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Abstract. This paper is devoted to a functional analytic approach to

the subelliptic oblique derivative problem for second-order, elliptic differential

operators with a complex parameter λ. We prove an existence and uniqueness
theorem of the homogeneous oblique derivative problem in the framework of

Lp Sobolev spaces when |λ| tends to ∞. As an application of the main theo-
rem, we prove generation theorems of analytic semigroups for this subelliptic

oblique derivative problem in the Lp topology and in the topology of uniform

convergence. Moreover, we solve the long-standing open problem of the as-
ymptotic eigenvalue distribution for the subelliptic oblique derivative problem.

In this paper we make use of Agmon’s technique of treating a spectral param-

eter λ as a second-order elliptic differential operator of an extra variable on
the unit circle and relating the old problem to a new one with the additional

variable.

1. Motivation and formulation of the oblique derivative problem.

In physical geodesy, investigations of the Earth’s gravity field based on surface grav-

ity data are usually associated with a simultaneous determination of the figure of the

Earth. The precise 3D positioning by the Global Navigation Satellite Systems (GNSS)

has brought new possibilities in gravity field modelling. Terrestrial gravimetric measure-

ments located by precise satellite positioning yield oblique derivative boundary condi-

tions in the form of surface gravity disturbances. Now the shape of the Earth can be

obtained by geometric satellite triangulation and satellite altimetry over the oceans. In

this way, the (linearized) fixed gravimetric boundary value problem in physical geodesy

is an oblique derivative problem for the Laplace equation in the Earth’s exterior, where

the physical surface of the Earth is assumed to be known (see [23], [7]).

In this paper we will deal with an interior oblique derivative problem in a bounded

domain. It should be noticed that the analysis of harmonic functions in an exterior

domain can be reduced to that of harmonic functions in a bounded domain by using the

Kelvin transform, called the inverse radii transform (see [5, Chapter 4]).

Now let Ω be a bounded domain of Euclidian space Rn, n ≥ 3, with smooth bound-

ary Γ = ∂Ω; its closure Ω is an n-dimensional, compact smooth manifold with boundary

Γ.
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Let A be a second-order, uniformly elliptic differential operator with real coefficients

on the closure Ω = Ω ∪ Γ such that

A =

n∑

i=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ c(x).

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) for all x ∈ Ω and 1 ≤ i, j ≤ n, and there exists a

constant c0 > 0 such that

n∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|2 for all (x, ξ) ∈ Ω×Rn.

(2) bi ∈ C∞(Ω) for all 1 ≤ i ≤ n.

(3) c ∈ C∞(Ω).

Let Bγ be an oblique derivative boundary condition such that

Bγu =
∂u

∂ν
= a(x′)

∂u

∂n
+ α(x′) · u.

Here:

(4) a ∈ C∞(Γ).

(5) α(x′) is a real smooth tangential vector field on Γ. More precisely, in terms of a

local coordinate system (x1, x2, . . . , xn−1) of Γ, the vector field α(x′) has the local

expression

α(x′) =

n−1∑

k=1

αk(x′)
∂

∂xk
.

(6) ν = a(x′)n + α(x′) is a smooth, nowhere vanishing vector field on Γ where n =

(n1, n2, . . . , nn) is the unit outward normal to Γ.

We consider the following homogeneous oblique derivative problem: Given a function

f(x) defined in Ω, find a function u(x) in Ω such that





(A− λ)u = f in Ω,

Bγu = a(x′)
∂u

∂n
+ α(x′) · u = 0 on Γ,

(1.1)

where λ is a complex parameter.

We remark that the oblique derivative problem (1.1) is non-degenerate (or coercive)

if and only if a(x′) 6= 0 on Γ, that is, the vector field ν = a(x′)n + α(x′) is nowhere

tangent to Γ.
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In the near future, we would like to apply our main results (Theorem 2.2 and Corol-

lary 2.3 below) to provide numerical solutions of the linearized fixed gravimetric boundary

value problem on the real Earth surface topography in the degenerate (non-coercive) case,

generalizing Holota [19] and Čunderĺık–Mikula–Mojzeš [11].

2. Statement of main results.

The purpose of this section is to formulate an existence and uniqueness theorem of

the subelliptic oblique derivative problem (1.1) in the framework of L2 Sobolev spaces

when |λ| tends to ∞. As an application of the main theorem, we state generation

theorems of analytic semigroups for this subelliptic oblique derivative problem in the Lp

topology and in the topology of uniform convergence.

2.1. Existence and uniqueness theorem for the subelliptic oblique de-

rivative problem.

Our starting point is to state a necessary and sufficient condition in order that the

non-homogeneous oblique derivative problem is subelliptic in the framework of L2 Sobolev

spaces, due to [35, Théorème 11]:

Theorem 2.1. The following two assertions (A) and (B) are equivalent :

(A) The hypothesis (H) is satisfied :

(H) The vector field α(x′) is non-zero on the set Γ0 = {x′ ∈ Γ : a(x′) = 0} of

tangency and, along the integral curve x(t, x′0) of α(x′) passing through x′0 ∈ Γ0

at t = 0, the function: t 7→ a(x(t, x′0)) has zeros of even order ≤ 2k for some

non-negative integer k.

(B) For every θ ∈ (−π, π), there exists a constant R2(θ) > 0 depending on θ such

that, for all λ = r2 eiθ satisfying |λ| = r2 ≥ R2(θ) the non-homogeneous oblique

derivative problem





(A− λ)u = f in Ω,

Bγu = a(x′)
∂u

∂n
+ α(x′) · u = ϕ on Γ

has a unique solution u in W 2−δ,2(Ω) for any f ∈ L2(Ω) and any ϕ ∈ B1/2,2(Γ),

where 2k/(2k + 1) ≤ δ < 1.

Moreover, we have the a priori estimate

‖u‖2W 2−δ,2(Ω) + |λ|2−δ ‖u‖2L2(Ω)

≤ C2(θ)
(
‖f‖2L2(Ω) + |ϕ|2B1/2,2(Γ) + |λ|1/2 |ϕ|2L2(Γ)

)
,

with a constant C2(θ) > 0 depending only on θ.

Here W s,2(Ω) and Bs,2(Γ) denote the L2 Sobolev space on Ω and the L2 Besov space on

Γ, respectively.
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Remark 2.1. The hypothesis (H) implies that the function a(x′) does not change

sign on the boundary Γ. This is called Case I in Guan–Sawyer [18]. Moreover, it is easy to

see that the hypothesis (H) is equivalent to saying that the vector field ν = a(x′)n+α(x′)
is of finite type on Γ defined in Smith [31] and Guan–Sawyer [18].

In the homogeneous boundary condition case, we can prove that every solution u

of the subelliptic oblique derivative problem (1.1) has the elliptic gain of 2 derivatives

from f in the framework of L2 Sobolev spaces (see [31], [18]). More precisely, the first

purpose of this paper is to prove the following theorem:

Theorem 2.2. Assume that the hypothesis (H) is satisfied. Then we have the

following assertion:

(C) For every θ ∈ (−π, π), there exists a constant R(θ) > 0 depending on θ such that,

for all λ = r2 eiθ satisfying |λ| = r2 ≥ R(θ) the homogeneous oblique derivative

problem (1.1) has a unique solution u in W 2,2(Ω) for any f ∈ L2(Ω), and further

that we have the a priori estimate

‖u‖2W 2,2(Ω) + |λ|2 ‖u‖2L2(Ω) ≤ C(θ) ‖f‖2L2(Ω) , (2.1)

with a constant C(θ) > 0 depending only on θ.

This rather surprising result (C) (elliptic estimates for a degenerate problem) works,

since we are considering the homogeneous boundary condition.

We associate with the homogeneous oblique derivative problem (1.1) a densely de-

fined, closed linear operator

A2 : L2(Ω) −→ L2(Ω)

in the Hilbert space L2(Ω) as follows:

(a) The domain D(A2) of definition of A2 is the space

D(A2) =
{
u ∈W 2,2(Ω) : Bγu = 0 on Γ

}
. (2.2)

(b) A2u = Au for every u ∈ D(A2).

Here Au and Bγu are taken in the sense of distributions.

Then, by combining Agmon [2, Theorems 14.4 and 15.1] with Theorem 2.2 we can

obtain the following spectral properties of the operator A2 similar to the non-degenerate

case (cf. [34, Theorem 2]):

Corollary 2.3. Assume that the hypothesis (H) is satisfied. Then the operator

A2 enjoys the following five spectral properties:

(i) The spectrum of A2 is discrete and the eigenvalues λj of A2 have finite multiplici-

ties.
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(ii) All rays arg λ = θ different from the negative axis are rays of minimal growth of the

resolvent (A2 − λI)−1. In particular, there are only a finite number of eigenvalues

outside the angle: −π + ε < θ < π − ε, for any ε > 0.

(iii) The negative axis is a direction of condensation of eigenvalues of A2.

(iv) Let

N(t) :=
∑

Reλj≥−t
1

be the number of eigenvalues λj such that Reλj ≥ −t, where each λj is repeated

according to its multiplicity. Then the asymptotic eigenvalue distribution formula

N(t) =
1

(2π)n

∫

Ω

|A(x)| dx · tn/2 + o(tn/2) as t→ +∞

holds true. Here |A(x)| denotes the volume of the subset A(x) = {ξ ∈ Rn :∑n
i,j=1 a

ij(x)ξiξj < 1}.

(v) The generalized eigenfunctions are complete in the Hilbert space L2(Ω); they are

also complete in the domain D(A2) in the W 2,2(Ω)-norm.

The detailed proof of Corollary 2.3 will be given in the forthcoming paper [40].

2.2. Generation of analytic semigroups for the subelliptic oblique deriv-

ative problem.

The second purpose of this paper is to study the subelliptic oblique derivative prob-

lem (1.1) from the point of view of analytic semigroup theory in functional analysis.

The generation theorem for analytic semigroups is well established in the non-degenerate

case in the Lp topology for 1 < p <∞ (cf. [4], [14], [27], [33]). We shall generalize this

generation theorem for analytic semigroups to the subelliptic case (Theorem 2.4).

