since this implies 1 ∈ I, the similar proof to that for Proposition 4.3 gives the
equality

E(n)
I = Eeven

(
E(n−1)

I−{1}−1

)
+ Eodd

(
E(n−1)

I−{1}−1

)
.

By induction hypothesis, we have

E(n−1)
I−{1}−1 = St(n−1)

I−{1}−1({[0]}).
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Note here that

Φ(I − {1} − 1) = X2 · · ·Xn,

St(n−1)
I−{1}−1 = Xn · · ·X2.

Therefore by the commutativity relations (4.2), (4.3), we have

E(n)
I = (Eeven ◦Xn · · ·X2)({[0]}) + (Eodd ◦Xn · · ·X2)({[0]})

= (Xn · · ·X2)({[0] + [1]})
= (Xn · · ·X2R1)({[0]})

= St(n)
I ({[0]}).

Thus the assertion is certified for the case e1 = 1 too. Thus we complete the proof of
Theorem 4.16. ¤

4.F. The number of elements of E(n)
I .

Our objective here is to enumerate the elements of E(n)
I .

Proposition 4.17. Let I = {i1, . . . , ik} ⊂ [1, n] with i1 < · · · < ik. Then all the
elements in E(n)

I have one and the same weight 2k. The number of elements in E(n)
I is

given by

#
(
E(n)

I

)
= 22kn−i1−2i2−···−2k−2ik−1−2k−1ik−(2k−1).

Proof of Proposition 4.17. Our proof reduces essentially to the following
lemma which is a direct consequence of the definition of raising and lowering operators.

Lemma 4.17.1. Let T ⊂ Bit(i−1), i ≥ 1 such that every element in T has one and
the same weight. Let w(T ) denote the common weight of T . Then we have

#(Ri(T )) = #(T ), w(Ri(T )) = 2w(T ),

#(Li(T )) = 2w(T ) ·#(T ), w(Li(T )) = w(T ).

Therefore the assertions of Proposition 4.17 follow easily from Theorem 4.16 by
induction. ¤

Note that every E(m)
I′ ⊂ {0, 1}2m

for m ∈ [1, n], I ′ ⊂ [1,m] satisfies the assumption
of the lemma. The assertions in our proposition can be proved by a simple induction
using Theorem 4.16. Details will be left to the reader.

Remark 4.18. In the above two propositions, we restrict our attention to the
indecomposable (0,1)-vectors. If one is interested only in the set B(n)

I = Bit(n) ∩
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(K(n)
I )⊥ of all the (0,1)-vectors in (K(n)

I )⊥ with I ⊂ [1, n], the following simple de-
vice provides a precise information about the weight distribution. Let W

(n)
B,I(x) =∑

0≤w≤2n #(B(n)
I (w))xw be the corresponding weight enumerator. Then we see that

the weight enumerator W
(n)
[0,1],I can be computed by the same inductive formula

as in Theorem 4.10, if we replace W (0) by W
(0)
[0,1](x) = x + 1. (4.7)

For the proof, we are only to use the fact that ϕ : Sign(n) ∩ V (n) → Bit(n) ∩ V (n),
defined by ϕ(v) = (v + 1(n))/2, gives a bijection, since 1(n) ∈ K(n)

{0} ⊂ (K(n)
I )⊥ by the

assumption I ⊂ [1, n].

We illustrate the contents of Theorem 4.16, Proposition 4.17 by an example.

Example 4.19. 1) Let n = 3 and I = {2}. The binary expression of I is 1 1 1.
Hence we have St(3)

{2} = L3R2L1. Therefore we can compute as follows. (For simplicity,

we write abc · · · for [a] + [b] + [c] + · · · ∈ V
(n)

i .)

E(3)
{2} = L3R2L1({[0]}) = L3R2({0, 1}) = L3({02, 13})

= {02, 06, 42, 46, 13, 17, 53, 57}.

The number of elements in equal to 8, which coincides with the one given by Proposition
4.17, #(E(3)

{2}) = 221·3−2−(21−1) = 23.

2) Let n = 3 and I = {3}. The binary expression of {3} is 1 1 1. Hence we have
St(3)
{3} = R3L2L1. Therefore we can compute as follows.

E(3)
{3} = R3L2L1({[0]}) = R3L2({0, 1}) = R3({0, 2, 1, 3})

= {04, 26, 15, 37}.

The number of elements in equal to 4, which coincides with the one given by Proposition
4.17, #(E(3)

{3}) = 221·3−3−(21−1) = 22. Note that this example shows the relevance of the
string-reversing map ι in Theorem 4.16.

4.G. Heights of elements and subsets of (K(n)
I )⊥.

For any v =
∑

a∈P (n) va[a] ∈ V (n), we put h(v) =
∑

a∈P (n) |va| ∈ Z≥0 and call it
the height of v. Furthermore, for any subset T ⊂ V (n), we let hmin(T ) = min{h(v); v ∈
T − {0}}. When T = {0}, we put hmin({0}) = +∞. First we prove a simple lemma.

Lemma 4.20. If v ∈ V (m), m ≥ 1, is expressed as v = Eeven(w) + Eodd(w′),
w, w′ ∈ V (m−1), then h(v) = h(w) + h(w′).

Proof of Lemma 4.20. This is because Supp(Eeven(w)) ∩ Supp(Eodd(w)) =∅.
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Lemma 4.21. For any subset T ⊂ V (i), i ≥ 0, let T 6=0 =
∐

w 6=0 T (w). Suppose
that 0 ∈ T . Then we have

(i) hmin

(
Eeven(T ) + Eodd(T )

)
= hmin(T ).

(ii) hmin

( ∐
w

(
Eeven(T )(w) + Eodd(T )(w)

))

=





2hmin(T 6=0), if hmin(T (0)) > 2hmin(T 6=0),

hmin(T (0)), if hmin(T (0)) ≤ 2hmin(T 6=0).

Proof of Lemma 4.21. The assertion (i) is a direct consequence of Lemma 4.20,
since 0 ∈ T . As for (ii), we note that the assumption 0 ∈ T implies that

Eeven(T )(0) + {0} ⊂ (
Eeven(T )(0) + Eodd(T )(0)

)
,

and

hmin

(
Eeven(T )(0) + {0}) = hmin(T (0)).

Therefore (ii) also follows from Lemma 4.20. ¤

Theorem 4.22. For any n ≥ 1 and I ⊂ [1, n], the minimum h
(n)
I of the heights of

the elements in (K(n)
I )⊥ is given as follows;

(i) if I =∅, then h
(n)
I = 1,

(ii) if there exists an m ∈ [1, n] such that I = [m,n], then h
(n)
I = 2n−m+1.

(iii) when there exists no m ∈ [1, n] such that I = [m,n], we have h
(n)
I = 2n−r(I)+2,

where r(I) = min{i ∈ [1, n]; [i, n] ⊂ I}.

Proof of Theorem 4.22. (i) If I = ∅, then (K(n)
I )⊥ = V (n). Hence any

standard basis elements [a], a ∈ Z/2nZ, belong to it, and we have h
(n)
I = 1.

(ii) When I = [m,n], its binary expression is 1 · · · 1 1 1 · · · 1︸ ︷︷ ︸
n−m+1 times

. Therefore the

corresponding operator is L · · ·L R · · ·R︸ ︷︷ ︸
n−m+1 times

. Hence Theorem 4.7 shows that

(
K(n)

I

)⊥ = L · · ·L R · · ·R︸ ︷︷ ︸
n−m+1 times

(Z.[0]) = L · · ·L(Z.1(n−m+1)).

Since the operator L does not increase the minimal height at each stage by Lemma 4.21
(i), we see that h

(n)
I = h(1(n−m+1)) = 2n−m+1.