To do so, we associate with the homogeneous oblique derivative problem (1.1) a

densely defined, closed linear operator

Ap : Lp(Ω) −→ Lp(Ω)

in the Banach space Lp(Ω) as follows:

(a) The domain D(Ap) of definition of Ap is the space

D(Ap) =
{
u ∈W 2,p(Ω) : Bγu = 0

}
. (2.3)

(b) Apu = Au for every u ∈ D(Ap).

Here Au and Bγu are taken in the sense of distributions.

Then we can obtain the generation theorem of analytic semigroups for the subelliptic

oblique derivative problem (1.1) in the Lp topology (cf. [37, Theorem 1.2]):
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Theorem 2.4. Let 1 < p <∞. If the condition (H) is satisfied, then we have the

following two assertions (i) and (ii):

(i) For every 0 < ε < π/2, there exists a constant rp(ε) > 0 such that the resolvent

set of Ap contains the set

Σp(ε) =
{
λ = r2 eiθ : r ≥ rp(ε),−π + ε ≤ θ ≤ π − ε

}
,

and that the resolvent (Ap − λI)−1 satisfies the estimate

∥∥(Ap − λI)−1
∥∥ ≤ cp(ε)

|λ| for all λ ∈ Σp(ε), (2.4)

where cp(ε) > 0 is a constant depending on ε.

(ii) The operator Ap generates a semigroup U(z) on the space Lp(Ω) which is analytic

in the sector

∆ε = {z = t+ is : z 6= 0, | arg z| < π/2− ε}

for any 0 < ε < π/2.

Finally, we formulate a generation theorem of analytic semigroups in the topology

of uniform convergence (Theorem 2.5).

Let C(Ω) be the space of complex-valued, continuous functions f(x) on Ω. We equip

the space C(Ω) with the topology of uniform convergence on the whole Ω. Hence it is a

Banach space with the maximum norm

‖f‖∞ = max
x∈Ω
|f(x)|.

We introduce a densely defined, closed linear operator A from C(Ω) into itself as follows:

(a) The domain D(A) of definition of A is the set

D(A) =
{
u ∈ C(Ω) : Au ∈ C(Ω), Bγu = 0

}
. (2.5)

(b) Au = Au for every u ∈ D(A).

Here Au and Bγu are taken in the sense of distributions.

Our localization argument in the proof of Theorem 2.5 is inspired by geometric

arguments due to Egorov–Kondratev [13]. To do so, we impose the following geometric

condition on the set Γ0 of tangency:

(G) The set Γ0 = {x′ ∈ Γ : a(x′) = 0} of tangency is an (n−2)-dimensional submanifold

of the boundary Γ.

Then Theorem 2.4 remains valid with Lp(Ω) and Ap replaced by C(Ω) and A, re-

spectively. More precisely, we can prove the following theorem (cf. [37, Theorem 1.3]):

Theorem 2.5. If the conditions (G) and (H) are satisfied, then we have the fol-

lowing two assertions (i) and (ii):
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(i) For every ε > 0, there exists a constant r(ε) > 0 such that the resolvent set of A

contains the set

Σ(ε) =
{
λ = r2 eiθ : r ≥ r(ε), −π + ε ≤ θ ≤ π − ε

}
,

and that the resolvent (A− λI)−1 satisfies the estimate

‖(A− λI)−1‖ ≤ c(ε)

|λ| for all λ ∈ Σ(ε), (2.6)

where c(ε) > 0 is a constant depending on ε.

(ii) The operator A generates a semigroup Tz on the space C(Ω) which is analytic in

the sector

∆ε = {z = t+ is : z 6= 0, | arg z| < π/2− ε}

for any 0 < ε < π/2.

Remark 2.2. Moreover, we can prove that the operators {Tt}t≥0 form a Feller

semigroup on the space C(Ω), that is, they are non-negative and contractive on C(Ω)

(cf. [38]):

f ∈ C(Ω), 0 ≤ f(x) ≤ 1 on Ω =⇒ 0 ≤ Ttf(x) ≤ 1 on Ω.

2.3. Outline of the contents.

The contents of this paper are organized as follows.

In Section 3 we present a brief description of the basic concepts and results of Lp

Sobolev spaces such as Sobolev’s imbedding theorem, the Gagliardo–Nirenberg inequal-

ity, the Rellich–Kondrachov compactness theorem, Seeley’s extension theorem and the

trace theorem which will be used in the study of the oblique derivative problem in the

framework of function spaces of Lp type.

In Section 4, we formulate a characterization of classical subelliptic pseudo-

differential operators due to Egorov [12] and Hörmander [22] (Theorem 4.1) which plays

a crucial role in this paper.

In Section 5, by using the Lp theory of pseudo-differential operators we consider the

Dirichlet problem in the framework of Lp Sobolev spaces. The pseudo-differential oper-

ator approach to elliptic boundary value problems can be traced back to the pioneering

work of Calderón [9] in early 1960s ([20], [30]).

In Section 6, by using the Dirichlet problem we consider the homogeneous oblique

derivative problem (∗) for second-order, uniformly elliptic differential operators in the

framework of Lp Sobolev spaces.

In Subsection 6.1, by using the oblique boundary operator Bγ (Proposition 6.1) we

formulate the following homogeneous oblique derivative problem:

{
Au = f in Ω,

Bγu = 0 on Γ.
(∗)
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In Subsection 6.2 we show that the oblique derivative problem (∗) can be reduced to the

study of a pseudo-differential operator Tp on the boundary Γ. The virtue of this reduction

is that there is no difficulty in taking adjoints or transposes after restricting the attention

to the boundary, whereas boundary value problems in general do not have adjoints or

transposes. This allows us to discuss the existence theory more easily (see [10], [24],

[28], [41]). In Subsection 6.3 we prove that if the condition (H) is satisfied, then the

operator Tp is a Fredholm operator for every 1 < p < ∞ (Proposition 6.9). Finally, in

Subsection 6.4 we prove that if the condition (H) is satisfied, then the operator Ap is a

Fredholm operator for every 1 < p <∞ and its index indAp(= ind Tp) is independent of

p (Theorem 6.11).

In Section 7, in order to prove an existence and uniqueness theorem for problem

(1.1) in the framework of Lp Sobolev spaces when |λ| → ∞, we make use of a method

essentially due to Agmon ([2], [25]). This is a technique of treating a spectral parameter

λ as a second-order elliptic differential operator of an extra variable y on the unit circle S,

and relating the old problem to a new one with the additional variable. Our presentation

of this technique is due to Fujiwara [15]. More precisely, if we express the complex

parameter λ in the form

λ = r2 eiθ, r ≥ 0, −π < θ < π,

then we replace the differential operator A−λ defined in Ω by the second-order differential

operator

Λ̃(θ) = A+ eiθ
∂2

∂y2
, −π < θ < π,

defined in Ω×S. We consider the homogeneous oblique derivative problem in the product

domain Ω× S




Λ̃(θ)ũ =

(
A+ eiθ

∂2

∂y2

)
ũ = f̃ in Ω× S,

Bγũ =
∂ũ

∂ν
= a(x′)

∂ũ

∂n
+ α(x′) · ũ = 0 on Γ× S.

We prove that this oblique derivative problem in Ω × S has a finite index if the

condition (H) is satisfied (Theorem 7.1). Theorem 7.1 is an essential step in the proof

of Theorem 2.4 (and Theorem 2.2) and its proof will be given in Section 11, due to its

length. The idea of proof of Theorem 7.1 can be visualized as in Diagram 1 below.

In Section 8, in order to apply Agmon’s method we consider the Dirichlet problem

for the second-order, strongly uniform elliptic differential operator Λ̃(θ), −π < θ < π, in

the framework of Lp Sobolev spaces on the product domain Ω× S.

In Section 9, we reduce the homogeneous oblique derivative problem (7.1) to the

study of a first-order, pseudo-differential operator T̃ (θ) on the boundary Γ× S (Propo-

sition 9.1), just as in Smith [31] and Guan–Sawyer [18].

The purpose of Section 10 is to prove that the pseudo-differential operators T̃ (θ) and

T̃ (θ)′ are both subelliptic on Γ×S if the condition (H) is satisfied (Proposition 10.3). To
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Proposition 9.1

(special reduction to Γ× S)

Theorem11.1

(representation formula (11.1))

Proposition10.4

(ind T̃p(θ) < ∞)

Theorem7.1

(a priori estimate (7.2))

Theorem6.3

(dimN (Ãp(θ)) = dimN (T̃p(θ)))
Corollary 11.2

(regularity for N (Ãp(θ))&N (T̃p(θ)))
Proposition10.4

(ind T̃p(θ) < ∞)

Diagram 1.

do so, we calculate the principal symbol t̃1(x′′, t, ξ′′, τ, y, η; θ) of the pseudo-differential

operator T̃ (θ). The essential point is to reduce the study of the general case T̃ (θ),

−π < θ < π, to the case where θ = 0 (Proposition 10.2). In this way, we can prove that

if the condition (H) is satisfied, then the pseudo-differential operator T̃p(θ) is a Fredholm

operator in the framework of Lp Sobolev spaces on the boundary Γ × S (Proposition

10.4). Our proof here is based on a characterization of subelliptic pseudo-differential

operators due to Egorov [12] and Hörmander [22].

In Section 11 we show how Theorem 7.1 follows from Propositions 10.2 and 10.4.

This section is the heart of the subject. Our proof of Theorem 7.1 is based on Smith [31,

Main Theorem] and Guan–Sawyer [18, Theorem 2, part (i)] (Theorem 11.1). By Smith

[31, Section 4] and Guan–Sawyer [18, Section 4], we can prove that the pseudo-differential

operator T̃ (θ) has a unique right inverse S̃(θ). Moreover, by using [18, Theorem 1, part

(i)] we find that the a priori estimate (7.2) holds true for all functions ũ ∈W 2,p(Ω× S)

satisfying Bγũ = 0 on Γ × S if the pseudo-differential operator T̃ (θ) on Γ × S satisfies

the condition (H).

In Section 12 we prove the desired a priori estimate (2.1) in Theorem 2.4 by using

Theorem 2.1, Theorem 7.1 and Theorem 12.2 when p = 2. Theorem 2.4 for 1 < p < ∞
follows by combining Theorem 12.1 and Corollary 12.3. Remark that Theorem 2.2 for

p = 2 is a special case of Theorem 2.4. The proof of Theorem 2.4 can be visualized as in

Diagram 2 below.

Section 13 is devoted to the proof of Theorem 2.5. The essential resolvent estimate

(2.6) is proved in Proposition 13.2. We make use of a λ-dependent localization argument

in order to adjust the term ‖(A − λ)u‖p in inequality (12.6) to obtain inequality (2.6),

just as in [37]. Theorem 2.5 follows by combining Proposition 13.2, Theorem 2.4 and

Sobolev’s imbedding theorem (Theorem 3.1). The proof of Theorem 2.5 can be visualized

as in Diagram 3 below.
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Theorem6.11

(indAp = indA2 for 1 < p < ∞)

Theorem12.1

(indAp = 0 for 1 < p < ∞)

Theorem2.2

(indA2 = 0)

Theorem2.4

(analytic semigroup in Lp(Ω))

Theorem7.1

(Agmon’s method)

Corollary 12.3

(a priori estimate (12.6))

Theorem12.2

(a priori estimate (12.1))

Diagram 2.

Proposition13.1

(a priori estimate (13.1))

Proposition13.2

(a priori estimate (13.5))

Theorem3.2

(Gagliardo–Nirenberg)

Theorem2.5

(analytic semigroup in C(Ω))

Theorem2.4

(analytic semigroup in Lp(Ω))

Proposition13.5

(unique solvability of problem (1.1))

Theorem3.1

(Sobolev)

Diagram 3.

3. Function spaces.

In this section we present a brief description of the basic concepts and results of Lp

Sobolev spaces which will be used in subsequent sections (see [1], [6], [14], [32], [43]).

(I) Let Ω be an open subset of Rn. If 1 < p < ∞ and if s = m + θ with a non-

negative integer m and 0 < θ < 1, then the Sobolev space W s,p(Ω) is defined to be the

space of those functions u ∈Wm,p(Ω) such that, for |α| = m the integral

∫∫

Ω×Ω

|Dαu(x)−Dαu(y)|p
|x− y|n+pθ

dx dy

is finite. The norm ‖u‖W s,p(Ω) of W s,p(Ω) is defined by the formula

‖u‖W s,p(Ω)

=


 ∑

|α|≤m

∫

Ω

|Dαu(x)|p dx+
∑

|α|=m

∫∫

Ω×Ω

|Dαu(x)−Dαu(y)|p
|x− y|n+pθ

dx dy




1/p

.
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If 1 < p <∞ and if s = m+θ with a non-negative integer m and 0 < θ < 1, then the

Besov space Bs,p(Rn−1) is defined to be the space of those functions ϕ ∈ Wm,p(Rn−1)

such that, for |α| = m the integral

∫∫

Rn−1×Rn−1

|Dαϕ(x′)−Dαϕ(y′)|p
|x′ − y′|(n−1)+pθ

dx′ dy′

is finite. We equip the space Bs,p(Rn−1) with the norm

( ∑

|α|≤m

∫

Rn−1

|Dαϕ(x′)|p dx′

+
∑

|α|=m

∫∫

Rn−1×Rn−1

|Dαϕ(x′)−Dαϕ(y′)|p
|x′ − y′|(n−1)+pθ

dx′ dy′
)1/p

.

If Γ is the boundary of the bounded smooth domain Ω, then the Besov spaces Bs,p(Γ)

are defined to be locally the Besov spaces Bs,p(Rn−1), upon using local coordinate sys-

tems flattening out Γ, together with a partition of unity. The norm of Bs,p(Γ) will be

denoted by | · |s,p.
(II) In the proof of Theorem 2.5 we need the following imbedding properties of Lp

Sobolev spaces (see [1, Theorem 5.4], [14, Part I, Theorem 10.1]):

Theorem 3.1 (Sobolev). Let Ω be a bounded domain in the Euclidean space Rn

with boundary Γ of class C2. Then we have the following two assertions:

(i) If 1 ≤ p < n, we have the continuous injection

W 2,p(Ω) ⊂W 1,q(Ω) for
1

p
− 1

n
≤ 1

q
≤ 1

p
.

(ii) If n/2 < p <∞, p 6= n, we have the continuous injection

W 2,p(Ω) ⊂ Cν(Ω) for 0 < ν ≤ 2− n

p
.

Theorem 3.2 (Gagliardo–Nirenberg). Let Ω be a bounded domain in Rn with

boundary of class C2, and 1 ≤ p, r ≤ ∞. Then we have the following assertions:

(i) If p 6= n and if

1

q
=

1

n
+ θ

(
1

p
− 2

n

)
+ (1− θ)1

r
for

1

2
≤ θ ≤ 1,

then we have, for all functions u ∈W 2,p(Ω) ∩ Lr(Ω),

‖u‖1,q ≤ C1‖u‖θ2,p‖u‖1−θr ,

with a constant C1 = C1(Ω, p, r, θ) > 0.

(ii) If n/2 < p <∞, p 6= n and if
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0 ≤ ν < θ

(
2− n

p

)
− (1− θ)n

r
,

then we have, for all functions u ∈W 2,p(Ω) ∩ Lr(Ω),

‖u‖Cν(Ω) ≤ C2‖u‖θ2,p‖u‖1−θr , (3.1)

with a constant C2 = C2(Ω, p, r, θ) > 0.

(III) The next compactness theorem for function spaces of Lp Sobolev spaces will

play an essential role in the study of boundary value problems (see [1, Theorem 6.3 and

Paragraph 7.32], [17, Theorem 7.22]):

Theorem 3.3 (Rellich–Kondrachov). Let Ω be a bounded domain in Euclidian

space Rn with smooth boundary Γ. If 1 < p <∞ and s > t, then the injections

W s,p(Ω) −→W t,p(Ω),

Bs,p(Γ) −→ Bt,p(Γ)

are both compact (or completely continuous).

(IV) The next theorem, due to Seeley [29], asserts that the functions in C∞(Ω) are

the restrictions to Ω of functions in C∞(Rn) (see [1, Theorems 5.21 and 5.22]):

Theorem 3.4 (Seeley). Let Ω be either the half space Rn
+ or a smooth domain in

Rn with bounded boundary Γ. Then there exists a continuous linear extension operator

E : C∞(Ω) −→ C∞(Rn).

Furthermore, for every 1 ≤ p <∞ and every integer m ≥ 0 the extension operator

E : Wm,p(Ω) −→Wm,p(Rn)

is continuous.

(V) Let Ω be a bounded domain in Rn with smooth boundary Γ. Without loss of

generality, we may assume the following:

(a) The domain Ω is a relatively compact open subset of an n-dimensional, compact

smooth manifold M without boundary.

(b) In a neighborhood W of Γ in M a normal coordinate t is chosen so that the points

of W are represented as (x′, t), x′ ∈ Γ, −1 < t < 1; t > 0 in Ω, t < 0 in M \ Ω and

t = 0 only on Γ.

(c) The manifold M is equipped with a strictly positive density µ which, on W , is

the product of a strictly positive density ω on Γ and the Lebesgue measure dt on

(−1, 1). This manifold M = Ω̂ is called the double of Ω.

If j is a non-negative integer, we can define the trace map
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γj : C∞(Ω) −→ C∞(Γ)

by the formula

γju(x′) = lim
t↓0

Dj
tu(x′, t) for all u ∈ C∞(Ω).

Then we have the following theorem (see [1, Theorem 7.39]):

Theorem 3.5 (the trace theorem). Let 1 < p < ∞. If 0 ≤ j < s − 1/p, then the

trace map

γ : W s,p(Ω) −→
∏

0≤j<s−1/p

Bs−j−1/p,p(Γ)

u 7−→ (γju)0≤j<s−1/2

is continuous and surjective.

4. Subelliptic pseudo-differential operators.

Let Ω be an open subset of Rn. A properly supported, pseudo-differential operator

A in the Hörmander class Lm1,0(Ω) of order m ∈ R is said to be subelliptic with loss of

some δ ∈ [0, 1) if, for every compact K ⊂ Ω, s ∈ R and t < s + m − δ there exists a

constant CK,s,t > 0 such that we have the inequality

‖u‖W s+m−δ,2(Ω) ≤ CK,s,t
(
‖Au‖W s,2(Ω) + ‖u‖W t,2(Ω)

)

for all functions u ∈ C∞K (Ω).

Here Wσ,2(Ω) is the L2 Sobolev space of order σ on Ω and

C∞K (Ω) = the space of functions in C∞(Ω) with support in K.

It is known (see Hörmander [21]) that subelliptic operators are hypoelliptic, with loss of

δ-derivatives.

Egorov [12] and Hörmander [22] have obtained necessary and sufficient conditions

in order that a properly supported, classical pseudo-differential operator A ∈ Lmcl (Ω) of

order m is subelliptic. More precisely, we have the following theorem (see [22, Theorem

3.4], [42, Theorem I]):

Theorem 4.1 (Egorov–Hörmander). Let A be a properly supported, pseudo-differ-

ential operator in the class Lmcl (Ω) having the principal symbol am(x, ξ). Then A is

subelliptic with loss of some δ ∈ [0, 1) if and only if, at every point x0 of Ω there exists

a neighborhood V of x0 such that the following two conditions (i) and (ii) are satisfied :

(i) For any point (x, ξ) ∈ V × (Rn \ {0}), the function

(HRe zam)
j

(Im zam) (x, ξ) (4.1)

is different from zero for some complex number z and some non-negative integer
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j ≤ δ/(1− δ). Here Hf is the Hamilton vector field defined by the formula

Hf =

n∑

i=1

∂f

∂ξi

∂

∂xi
−

n∑

i=1

∂f

∂xi

∂

∂ξi
.

(ii) If j is an odd integer and is the smallest integer such that the function (4.1) is

not identically equal to zero, then the function (4.1) is non-negative for all (x, ξ) ∈
V × (Rn \ {0}).