(iii) In this case the binary expression of I is of the form

e
i

1̆ 1 · · · 1︸ ︷︷ ︸
s times

1 1 · · · 1︸ ︷︷ ︸
n−r(I)+1 times
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for some i, s ≥ 1 and a string e of 1 and 1. Therefore the corresponding operator is given
by

X
i

R̆ L · · ·L︸ ︷︷ ︸
s times

RR · · ·R︸ ︷︷ ︸
n−r(I)+1 times

,

where X is a string of L and R. Hence we have

(
K(n)

I

)⊥ = X
i

R̆ L · · ·L︸ ︷︷ ︸
s times

RR · · ·R︸ ︷︷ ︸
n−r(I)+1 times

(Z.[0])

= X
i

R̆ L · · ·L︸ ︷︷ ︸
s times

(Z.1(n−r(I)+1))

= X
i

R̆
(
Ls(Z.1(n−r(I)+1))

)
.

Note here that the Z-module Ls(Z.1(n−r(I)+1)) is of rank 2s and generated by the 2s

elements Rs,s+n−r(I)+1([a]), a ∈ P (s), all of which have height 2n−r(I)+1. Hence

hmin

(
Ls(Z.1(n−r(I)+1))(0)

)
= 2 · 2n−r(I)+1,

and it follows from Lemma 4.21 (ii) that

hmin

(
R

(
Ls(Z.1(n−r(I)+1))

))
= 2n−r(I)+2

and

hmin

(
R

(
Ls(Z.1(n−r(I)+1))

)
(0)

)
= 2n−r(I)+2.

Therefore it also follows from Lemma 4.21 that

hmin

(
X

i

R̆
(
Ls(Z.1(n−r(I)+1))

))
= 2n−r(I)+2.

Thus we complete the proof of Theorem 4.22. ¤

Next we investigate the Z-basis of (K(n)
I )⊥ whose height is minimum in some sense.

More precisely, we introduce a height hmax(M) for any Z-submodule M of V (n) by the
formula

hmax(M) = min
B:Z−basis of M

max{h(b); b ∈ B}.
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Our problem is to find a formula for hmax((K
(n)
I )⊥). As a preliminary we determine the

Z-rank rankZ(K(n)
I )⊥ of (K(n)

I )⊥.

Theorem 4.23. For any I ⊂ [0, n], the rank of (K(n)
I )⊥ is given by

rankZ

(
K(n)

I

)⊥ = 2n −
∑

i∈I−{0}
2i−1 −#(I ∩ {0}). (4.8)

Proof of Theorem 4.23. First we note the following.

Lemma 4.23.1. For any Z-submodule M of V (n), i ≥ 0, we have

(i) rankZ(L(M)) = 2rankZ(M),
(ii) rankZ(R(M)) = 2rankZ(M)− 1.

Proof of Lemma 4.23.1. By the definition of the operator L, we have L(M) =
Eeven(M)⊕Eodd(M). Hence the assertion (i) follows. On the other hand, the definition
of the operator R implies that

R(M) =
{
Eeven(m)⊕ Eodd(m′);m, m′ ∈ M and w(m)− w(m′) = 0

}
.

Since the weight function w is Z-linear, the assertion (ii) follows. This completes the
proof of Lemma 4.23.1.

When 0 /∈ I, one can check easily the validity of Theorem 4.23 by induction on the
number of elements of I, by using Lemma 4.23.1. When 0 ∈ I, noting that the equality
(K(n)

I )⊥ = {v ∈ (K(n)
I−{0})

⊥;w(v) = 0} holds, we see that the assertion (4.8) follows from
the case 0 /∈ I. This completes the proof of Theorem 4.23. ¤

After these preliminaries, we prove the following.

Theorem 4.24. For any n ≥ 1 and I ⊂ [1, n], we have

hmax

((
K(n)

I

)⊥)
= 2#(I).

When 0 ∈ I, we have

hmax

((
K(n)

I

)⊥)
= 2#(I)−m.

where m = max{i; [0, i] ⊂ I}.
Proof of Theorem 4.24. For any Z-submodule M of V (n), let

M(w,h)=(w0,h0) = {v ∈ M ;w(v) = w0, h(v) = h0} ⊂ M,

the subset of M consisting of elements with weight w0 and height h0. The crucial point
is the following.
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Lemma 4.24.1. Suppose I ⊂ [1, n]. Then (K(n)
I )⊥ is spanned by

(E(n)
I )(w,h)=(2#(I),2#(I)).

Proof of Lemma 4.24.1. We prove this by induction on n. When n = 1,

(
K(1)

I

)⊥ =

{
〈[0], [1]〉Z , if I =∅,

〈[0] + [1]〉Z , if I = {1},

hence the lemma holds. Assume that n ≥ 2 and the lemma holds for k smaller than n.
When 1 /∈ I, it follows from Proposition 4.1 that

(
K(n)

I

)⊥ = Eeven

((
K(n−1)

I−1

)⊥)
⊕ Eodd

((
K(n−1)

I−1

)⊥)
.

By the induction hypothesis (K(n−1)
I−1 )⊥ is spanned by (E(n−1)

I−1 )(w,h)=(2#(I−1),2#(I−1)). Not-
ing that #(I − 1) = #(I), we see the assertion holds for n. Assume, on the other hand,
that 1 ∈ I. Then it follows from the proof of Proposition 4.3 that

(
K(n)

I

)⊥ =
∐
w

(
Eeven

((
K(n−1)

I−{1}−1

)⊥(w)
)
⊕ Eodd

((
K(n−1)

I−{1}−1

)⊥(w)
))

.

By the induction hypothesis, (K(n−1)
I−{1}−1)

⊥ is spanned by

(E(n−1)
I−{1}−1)(w,h)=(2#(I−{1}−1),2#(I−{1}−1)). Noting that #(I − {1} − 1) = #(I) − 1,

we see that the assertion holds for (K(n)
I )⊥ too. This completes the proof of Lemma

4.24.1. ¤

Since the elements in (E(n)
I )(w,h)=(2#(I),2#(I)) is indecomposable by definition, the

assertion of Theorem 4.24 for the case I ⊂ [1, n] follows from Lemma 4.24.1. Furthermore
when I ∩ {0, 1} = {0}, we have a height-preserving isomorphism ι

(n)
1,−1 : (K(n)

I )⊥ →
(K(n)

I−{0}∪{1})
⊥ (see Remark 4.5). Hence Theorem 4.24 holds true for this case too. For

the remaining case when {0, 1} ⊂ I, let m = max{i; [0, i] ⊂ I}. For any e = e1 · · · em ∈
{0, 1}m, let Ee : V (i) → V (i+m) denote a map defined by

E0 = Eeven , E1 = Eodd ,

Ee = Ee1 ◦ · · · ◦ Eem
.

Note that each Ee is a Z-linear isomorphism onto its image. Furthermore, for any
b ∈ [0, 2m − 1], let e(b) ∈ {0, 1}m be the binary expansion of b, and let Eb = Ee(b). It
follows from the definition that

V (i+m) =
⊕

0≤b≤2m−1

(
Eb(V (i))

)
, (4.9)

the summands of which is orthogonal to each other.
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Lemma 4.24.2. Suppose 0 ∈ I and let m = max{i; [0, i] ⊂ I}. Then

(
K(n)

I

)⊥ =
⊕

0≤b≤2m−1

(
Eb

((
K(n−m)

(I−[0,m−1])−m

)⊥))
.

Proof of Lemma 4.24.2. Note that for each b ∈ [0, 2m − 1], the associated map
Eb : V (n−m) → V (n) induces a Z-linear isomorphism

Eb :
(
K(n−m)

(I−[0,m−1])−m

)⊥ → (
K(n)

I

)⊥ ∩ 〈
[a];Ln,m([a]) = [b]

〉
Z

.

Therefore the decomposition (4.9) implies Lemma 4.24.2. ¤

Since ((I− [0,m−1])−m)∩{0, 1} = {0} by the definition of m, and the proposition
is assured for such cases, Lemma 4.24.2 implies that hmax

(
(K(n)

I )⊥
)

= 2#(I)−m. Thus
we finish the proof of Theorem 4.24. ¤

For v =
∑

a∈P (n) va[a] ∈ V (n), let d(v) = max{|va|; a ∈ P (n)}. Furthermore for
any Z-submodule M of V (n), let dmax(M) = minB:Z−basis of M max{d(b); b ∈ B}. An
element v =

∑
a∈P (n) va[a] ∈ V (n) is said to be {0,±1}-vector if va ∈ {0,±1}, a ∈ P (n).

The proof above gives the following.