5. The Dirichlet problem.

Let Ω be a bounded domain in Rn with smooth boundary Γ. Let A be a second-

order, uniformly elliptic differential operator with real coefficients on the double M = Ω̂

of Ω such that

A =

n∑

i=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ c(x).

Here:

(1) aij ∈ C∞(M) and aij(x) = aji(x) for all x ∈ M and 1 ≤ i, j ≤ n, and there exists

a constant c0 > 0 such that

n∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|2 for all (x, ξ) ∈ T ∗(M),

where T ∗(M) is the cotangent bundle of M .

(2) bi ∈ C∞(M) for all 1 ≤ i ≤ n.

(3) c ∈ C∞(M).

For simplicity, we assume that

The function c(x) does not vanish identically on M. (5.1)

Then we can prove the following existence and uniqueness theorem for the Dirichlet

problem (see [30, Theorem], [36, Theorem 8.2.5]):

Theorem 5.1. Let 1 < p <∞ and s > −2 + 1/p. Assume that condition (5.1) is

satisfied. Then the Dirichlet problem

{
Au = f in Ω,

u = ϕ on Γ
(5.2)

has a unique solution u in the space W s+2,p(Ω) for any f ∈ W s,p(Ω) and any ϕ ∈
Bs+2−1/p,p(Γ).
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Indeed, it suffices to note that the unique solution u of the Dirichlet problem (5.2)

is given by the following formula:

u = QEf |Ω + P (ϕ− (QEf)|Γ) in Ω. (5.3)

Here:

(1) Q : W s,p(M)→W s+2,p(M) is the fundamental solution of A.

(2) P : Bs−1/p,p(Γ)→W s,p(M) is the Poisson kernel for A.

(3) E : W s,p(Ω)→W s,p(M) is the Seeley extension operator (see Theorem 3.4).

6. Homogeneous oblique derivative problem.

In this section, by using the Dirichlet problem we consider the homogeneous oblique

derivative problem for second-order, uniformly elliptic differential operators in the frame-

work of Lp Sobolev spaces. We prove that if the condition (H) is satisfied, then the oper-

ator Ap is a Fredholm operator and its index indAp is independent of p for all 1 < p <∞
(Theorem 6.11). The proof of Theorem 6.11 can be visualized as in Diagram 4 below.

Proposition6.2

(standard reduction to Γ)

Theorem6.7

(indAp = ind Tp < ∞)

Proposition6.8

(subellipticity for T and T ′)

Theorem6.11

(indAp is independent of p)

Theorem6.10

(regularity for N (Tp))
ind Tp

(independent of p)

Theorem6.10

(regularity for N ((Tp)′))

Diagram 4.

6.1. Formulation of the oblique derivative problem.

If 1 < p < ∞, we introduce a maximal domain HA(Ω) for the operator A in the

Banach space Lp(Ω) as follows:

HA(Ω) = {u ∈ Lp(Ω) : Au ∈ Lp(Ω)}.

We equip the space HA(Ω) with the graph norm

‖u‖HA(Ω) =
(
‖u‖2Lp(Ω) + ‖Au‖2Lp(Ω)

)1/2

.

The maximal domain HA(Ω) is a Banach space.
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Then we have the following proposition (see [36, Proposition 8.3.2]):

Proposition 6.1. The oblique boundary operator

Bγ : HA(Ω) −→ B−1−1/p,p(Γ)

is continuous.

Now we can formulate the homogeneous oblique derivative problem as follows: Given

a function f ∈ Lp(Ω), find a function u ∈ Lp(Ω) such that

{
Au = f in Ω,

Bγu = 0 on Γ.
(∗)

6.2. Standard reduction to the boundary Γ.

Let 1 < p < ∞ and s > −1 + 1/p. Given a function f ∈ W s,p(Ω), assume that

a function u ∈ Wσ,p(Ω) with σ ≤ s + 2 is a solution of problem (∗). Then, by using

Proposition 6.1 we can reduce the study of problem (∗) to that of a pseudo-differential

equation on the boundary Γ, just as in the classical Fredholm integral equation. In fact,

we can prove the following proposition (see [36, Theorem 8.3.3]):

Proposition 6.2. Let 1 < p < ∞, s > −2 + 1/p and σ ≤ s + 2. For a given

function f ∈ W s,p(Ω), there exists a solution u ∈ Wσ,p(Ω) of problem (∗) if and only if

there exists a solution ψ ∈ Bσ−1/p,p(Γ) of the equation

Bγ (Pψ) = −Bγ (QEf) on Γ. (∗∗)

Moreover, the solutions u and ψ are related as follows:

u = QEf |Ω + Pψ.

If we let

T : C∞(Γ) −→ C∞(Γ)

ϕ 7−→ Bγ (Pϕ) ,

then we have the formula

T = a(x′)Π + α(x′), (6.1)

where Π is the Dirichlet–Neumann operator defined as follows:

Πϕ =
∂

∂n
(Pϕ)

∣∣∣∣
Γ

for all ϕ ∈ C∞(Γ).

It is well known (cf. [10], [20], [22], [24], [28], [30], [41]) that the operator Π is a

classical, elliptic pseudo-differential operator of first order on the boundary Γ.

However, there is a homotopy through elliptic symbols between the two elliptic dif-

ferential operators A and ∆ if we take
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At := t A+ (1− t)∆ for 0 ≤ t ≤ 1.

Therefore, we have only to calculate concretely the symbol of the pseudo-differential

operator Π in the case where A = ∆. In this case, we can write down the complete

symbol p(x′, ξ′) of Π as follows (cf. [16], [38, Section 10.7]):

p(x′, ξ′) = |ξ′|+ 1

2

(
ωx′(ξ̂′, ξ̂′)
|ξ′|2 − (n− 1)M(x′)

)

−
√
−1

1

2
div δ(ξ′)(x

′) + terms of order ≤ −1. (6.2)

Here:

(a) |ξ′| is the length of ξ′ ∈ T ∗x′(Γ) with respect to the Riemannian metric of Γ induced

by the natural metric of Rn.

(b) M(x′) is the mean curvature of the boundary Γ at x′.

(c) ωx′(ξ̂′, ξ̂′) is the second fundamental form of Γ at x′, while ξ̂′ ∈ Tx′(Γ) is the tangent

vector corresponding to the cotangent vector ξ′ ∈ T ∗x′(Γ) by the duality between

Tx′(Γ) and T ∗x′(Γ) with respect to the Riemannian metric (gij(x
′)) of Γ.

(d) div δ(ξ′) is the divergence of a real smooth vector field δ(ξ′) on Γ defined (in terms

of local coordinates) by the formula

δ(ξ′) =

n−1∑

j=1

∂|ξ′|
∂ξj

∂

∂xj
for ξ′ 6= 0.

Hence, we find from formula (6.2) that the principal symbol t1(x′, ξ′) of the pseudo-

differential operator T , defined by formula (6.1), is equal to the following:

t1(x′, ξ′) = a(x′) |ξ′|+
√
−1

[
n−1∑

k=1

αk(x′)ξk

]
. (6.3)

By virtue of Proposition 6.2, we can reduce problem (∗) to the study of the pseudo-

differential operator T on the boundary Γ. We shall formulate this fact more precisely

in terms of functional analysis (cf. [39, Chapter 6]).

First, we associate with the homogeneous problem (∗) a densely defined, closed linear

operator (see formula (2.3))

Ap : Lp(Ω) −→ Lp(Ω)

in the Banach space Lp(Ω) as follows.

(a) The domain D(Ap) of definition of Ap is the space

D(Ap) = {u ∈W 2,p(Ω) : Bγu = 0 on Γ}.

(b) Apu = Au for every u ∈ D(Ap).
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Indeed, since A : Lp(Ω) → D′(Ω) and Bγ : HA(Ω) → B−1−1/p,p(Γ) are both

continuous, it follows that Ap is a closed operator. Furthermore, the operator Ap is

densely defined, since the domain D(Ap) contains the space C∞0 (Ω) which is dense in

Lp(Ω).

Similarly, by taking Proposition 6.2 with s := 0 and σ := 2 we associate with

equation (∗∗) a densely defined, closed linear operator

Tp : B2−1/p,p(Γ) −→ B2−1/p,p(Γ)

in the Banach space B2−1/p,p(Γ) as follows.

(α) The domain D(Tp) of definition of Tp is the space

D(Tp) =
{
ϕ ∈ B2−1/p,p(Γ) : Tϕ ∈ B2−1/p,p(Γ)

}
. (6.4)

(β) Tpϕ = Tϕ = Bγ (Pϕ) for every ϕ ∈ D(Tp).

First, we have the following theorem (see [36, Theorem 8.3.4]):

Theorem 6.3 (Null Spaces). The null spaces N (Ap) and N (Tp) are isomorphic.

Hence we have the formula

dimN (Ap) = dimN (Tp).

For the ranges R(Ap) and R(Tp), we have the following theorem (see [36, Theorem

8.3.5]):

Theorem 6.4 (Ranges). If the range R(Tp) is closed in B2−1/p,p(Γ), then the

range R(Ap) is closed in Lp(Ω).

In order to study a relationship between codimR(Ap) and codimR(Tp), we consider

the transposes (Ap)
′ and (Tp)′. Here the transpose (Ap)

′ of Ap is a densely defined, closed

linear operator

(Ap)
′ : Lp

′
(Ω) −→ Lp

′
(Ω), p′ =

p

p− 1
,

such that

〈Apu, v〉 = 〈u, (Ap)′v〉 , u ∈ D(Ap), v ∈ D((Ap)
′),

where 〈·, ·〉 is the duality between the spaces Lp(Ω) and Lp
′
(Ω).

Similarly, the transpose (Tp)′ of Tp is a densely defined, closed linear operator

(Tp)′ : B−2+1/p,p′(Γ) −→ B−2+1/p,p′(Γ), p′ =
p

p− 1
,

such that

〈Tpϕ,ψ〉 = 〈ϕ, (Tp)′ψ〉 , ϕ ∈ D(Tp), ψ ∈ D((Tp)′),
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where 〈·, ·〉 is the duality between the spaces B2−1/p,p(Γ) and B−2+1/p,p′(Γ).