Corollary 4.25. For any I ⊂ [0, n], (K(n)
I )⊥ is spanned by {0,±1}-vectors.

Therefore dmax

(
(K(n)

I )⊥
)

= 1.

4.H. Pure sign-vectors and the minimum of ranks of (K(n)
I )⊥.

For any subset I ⊂ [0, n], let PureS(n)
I = S(n)

I −⋃
J⊃
6=
I S(n)

J and call its elements
pure sign-vectors of type I.

Theorem 4.26. For any n ≥ 3, the minimum of ranks of (K(n)
I )⊥ such that S(n)

I

contains a primitive sign-vector is equal to 2n−1 +2, and is attained by those sign-vectors
in PureS(n)

{2,3,...,n−1} ∪PureS(n)
{0,1,3,4,...,n−1}.

Proof of Theorem 4.26. By Theorem 4.23 we have

rank
(
K(n)

I

)⊥ = 2n −
∑

i∈I−{0}
2i−1 −#(I ∩ {0}).

Furthermore it follows from Proposition 4.15 a sign-vector S ∈ (K(n)
I )⊥ is nonprimitive

if

n ∈ I or {0, 1, . . . , n− 1} ⊂ I. (4.10)

Hence if we take aside those I satisfying (4.10), then the minimum of rankZ(K(n)
I

)⊥ is
attained when

I = [0, n− 1]− {0} or I = [0, n− 1]− {1},
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and the second minimum is attained when

I = [0, n− 1]− {0, 1} or I = [0, n− 1]− {2}.

When I = [0, n − 1] − {0}, the number of elements #(S(n)
[0,n−1]−{0}) is computed by

Theorem 4.10 as follows.

1 1 · · · 1 1(x + x−1)
∣∣
x=1

= (x2n

+ 22n−1
+ x−2n

)
∣∣
x=1

= 22n−1
+ 2.

On the other hand, we have

#
(
S(n)

[0,n−1]

)
= 22n−1

,

#
(
S(n)

[1,n]

)
= 1 1 · · · 1(x + x−1)

∣∣
x=1

= (x2n

+ x−2n

)
∣∣
x=1

= 2,

hence it follows that

#
(
PureS(n)

[0,n−1]−{0}
)

= #
(
S(n)

[0,n−1]−{0}
)−#

(
S(n)

[0,n−1]

)−#
(
S(n)

[1,n]

)
= 0.

This means that S(n)
[0,n−1]−{0} ⊂ S(n)

[0,n−1] ∪ S(n)
[1,n]. Thus it follows from Proposition 4.15

that no elements in S(n)
[0,n−1]−{0} are primitive. As for S(n)

[0,n−1]−{1}, recall that the elements

in S(n)
[0,n−1]−{1} are obtained from those in S(n)

[0,n−1]−{0} through the isomorphism ι
(n)
1,−1,

which is equivariant under the action of 2n−1 ∈ Z/2nZ. Thus it follows from Proposition
4.14 and the result for S(n)

[0,n−1]−{0} that no elements in S(n)
[0,n−1]−{1} are primitive. Hence

we are reduced to showing that there exists a primitive sign-vector in S(n)
[0,n−1]−{0,1} =

S(n)
[2,3,...,n−1]. It follows from Theorem 4.10 that

#
(
S(n)

[2,3,...,n−1]

)
= 1 1 1 · · · 1 1(x + x−1)

∣∣
x=1

= 1 1 1 · · · 1(x2 + 2 + x−2)
∣∣
x=1

= 1(x2n−1
+ 22n−2

+ x−2n−1
)
∣∣
x=1

= (x2n−1
+ 22n−2

+ x−2n−1
)2

∣∣
x=1

= (22n−2
+ 2)2

= 22n−1
+ 22n−2+2 + 22.