Then we have the following theorem (see [36, Theorem 8.3.6]):

Theorem 6.5. Assume that the ranges R(Ap) and R(Tp) are closed. If the null

space N ((Tp)′) has finite dimension, then the null space N ((Ap)
′) has finite dimension.

Moreover, in this case, we have the formula

dimN ((Ap)
′) = dimN ((Tp)′).

Corollary 6.6 (Cokernels). Assume that the ranges R(Ap) and R(Tp) are closed.

If the range R(Tp) has finite codimension, then the range R(Ap) has finite codimension.

Moreover, in this case, we have the formulas

codimR(Ap) = dimN ((Ap)
′) = dimN ((Tp)′) = codimR(Tp).

Corollary 6.6 is an immediate consequence of the closed range theorem (see [45,

Chapter VII, Section 5, Theorem]) and Theorem 6.5.

By combining Theorems 6.3 through 6.5 and Corollary 6.6, we obtain the following

formula for the indices of the operators Ap and Tp (see [39, Theorem 6.11]):

Theorem 6.7 (Indices). If the operator Tp is a Fredholm operator, then the oper-

ator Ap is a Fredholm operator. Moreover, in this case, we have the formula

indAp = ind Tp.

6.3. Subellipticity for T and T ′.

The purpose of this subsection is to prove the following:

Proposition 6.8. Assume that the hypothesis (H) is satisfied. Then the pseudo-

differential operators T and T ′ are both subelliptic with loss of some δ on Γ where

2k/(2k + 1) ≤ δ < 1.

Proof. We apply Theorem 4.1 (Egorov–Hörmander) to the pseudo-differential

operators T and T ′. The proof of Proposition 6.8 is divided into three steps.

Step 1: First, we straighten out the vector field α(x′). For each initial point

(y′′, 0) = (y1, y2, . . . , yn−2, 0) ∈ Rn−1,

we consider the following initial-value problem for ordinary differential equations:





dγ1

dt
= α1(γ(y′′, t)), γ1(y′′, 0) = y1,

...
...

dγn−2

dt
= αn−2(γ(y′′, t)), γn−2(y′′, 0) = yn−2,

dγn−1

dt
= αn−1(γ(y′′, t)), γn−1(y′′, 0) = 0.

(6.5)
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We remark that the initial-value problem (6.5) has a unique local solution

γ(y′′, t) = (γ1(y′′, t), γ2(y′′, t), . . . , γn−1(y′′, t)),

since the vector filed α(x′) is Lipschitz continuous. Hence we can introduce a new change

of variables x′ = γ(y′) by the formula

(x1, x2, . . . , xn−1) = (γ1(y′′, yn−1), γ2(y′′, yn−1), . . . , γn−1(y′′, yn−1)),

y′ = (y′′, yn−1) ∈ Rn−1.

Then we have the formula

d

dt
=

n−1∑

k=1

αk(x′)
∂

∂xk
= α(x′).

Therefore, in view of formula (6.3) we may assume that the principal symbol

t1(x′′, t, ξ′′, τ) of T = a(x′)Π + α(x′) is equal to the following:

t1(x′′, t, ξ′′, τ) =
√
−1 τ + a(x′′, t)

√
|ξ′′|2 + τ2, (6.6)

(x′, ξ′) = ((x′′, t), (ξ′′, τ)) .

Step 2: In view of formula (6.6), we find that the characteristic set Σ of T is given

by the formula

Σ = {((x′′, t), (ξ′′, τ)) ∈ T ∗(Γ) \ {0} : a(x′′, t) = 0, τ = 0} .

(a) The case where a(x′′0 , 0) 6= 0. Then we can take j = 0 in condition (i) of Theorem

4.1, since we have, by formula (6.6),

Im
(√
−1 t1(x′′0 , t, ξ

′′, τ)
)

= a(x′′0 , t) p1(x′′0 , t, ξ
′′, τ) 6= 0

for |ξ′′|2 + τ2 = 1.

(b) The case where a(x′′0 , 0) = 0. If we consider instead of T the operator
√
−1T ,

then we have, by formula (6.6),

√
−1 t1(x′′, t, ξ′′, τ) = −τ +

√
−1 a(x′′, t)

√
|ξ′′|2 + τ2.

Then we remark that

Im
(√
−1 t1(x′′0 , 0, ξ

′′, τ)
)

= a(x′′0 , 0) p1(x′′0 , 0, ξ
′′, τ) = 0.

If we take j = 1 in condition (ii) of Theorem 4.1, we may assume that

∂a

∂t
(x′′0 , 0) 6= 0. (6.7)

This proves that condition (1) of Theorem 4.1 for j = 1 is equivalent to condition (6.7).

Namely, we have the assertion
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HRe (
√−1 t1)

(
Im
(√
−1 t1(x′′0 , t, ξ

′′, τ)
))
6= 0⇐⇒ ∂a

∂t
(x′′0 , 0) 6= 0.

Here it should be noticed that condition (6.7) implies that the vector field α(x′) is non-

zero on the set Γ0 = {x′ ∈ Γ : a(x′) = 0}.
Therefore, we find that condition (ii) of Theorem 4.1 for the principal symbol

√
−1 t1(x′′, t, ξ′′, τ)

implies the following assertion:

HRe (
√−1 t1)

(
Im
(√
−1 t1(x′′0 , t, ξ

′′, τ)
))

= −∂a
∂t

(x′′, t)
√
|ξ′′|2 + τ2 ≥ 0 (6.8)

⇐⇒
∂a

∂t
(x′′0 , t) ≤ 0.

On the other hand, it follows from formula (6.6) that the principal symbol

t′1(x′′, t, ξ′′, τ) of the transpose T ′ is given by the formula

t′1(x′′, t, ξ′′, τ) = a(x′′, t)
√
|ξ′′|2 + τ2 −

√
−1 τ.

Since we have the formula (for z =
√
−1)

√
−1 t′1(x′′, t, ξ′′, τ) = τ +

√
−1 a(x′′, t)

√
|ξ′′|2 + τ2 + η2,

we find that condition (ii) of Theorem 4.1 for
√
−1 t′1(x′, ξ′) implies the following:

HRe (
√−1 t′1)

(
Im
(√
−1 t′1(x′0, ξ

′)
))

=
∂a

∂t
(x′′, t)

√
|ξ′′|2 + τ2 ≥ 0 (6.9)

⇐⇒
∂a

∂t
(x′′0 , t) ≥ 0.

By combining inequalities (6.8) and (6.9), we obtain that

∂a

∂t
(x′′0 , 0) = 0.

This contradicts assumption (6.7).

Therefore, we have proved that j = 1 is excluded.

In this way, we can prove that j is an even integer. More precisely, we have, for

some even integer j,

a(x′′0 , t) =
∂a

∂t
(x′′0 , 0) = · · · = ∂j−1a

∂tj−1
(x′′0 , 0) = 0,

∂ja

∂tj
(x′′0 , 0) 6= 0.

Step 3: Therefore, we find that T and T ′ are both subelliptic with loss of some
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δ ∈ [0, 1) if and only if, along the integral curve x(t, x′0) of the vector field α(x′) passing

through x′0 ∈ Γ0 at t = 0 the function: t 7→ a(x(t, x′0)) has zeros of even order ≤ 2k, and

2k ≤ δ/(1− δ).
The proof of Proposition 6.8 is complete. �

In light of Proposition 6.8, we can derive from Smith [31] and Guan–Sawyer [18]

that if condition (H) is satisfied, then the pseudo-differential operator T has a parametrix

(see Remark 2.1). Therefore, we obtain the following fundamental result:

Proposition 6.9. If the condition (H) is satisfied, then the operator Tp, defined

by formula (6.4), is a Fredholm operator for every 1 < p <∞.

Indeed, the proof of Proposition 6.9 can be carried out as in Diagram 5 below.

Proposition6.1

(oblique boundary operator Bγ)

Proposition6.2

(standard reduction to Γ)

Theorem5.1

(Dirichlet problem)

Proposition6.9

(ind Tp < ∞)

Theorem4.1

(Egorov–Hörmander)

Proposition6.8

(subellipticity for T and T ′)

formula (6.6)

(principal symbol of T )

Diagram 5.

6.4. Index of the operator Ap.

The next theorem is an immediate consequence of Proposition 6.8 (cf. [31, Theorem

4.5], [18, Proposition 5.38]):

Theorem 6.10 (Regularity). Let 1 < p < ∞. Assume that condition (H) is

satisfied. Then we have the following two assertions:

(i) If ϕ ∈ D′(Γ), Tϕ ∈ Bσ,p(Γ) for σ ∈ R, then it follows that ϕ ∈ Bσ,p(Γ). In

particular, we have the assertion

N (Tp) ⊂ C∞(Γ).

(ii) If ψ ∈ D′(Γ), T ′ψ ∈ Bσ,p
′
(Γ) for σ ∈ R, then it follows that ψ ∈ Bσ,p

′
(Γ). In

particular, we have the assertion

N
(
(Tp)′

)
⊂ C∞(Γ).
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Indeed, it suffices to note that the null space N ((Tp)′) of the transpose (Tp)′ can be

characterized as follows (cf. [36, Lemma 8.4.8]):

N
(
(Tp)′

)
=
{
ψ ∈ B−2+1/p,p′(Γ) : 〈ψ, Tϕ〉 = 0 for all ϕ ∈ D (Tp)

}

⊂
{
ψ ∈ B−2+1/p,p′(Γ) : 〈T ′ψ,ϕ〉 = 〈ψ, Tϕ〉 = 0 for all ϕ ∈ C∞(Γ)

}
.

This proves that

N
(
(Tp)′

)
⊂ {ψ ∈ D′(Γ) : T ′ψ = 0} ⊂ C∞(Γ).

Finally, by combining Proposition 6.9, Theorems 6.7 and 6.10 and Corollary 6.6 we

obtain the following fundamental result of the indices of the operators Ap:

Theorem 6.11 (Indices). If the condition (H) is satisfied, then the index indAp =

ind Tp is independent of p for all 1 < p <∞.

7. Agmon’s method.

First, we introduce an auxiliary variable y of the unit circle

S = R/2πZ,

and replace the complex parameter λ by the second-order differential operator

−eiθ ∂
2

∂y2
, −π < θ < π.

More precisely, if we express the complex parameter λ in the form

λ = r2 eiθ, r ≥ 0, −π < θ < π,

then we replace the differential operator A− λ = A− r2 eiθ defined in Ω by the second-

order differential operator

Λ̃(θ) := A+ eiθ
∂2

∂y2
, −π < θ < π,

defined in the product domain Ω × S. We remark that the operator Λ̃(θ) is strongly

uniform elliptic for −π < θ < π in Ω × S. Moreover, up to an appropriate constant

of proportionality, the fundamental solution Ẽ(x, y; θ) of Λ̃(θ) is explicitly given by the

following formula (due to K. Uchiyama):

Ẽ(x, y; θ) =

(
n+ eiθ/2

n+ 1
|x|2 +

n e−iθ/2 + 1

n+ 1
y2

)(1−n)/2

, i =
√
−1.

Now we consider instead of the original oblique derivative problem with spectral

parameter
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



(A− λ)u = f in Ω,

Bγu = a(x′)
∂u

∂n
+ α(x′) · u = 0 on Γ

(1.1)

the following oblique derivative problem in the product domain Ω×S: Given a function

f̃(x, y) defined in Ω× S, find a function ũ(x, y) in Ω× S such that





Λ̃(θ)ũ =

(
A+ eiθ

∂2

∂y2

)
ũ = f̃ in Ω× S,

Bγũ = a(x′)
∂ũ

∂n
+ α(x′) · ũ = 0 on Γ× S.

(7.1)

In order to prove Theorem 2.4, we associate with the oblique derivative problem

(7.1) a densely defined, closed linear operator

Ãp(θ) : Lp(Ω× S) −→ Lp(Ω× S)

in the Banach space Lp(Ω× S) as follows:

(a) The domain D(Ãp(θ)) of definition of Ãp(θ) is the space

D(Ãp(θ) =
{
ũ ∈W 2,p(Ω× S) : Bγũ = 0

}
.

(b) Ãp(θ)ũ = Λ̃(θ)ũ for every ũ ∈ D(Ãp(θ)).

Here Λ̃(θ)ũ and Bũ are taken in the sense of distributions.

The next theorem asserts that if the condition (H) is satisfied, then the operator

Ãp(θ) is a Fredholm operator for every 1 < p <∞:

Theorem 7.1. Let 1 < p < ∞ and θ ∈ (−π, π). Assume that the condition (H)

is satisfied. Then the operator Ãp(θ) : Lp(Ω× S)→ Lp(Ω× S) is a Fredholm operator.

Moreover, there exists a constant C̃(θ) > 0 depending on θ such that the a priori estimate

‖ũ‖W 2,p(Ω×S) ≤ C̃(θ)

(∥∥∥Λ̃(θ)ũ
∥∥∥
Lp(Ω×S)

+ ‖ũ‖Lp(Ω×S)

)
(7.2)

holds true for all functions ũ ∈ D(Ãp(θ)).

The proof of Theorem 7.1 will be given in Section 11, due to its length.

8. The Dirichlet problem for Agmon’s method.

In this section, by using the theory of pseudo-differential operators we consider the

Dirichlet problem for the second-order, strongly uniform elliptic differential operator

Λ̃(θ) = A+ eiθ
∂2

∂y2
, −π < θ < π,
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in the framework of Lp Sobolev spaces on the product domain Ω×S: Given functions f̃

and ϕ̃ defined in Ω× S and on Γ× S, respectively, find a function ũ in Ω× S such that

{
Λ̃(θ)ũ = f̃ in Ω× S,
ũ = ϕ̃ on Γ× S.

(8.1)

8.1. Symbol of the operator Λ̃(θ).

In this subsection, we calculate explicitly the symbol of the elliptic differential op-

erator

Λ̃(θ) = A+ eiθ
∂2

∂y2
, −π < θ < π.

However, it is easy to see that there is a homotopy through elliptic symbols between the

two elliptic differential operators

Λ̃1(θ) = Λ̃(θ) = A+ eiθ
∂2

∂y2
, Λ̃0(θ) = ∆+ eiθ

∂2

∂y2
.

For example, we may take

Λ̃t(θ) := t A+ (1− t)∆+ eiθ
∂2

∂y2
for 0 ≤ t ≤ 1.

Therefore, we have only to calculate explicitly the symbol of the differential operator

Λ̃0(θ) for the Laplacian A = ∆:

Λ̃0(θ) =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

+ eiθ
∂2

∂y2
, −π < θ < π.

To do so, let

(x, ξ, y, η) = (x1, . . . , xn, ξ1, . . . , ξn, y, η)

be a local coordinate system of the cotangent bundle T ∗(Ω)×T ∗(S) = T ∗(Ω×S). Then

the complete symbol of Λ̃0(θ) is equal to the following:

−
(
|ξ|2 + cos θ · η2

)
−
√
−1 sin θ · η2.

Moreover, we remark that

(
|ξ|2 + cos θ · η2

)
+
√
−1 sin θ · η2

=

( |ξ|2 + cos θ · η2 +
√
−1 sin θ · η2

|ξ|2 + η2

)(
|ξ|2 + η2

)
,

and further that the middle term is estimated as follows:

∣∣∣∣
|ξ|2 + cos θ · η2 +

√
−1 sin θ · η2

|ξ|2 + η2

∣∣∣∣ ≥
√

1 + cos θ

2
for all θ ∈ (−π, π).
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In this way, we are reduced to the study of the Dirichlet problem for the usual

Laplacian (θ := 0)

Λ̃0(0) =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

+
∂2

∂y2
in Ω× S.

8.2. Unique solvability of the Dirichlet problem for Agmon’s method.

We can prove the following existence and uniqueness theorem for the Dirichlet prob-

lem (8.1) in the framework of Lp Sobolev spaces (cf. [3], [17], [25], [44]):

Theorem 8.1. Let 1 < p < ∞ and s > −2 + 1/p. Then the Dirichlet problem

(8.1) has a unique solution ũ in the space W s+2,p(Ω× S) for any f̃ ∈ W s,p(Ω× S) and

any ϕ̃ ∈ Bs+2−1/p,p(Γ × S). Moreover, the unique solution ũ of the Dirichlet problem

(8.1) can be expressed as follows (cf. formula (5.3)):

ũ = Q̃(θ)Ẽf̃
∣∣∣
Ω×S

+ P̃ (θ)

(
ϕ̃−

(
Q̃(θ)Ẽf̃

)∣∣∣
Γ×S

)
in Ω× S.

Here:

(1) Q̃(θ) is the fundamental solution of Λ̃(θ).

(2) P̃ (θ) is the Poisson kernel for Λ̃(θ).

(3) Ẽ : W s,p(Ω × S) → W s,p(M × S) is the Seeley extension operator (see Theorem

3.4).

9. Special reduction to the boundary Γ × S.

In this section, we reduce the homogeneous oblique derivative problem (7.1) to the

study of a first-order, pseudo-differential operator T̃ (θ) on the boundary Γ× S (Propo-

sition 9.1), just as in Smith [31] and Guan–Sawyer [18].

Step 1: Let f̃ ∈W s,p(Ω× S) with 1 < p <∞ and s > −1 + 1/p. We denote by f̃0

the extension of f̃ to Euclidean space Rn+1 with f̃0 ≡ 0 outside Ω× S:

f̃0(x, y) =

{
f̃(x, y) for (x, y) ∈ Ω× S,
0 for (x, y) ∈ Rn+1 \ (Ω× S).

If Q̃(θ) is the fundamental solution of the second-order, strongly uniform elliptic differ-

ential operator

Λ̃(θ) = A+ eiθ
∂2

∂y2
, −π < θ < π,

then it follows from the transmission property of the fundamental solution Q̃(θ) (see

Boutet de Monvel [8], Rempel–Schulze [28, p. 161, Theorem 2]) that

(
Q̃(θ)f̃0

)∣∣∣
Ω×S

∈W s+2,p(Ω× S) for s > −1 + 1/p,
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so that

Bγ
(
Q̃(θ)f̃0

)
∈ Bs+1−1/p,p(Γ× S) for s > −1 + 1/p.

If a function ũ satisfies the equation

Λ̃(θ)ũ = f̃ in Ω× S,

then it follows that

Λ̃(θ)
(
Q̃(θ)f̃0 − ũ

)
= f̃0 − f̃ = 0 in Ω× S.

We let

ṽ =
(
Q̃(θ)f̃0 − ũ

)∣∣∣
Γ×S

.

If P̃ (θ) is the Poisson kernel of the elliptic differential operator Λ̃(θ) in the domain Ω×S,

then we have the formula

Q̃(θ)f̃0 − ũ = P̃ (θ)ṽ in Ω× S,

or equivalently,

ũ = Q̃(θ)f̃0 − P̃ (θ)ṽ in Ω× S.

Then we find that the boundary condition

Bγũ =
∂ũ

∂ν
= α(x′) · ũ+ a(x′)

∂ũ

∂n

∣∣∣∣
Γ×S

= 0 on Γ× S

is equivalent to the following condition:

Bγ
(
Q̃(θ)f̃0

)
−Bγ

(
P̃ (θ)ṽ

)

= Bγ
(
Q̃(θ)f̃0

)
− α(x′) · (P̃ (θ)ṽ)|Γ×S − a(x′)

∂

∂n
(P̃ (θ)ṽ)

∣∣∣∣
Γ×S

= Bγ
(
Q̃(θ)f̃0

)
−
(
α(x′) · ṽ + a(x′)

∂

∂n
(P̃ (θ)ṽ)

∣∣∣∣
Γ×S

)

= 0 on Γ× S. (9.1)

Now we let

T̃ (θ) : C∞(Γ× S) −→ C∞(Γ× S)

ϕ̃ 7−→ Bγ
(
P̃ (θ)ϕ̃

)
,

then we have the formula
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T̃ (θ) = a(x′)Π̃(θ) + α(x′), (9.2)

where Π̃(θ) is the Dirichlet–Neumann operator defined as follows:

Π̃(θ)ϕ̃ :=
∂

∂n

(
P̃ (θ)ϕ̃

)∣∣∣∣
Γ×S

for all ϕ̃ ∈ C∞(Γ× S).