Among the sign-vectors in S(n)
[2,3,...,n−1], the nonprimitive ones belong to either

S(n)
[0,1,2,3,...,n−1], exclusively or S(n)

[2,3,...,n−1,n]. The number of elements of the last two
sets are given by
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#
(
S(n)

[0,1,2,3,...,n−1]

)
= 22n−1

,

#
(
S(n)

[2,3,...,n−1,n]

)
= 1 1 1 · · · 1(x + x−1)

∣∣
x=1

= (x2n−1
+ x−2n−1

)2
∣∣
x=1

= 22,

hence there remains 22n−2+2 (> 0) sign-vectors in S(n)
[2,3,...,n−1]. This completes the proof

of Theorem 4.26. ¤

Remark 4.27. As a typical element in S(n)
[2,3,...,n−1], we can take

S = R1,n([0]) + Eodd

( ∑

0≤s≤2n−2−1

[s]− [s + 2n−2]
)

,

since R1,n([0]) ∈ K(n)
{0,1} and Eodd

( ∑
0≤s≤2n−2−1[s]− [s+2n−2]

)
∈ K(n)

{n}. More precisely

the set S(n)
[2,3,...,n−1] consists of the 22n−2+2 sign-vectors

R1,n(±[0]) + Eodd

( ∑

0≤s≤2n−2−1

±[s]− [s + 2n−2]
)

,

Eeven

( ∑

0≤s≤2n−2−1

±([s]− [s + 2n−2])
)

+ R1,n(±[1]).

5. Hodge cycles on abelian varieties of 2-power type.

In this section, we describe how our combinatorial results that are obtained in the
previous sections are translated into the ones about the structure of Hodge cycles on
certain abelian varieties.

For an arbitrary positive integer n, let Gn = Z/2Z×Z/2nZ. Let Kn be a CM-field
with Gal(Kn/Q) ∼= Gn such that the complex conjugation ρ corresponds to (1, 0) ∈ Gn.
Let T ⊂ Gn be a CM-type and AT the corresponding abelian variety with complex
multiplication by Kn. Such an abelian variety is said to be of 2-power type. For any
abelian variety A, let Hg(A) denote its Hodge group. Then by [4] we know that

rankHg(AT ) = dimAT −#{χ ∈ Hom(Gn,C∗);χ(ρ) = −1 and χ(T) = 0}. (5.1)

For any CM-type T ⊂ Gn, let ST ∈ Sign(n) be the sign vector defined by

ST =
∑

a∈P (2)(n)

εa[a], where εa =

{
1, if (0, a) ∈ T,

−1, if (1, a) ∈ T.
(5.2)

Conversely, for any S =
∑

a∈Z/2nZ sa[a] ∈ Sign(n), let

TS = {(0, a) ∈ Gn; sa = 1} ∪ {(1, a) ∈ Gn; sa = −1} ⊂ Gn.
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Then TS defines a CM-type for Gn. One can check that these correspondences are inverse
to each other and hence define a bijection between Sign(n) and the set of CM-types for
Gn. Therefore for any S ∈ Sign(n), we may write AS for ATS

. Note that for an odd
character χ of Gn,

χ(T ) = 0 if and only if
(
χ
∣∣
Z/2nZ

)
(ST ) = 0

where χ
∣∣
Z/2nZ

denotes the restriction of χ to the second factor of Gn. For any S ∈
Sign(n), let IS ⊂ [0, n] denote the largest subset I ⊂ [0, n] such that S ∈ (K(n)

I )⊥. Then
it follows from (5.1) that

rankHg(AS) = dimAS − rankZ

(
K(n)

IS

)
= rankZ

(
K(n)

IS

)⊥
.

Furthermore we can determine the numbers h and N such that an abelian varieties of 2-
power type is h-degenerate and N -dominated. We refer the reader for a precise definition
of these notions to [1], [2]. Here we mention briefly on the role played by them for the
study of the Hodge conjecture. If A is N -dominated, then the Hodge conjecture for all
the self-products Ak, k ≥ 1, is implied by the truth of the conjecture up to codimension
N . On the other hand, if A is h-degenerate, then the Hodge conjecture for all the self-
products Ak, k ≥ 1, is implied by the truth of the conjecture for Ak, k ≤ h. Now we
have the following dictionary which translates various notions in the previous sections
into the ones for abelian varieties of 2-power type (see [2], [3] for the relevance of this
correspondence):

S ∈ Sign(n) is primitive (5.3)
⇐⇒ AS is primitive.