Therefore, we obtain from formulas (9.1) and (9.2) that

T̃ (θ)ṽ = α(x′) · ṽ + a(x′)Π̃(θ)ṽ = Bγ
(
Q̃(θ)f̃0

)
on Γ× S. (9.3)

Step 2: On the other hand, since the function f̃0 is compactly supported in Rn+1,

it follows that the function Q̃(θ)f̃0 satisfies the homogeneous equation

Λ̃(θ)Q̃(θ)f̃0 = f̃0 = 0

in the exterior domain

Ω× Sc = Rn+1 \ (Ω× S),

and vanishes at infinity.

If P̃ ext(θ) is the Poisson kernel of the elliptic differential operator Λ̃(θ) in the exterior

domain Ω× Sc, then we have the formula

Q̃(θ)f̃0 = P̃ ext(θ)
(
Q̃(θ)f̃0|Γ×S

)
in Ω× Sc. (9.4)

We recall that the analysis of the Poisson kernel P̃ ext(θ) can be reduced to that of

compact domains by using the Kelvin transform (see [5, Chapter 4]).

Hence we have, by formula (9.4),

Bγ
(
Q̃(θ)f̃0

)
= Bγ

(
P̃ ext(θ)

(
Q̃(θ)f̃0|Γ×S

))
.

However, it should be noticed that the outward normal field n to Γ × S in the interior

domain Ω× S is the inward normal for the exterior domain Ω× Sc.
Therefore, if we define the Dirichlet–Neumann operator Π̃ext(θ) by the formula

Π̃ext(θ)ϕ̃ :=
∂

∂(−n)

(
P̃ ext(θ)ϕ̃

)∣∣∣∣
Γ×S

for all ϕ̃ ∈ C∞(Γ× S),

then we have the formula

Bγ
(
Q̃(θ)f̃0

)
= Bγ

(
P̃ ext(θ)

(
Q̃(θ)f̃0|Γ×S

))

=

(
α(x′)− a(x′)

∂

∂(−n)

(
P̃ ext(θ)

(
Q̃(θ)f̃0|Γ×S

)))∣∣∣∣
Γ×S

=
(
α(x′)− a(x′)Π̃ext(θ)

)(
Q̃(θ)f̃0|Γ×S

)
on Γ× S. (9.5)
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Step 3: By combining formulas (9.3) and (9.5), we have proved the following fun-

damental proposition (cf. Proposition 6.2):

Proposition 9.1. Let f̃ ∈W s,p(Ω× S) with 1 < p <∞ and s > −1 + 1/p. Then

the homogeneous oblique derivative problem (7.1)





Λ̃(θ)ũ =

(
A+ eiθ

∂2

∂y2

)
ũ = f̃ in Ω× S,

Bγũ = a(x′)
∂ũ

∂n
+ α(x′) · ũ = 0 on Γ× S

can be reduced to the study of the pseudo-differential equation

T̃ (θ)ṽ =
(
α(x′)− a(x′)Π̃ext(θ)

)(
Q̃(θ)f̃0|Γ×S

)
on Γ× S, (9.6)

where T̃ (θ) = α(x′) + a(x′)Π̃(θ), ṽ = (Q̃(θ)f̃0 − ũ)|Γ×S and

Q̃(θ)f̃0

∣∣∣
Γ×S
∈ Bs+2−1/p,p(Γ× S).

10. Symbolic calculus.

The purpose of this section is to prove that if the condition (H) is satisfied, then the

operator T̃p(θ) is a Fredholm operator for every 1 < p < ∞ (Proposition 10.4). First,

we show that the pseudo-differential operators T̃ (θ) and T̃ (θ)′ are both subelliptic with

loss of some δ if the condition (H) is satisfied (Proposition 10.3). To do so, we have only

to calculate the principal symbol t̃1(x′′, t, ξ′′, τ, y, η; θ) of the pseudo-differential operator

T̃ (θ) = a(x′)Π̃(θ) + α(x′) in the case where A = ∆:

Λ̃0(θ) = ∆+ eiθ
∂2

∂y2
=

∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

+ eiθ
∂2

∂y2
, −π < θ < π.

The essential point is how to reduce the study of the general case T̃ (θ), −π < θ < π, to

the simplest case T̃ (0) when θ = 0 (Proposition 10.2). The proof of Proposition 10.4 can

be visualized as in Diagram 6 below.

10.1. Principal symbol of T̃ (θ).

In this subsection, we calculate the principal symbols of the pseudo-differential op-

erators Π̃(θ) and T̃ (θ).

Step 1: First, we calculate the symbol of the pseudo-differential operator Π̃(θ). To

do this, let

(x′, ξ′, y, η) = (x1, . . . , xn−1, ξ1, . . . , ξn−1, y, η)

be a local coordinate system of the cotangent bundle T ∗(Γ)× T ∗(S) = T ∗(Γ×S). Then

it is known that the complete symbol of Π̃(θ) is given by the following formula (cf.

[36, Section 10.2]):
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inequalities (10.1)&(10.2)

(ellipticity of the symbol of Π̃(θ))

Proposition 10.2

(symbol of T̃ (θ))

Lemma10.1

(decomposition of the symbol of T̃ (θ))

Proposition10.4

(ind T̃p(θ) < ∞)

formula (10.5)

(symbol of T̃ (0) (θ = 0))

parametrix for T̃ (0)

(Smith and Guan–Sawyer)

Proposition10.3

(subellipticity for T̃ (θ) and T̃ (θ)′)

Diagram 6.

(
p̃1(x′, ξ′, y, η; θ) +

√
−1 q̃1(x′, ξ′, y, η; θ)

)

+
(
p̃0(x′, ξ′, y, η; θ) +

√
−1 q̃0(x′, ξ′, y, η; θ)

)
+ terms of order ≤ −1,

where p̃1(x′, ξ′, y, η; θ) > 0 on the bundle T ∗(Γ× S) \ {0} of non-zero cotangent vectors,

for −π < θ < π. More precisely, we have the formula

p̃1(x′, ξ′, y, η; θ)

=
1√
2

[[(
|ξ′|2 + cos θ · η2

)2
+ sin2 θ · η4

]1/2
+
(
|ξ′|2 + cos θ · η2

)]1/2

,

and

q̃1(x′, ξ′, y, η; θ)

=
1√
2

[[(
|ξ′|2 + cos θ · η2

)2
+ sin2 θ · η4

]1/2
−
(
|ξ′|2 + cos θ · η2

)]1/2

.

Hence we have the formula

p̃1(x′, ξ′, y, η; θ)2 + q̃1(x′, ξ′, y, η; θ)2 =
[(
|ξ′|2 + cos θ · η2

)2
+ sin2 θ · η4

]1/2
.

Moreover, it is easy to see that

p̃1(x′, ξ′, y, η; θ) ≥





√
1 + cos θ

2

(
|ξ′|2 + η2

)1/2
if |θ| ≤ π/2,

1√
2

4

√
1 + cos θ

1− cos θ

(
|ξ′|2 + η2

)1/2
if π/2 < |θ| < π,

(10.1)

and that
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p̃1(x′, ξ′, y, η; θ)2 + q̃1(x′, ξ′, y, η; θ)2 ≥ 1 + cos θ

2

(
|ξ′|2 + η2

)
. (10.2)

Therefore, we obtain that the operator

T̃ (θ) = a(x′)Π̃(θ) + α(x′)

is a classical, pseudo-differential operator of first order on the boundary Γ×S and further

that its complete symbol is given by the following formula:

a(x′) p̃1(x′, ξ′, y, η; θ)

+
√
−1

(
a(x′) q̃1(x′, ξ′, y, η; θ) +

[n−1∑

k=1

αk(x′)ξk

])

+ terms of order ≤ 0, (x′, ξ′, y, η) = (x1, . . . , xn−1, ξ1, . . . , ξn−1, y, η).

By straightening out the vector field α(x′) as in Proposition 6.8, we may assume that

the principal symbol t̃1(x′′, t, ξ′′, τ, y, η; θ) of T̃ (θ) is equal to the following:

t̃1(x′′, t, ξ′′, τ, y, η; θ)

= a(x′′, t) p̃1(x′′, t, ξ′′, τ, y, η; θ) +
√
−1 (a(x′′, t) q̃1(x′′, t, ξ′′, τ, y, η; θ) + τ) ,

(x′, ξ′, y, η) = ((x′′, t), (ξ′′, τ), y, η) . (10.3)

Step 2: Secondly, we decompose the principal symbol t̃1(x′′, t, ξ′′, τ, y, η; θ) of T̃ (θ)

as follows:

t̃1(x′′, t, ξ′′, τ, y, η; θ)

=
√
−1 (τ + a(x′′, t) q̃1(x′′, t, ξ′′, τ, y, η; θ)) + a(x′′, t) p̃1(x′′, t, ξ′′, τ, y, η; θ)

=

(√
−1 (τ + a(x′′, t) q̃1(x′′, t, ξ′′, τ, y, η; θ)) + a(x′′, t) p̃1(x′′, t, ξ′′, τ, y, η; θ)√

−1 τ + a(x′′, t)
√
|ξ′′|2 + τ2 + η2

)

×
(√
−1 τ + a(x′′, t)

√
|ξ′′|2 + τ2 + η2

)
.