There exists a nonempty subset I ⊂ [0, n] such that S ∈ (
K(n)

I

)⊥ (5.4)
⇐⇒ AS is degenerate.

rankHg(AS) = rankZ

(
K(n)

IS

)⊥
. (5.5)

AS is dmax

(
K(n)

IS

)
-degenerate. (5.6)

AS is hmax

(
K(n)

IS

)
/2-dominated. (5.7)

Thus our results are paraphrased as follows.

Theorem 5.1.

(i) If AS is degenerate, then AS is always 1-degenerate. (See Corollary 4.25.)
(ii) rankHg(AS) = 2n −

∑

i∈IS−{0}
2i−1 −#(IS ∩ {0}). (See Theorem 4.23.)

(iii) When 0 ∈ IS, AS is 2n−#(IS)-dominated. (See Theorem 4.24.)
(iv) When 0 /∈ IS, AS is 2n−#(IS)+m(IS)-dominated, where m(IS) = max{i; [0, i] ⊂

[0, n]− IS}. (See Theorem 4.24.)
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(v) For any n ≥ 3, the minimum of ranks of Hodge groups among those for primitive
2n-dimensional abelian varieties of 2-power type is equal to 2n−1+2, and is attained
by those sign vectors in PureS(n)

{2,3,...,n−1}. (See Theorem 4.26.)

Remark 5.2. A theorem due to Lenstra says that every degenerate abelian variety
with complex multiplication by an abelian CM-field has always a nondivisorial Hodge
cycle [5, Theorem 3]. On the other hand, if the CM-field is not assumed to be abelian,
this is not necessarily the case (see [5, Theorem 1]). Theorem 5.1 (i) strengthen Lenstra’s
theorem in the case of abelian varieties A of 2-power type by showing that every Hodge
cycle on any of its selfproducts An, n ≥ 1, is constructed essentially from those on A itself.
In particular the validity of the Hodge conjecture for A implies that for all An, n ≥ 1.

Remark 5.3. Generally, for an arbitrary primitive N -dimensional abelian variety
of CM-type, a lower bound for the rank of its Hodge group is given by log2 N +1 (see [4,
(3.5)]). Thus our minimum rank 2n−1 + 2 for primitive 2n-dimensional abelian varieties
of 2-power type is rather large, compared with general case.

Example. Let ζ = ζ32 be a primitive 32-nd root of unity and let K = Q(ζ). Its
Galois group Gal(K/Q) is isomorphic to (Z/32Z)∗, and is generated by the classes of -1
and 5. Hence Gal(K/Q) ∼= Z/2Z ×Z/8Z. The CM-type

T = {1, 7, 13, 15, 21, 23, 27, 29}
= {50,−52, 57,−54, 55,−56,−51, 53},

given in [4, (3.12)] as an example giving a simple degenerate abelian variety, is analyzed
from our viewpoint as follows. The sign vector ST which corresponds to T by (5.2)
becomes

ST = [0]− [4]− [2]− [6]− [1] + [5] + [3] + [7] ∈ V (3),

hence the maximal subset I ⊂ [0, 3] such that ST ∈ (K(n)
I )⊥ is easily found to be I = {0}.

Hence for the corresponding abelian variety AT , we have

(i) dim AT = 8,
(ii) rankHg(AT ) = 7,
(iii) AT is 1-degenerate,
(iv) AT is 4-dominated.

Another CM-type

T ′ = {1, 7, 9, 11, 13, 15, 27, 29}
= {50,−52, 56,−55, 57,−54,−51, 53}

given in [4, (3.12)] is analyzed as follows. The corresponding sign vector ST ′ is equal to

ST ′ = [0]− [4]− [2] + [6]− [1]− [5] + [3] + [7].
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Hence the maximal subset I ′ ⊂ [0, 3] such that ST ′ ∈ (K(n)
I′ )⊥ is easily found to be

I ′ = {0, 1}. Hence for the corresponding abelian variety AT ′ , we have

(i) dim AT ′ = 8,
(ii) rankHg(AT ′) = 6,
(iii) AT ′ is 1-degenerate,
(iv) AT ′ is 2-dominated.
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