However, the middle term



√
−1 (τ + a(x′′, t) q̃1(x′′, t, ξ′′, τ, y, η; θ)) + a(x′′, t) p̃1(x′′, t, ξ′′, τ, y, η; θ)

√
−1 τ + a(x′′, t)

√
|ξ′′|2 + τ2 + η2




is an elliptic symbol on Γ× S. Indeed, we can prove the following:

Lemma 10.1. There exists a constant γ(θ) > 0 depending on θ ∈ (−π, π) such that

∣∣∣∣∣

√
−1 (τ + a(x′′, t)q̃1(x′′, t, ξ′′, τ, y, η; θ)) + a(x′′, t)p̃1(x′′, t, ξ′′, τ, y, η; θ)√

−1 τ + a(x′′, t)
√
|ξ′′|2 + τ2 + η2

∣∣∣∣∣

2
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=
(τ + a(x′′, t)q̃1(x′′, t, ξ′′, τ, y, η; θ))

2
+ a(x′′, t)2p̃1(x′′, t, ξ′′, τ, y, η; θ)2

τ2 + a(x′′, t)2 (|ξ′′|2 + τ2 + η2)

≥ γ (θ) . (10.4)

Summing up, we have proved the following proposition:

Proposition 10.2. We may assume that the principal symbol t̃1(x′, ξ′, y, η; θ) of

the pseudo-differential operator

T̃ (θ) = a(x′)Π̃(θ) + α(x′), −π < θ < π,

is equal to the following formula (θ := 0 in formula (10.3)):

t̃1(x′, ξ′, y, η; θ) = t̃1(x′′, t, ξ′′, τ, y, η; θ)

= a(x′′, t)
√
|ξ′′|2 + τ2 + η2 +

√
−1 τ. (10.5)

In this way, we are completely reduced to the study of the principal symbol

t̃1(x′′, t, ξ′′, τ, y, η; θ) when A = ∆ and θ = 0.

10.2. Subellipticity of T̃ (θ) and T̃ (θ)′.

In light of formula (10.5), by applying Theorem 4.1 (Egorov–Hörmander) to the

pseudo-differential operators T̃ (θ) and T̃ (θ)′ just as in Proposition 6.8 we can prove the

following proposition:

Proposition 10.3. Assume that the hypothesis (H) is satisfied. Then the pseudo-

differential operators T̃ (θ) and T̃ (θ)′ are both subelliptic with loss of some δ on Γ × S
where 2k/(2k + 1) ≤ δ < 1.

Now we associate with the oblique derivative problem (7.1) a densely defined, closed

linear operator

T̃p(θ) : Lp(Γ× S) −→ Lp(Γ× S)

in the Banach space Lp(Γ× S) as follows:

(1) The domain D(T̃p(θ)) of definition of T̃p(θ) is the space

D(T̃p(θ)) =
{
ϕ̃ ∈ Lp(Γ× S) : T̃ (θ)ϕ̃ ∈ Lp(Γ× S)

}
.

(2) T̃p(θ)ϕ̃ = T̃ (θ)ũ for every ϕ̃ ∈ D(T̃p(θ)).

By Smith [31] and Guan–Sawyer [18], we find that if the condition (H) is satisfied,

then the pseudo-differential operator T̃p(θ) has a parametrix (see Remark 2.1).

Summing up, we have proved the following fundamental proposition:

Proposition 10.4. If the condition (H) is satisfied, then the operator T̃p(θ) is a

Fredholm operator for every 1 < p <∞.
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11. Proof of Theorem 7.1.

This section is devoted to the proof of Theorem 7.1. More precisely, we show how

Theorem 7.1 follows from Propositions 9.1 and 10.4. The proof of Theorem 7.1 is divided

into three steps.

Step 1: By virtue of Propositions 9.1 and 10.4, we can obtain the following theorem

essentially due to Smith [31, Main Theorem] and Guan–Sawyer [18, Theorem 2, part

(i)]:

Theorem 11.1. Let 1 < p < ∞ and θ ∈ (−π, π). Assume that the condition (H)

is satisfied. If f̃ ∈ Lp(Ω×S), then every solution ũ of the homogeneous oblique derivative

problem

{
Λ̃(θ)ũ = f̃ in Ω× S,
Bγũ = 0 on Γ× S

(7.1)

belongs to the Sobolev space W 2,p(Ω × S) and can be expressed, unique modulo the null

space N (Ãp(θ)), in the form

ũ = Q̃(θ) f̃0

∣∣∣
Ω×S
− P̃ (θ)

(
S̃(θ)

(
α(x′)− a(x′)Π̃ext(θ)

)(
Q̃(θ)f̃0

∣∣∣
Γ×S

))

− P̃ (θ)

(
Π̃c(θ)

(
Q̃(θ)f̃0

∣∣∣
Γ×S

))
in Ω× S. (11.1)

Here:

(1) Q̃(θ) is the fundamental solution of Λ̃(θ).

(2) P̃ (θ) is the Poisson kernel for Λ̃(θ).

(3) T̃ (θ) = BγP̃ (θ) is the first-order pseudo-differential operator on Γ× S.

(4) S̃(θ) is a unique right inverse of T̃ (θ) that annihilates the cokernel of the range

R(T̃ (θ)) and has range perpendicular to the null space N (T̃ (θ)).

(5) R̃(θ) := S̃(θ)
(
α(x′)− a(x′)Π̃ext(θ)

)
is bounded on Bσ−1/p,p(Γ × S) for every

σ ∈ R (see [31, Theorem 3.13], [18, Section 6]).

(6) Π̃c(θ) is the Calderón projector onto the null space N (T̃ (θ)) of T̃ (θ), and is

bounded on Bσ−1/p,p(Γ× S) for every σ ∈ R.

Indeed, the proof of Theorem 11.1 can be carried out as in Diagram 7 below.

Step 2: By using the representation formula (11.1) of the solution ũ, we can obtain

the following regularity result for the homogeneous oblique derivative problem (7.1) (cf.

Guan–Sawyer [18, Theorem 2, part (i)]):
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P̃ (θ)& P̃ ext(θ)

(Poisson kernels)

Proposition9.1

(special reduction to Γ× S)

Theorem8.1

(Dirichlet problem)

Theorem11.1

(representation formula (11.1))

Proposition10.2

(symbol of T̃ (θ))

Proposition10.4

(ind T̃p(θ) < ∞)

parametrix for T̃ (0) (θ = 0)

(Smith and Guan–Sawyer)

Diagram 7.

Corollary 11.2. Let 1 < p < ∞ and θ ∈ (−π, π). Assume that the condition

(H) is satisfied. If f̃ ∈ W s,p(Ω × S) with s > −1 + 1/p, then every solution ũ of the

homogeneous oblique derivative problem (7.1) belongs to the Sobolev space W s+2,p(Ω×S).

Rephrased, Corollary 11.2 asserts that every solution ũ of the homogeneous oblique

derivative problem (7.1) has the elliptic gain of 2 derivatives from f̃ in Lp Sobolev spaces.

In particular, it follows that the null space N (Ãp(θ)) is a subspace of C∞(Ω× S).

Step 3: Finally, it remains to prove the a priori estimate (7.2).

By combining Proposition 10.4 and Theorem 6.3, we find that the null space

N (Ãp(θ)) is a finite dimensional subspace of C∞(Ω × S). Let {ũj}`j=1 be a basis of

N (Ãp(θ)) and {ṽj}`j=1 its dual basis in the space Lp
′
(Ω × S). Then it follows from for-

mula (11.1) that every solution ũ of the homogeneous oblique derivative problem (7.1)

can be uniquely written in the form

ũ = Q̃(θ) f̃0

∣∣∣
Ω×S
− P̃ (θ)

(
R̃(θ)

(
Q̃(θ)f̃0

∣∣∣
Γ×S

))
− P̃ (θ)

(
Π̃c(θ)

(
Q̃(θ)f̃0

∣∣∣
Γ×S

))

+
∑̀

j=1

(∫

Ω×S
ũ(x′, y′) ṽj(x

′, y′) dx′ dy′
)
ũj in Ω× S. (11.2)

However, by using Hölder’s inequality we can estimate the last term as follows:

∥∥∥∥∥∥
∑̀

j=1

(∫

Ω×S
ũ(x′, y′) ṽj(x

′, y′) dx′ dy′
)
ũj

∥∥∥∥∥∥
2,p

≤
∑̀

j=1

∣∣∣∣
∫

Ω×S
ũ(x′, y′) ṽj(x

′, y′) dx′ dy′
∣∣∣∣ ‖ũj‖2,p ≤

∑̀

j=1

‖ũ‖p ‖ṽj‖p′ ‖ũj‖2,p
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≤


∑̀

j=1

‖ṽj‖p′ ‖ũj‖2,p


 ‖ũ‖p .

Therefore, we obtain from formula (11.2) that the desired a priori estimate (7.2)

holds true for all functions ũ ∈W 2,p(Ω× S) satisfying Bγũ = 0 on Γ× S.

Now the proof of Theorem 7.1 is complete. �

12. Proof of Theorem 2.4.

The proof of Theorem 2.4 is divided into four steps.

Step 1: Let p = 2 and 2k/(2k+1) ≤ δ < 1. We associate with the oblique derivative

problem (1.1) a densely defined, closed linear operator

A2 : L2(Ω) −→ L2(Ω)

in the Hilbert space L2(Ω) as follows:

(a) The domain D(A2) of definition of A2 is the space

D(A2) =
{
u ∈W 2−δ,2(Ω) : Au ∈ L2(Ω), Bγu = 0 on Γ

}
.

(b) A2u = Au for every u ∈ D(A2).

Here Au and Bγu are taken in the sense of distributions.

By Theorem 2.1 with θ := 0 and ϕ := 0, we know that if the condition (H) is

satisfied, then, for every real number µ ≥ R2(0) the homogeneous oblique derivative

problem





(A− µ)u = f in Ω,

Bγu = a(x′)
∂u

∂n
+ α(x′) · u = 0 on Γ

has a unique solution u ∈W 2−δ,2(Ω) for any f ∈ L2(Ω). Hence we find that the operator

A2 − µI : L2(Ω) −→ L2(Ω)

is bijective for all real number µ ≥ R2(0). However, by the Rellich–Kondrachov theorem

(Theorem 3.3) it follows that the operator

(µ− λ)I : W 2−δ,2(Ω) −→ L2(Ω)

is compact for all complex number λ ∈ C.

Therefore, we have proved that the index of the operator

A2 − λI = (A2 − µI) + (µ− λ)I : L2(Ω) −→ L2(Ω)

is equal to zero for all complex number λ ∈ C.
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Step 2: Moreover, by applying [18, Theorem 1, part (i)] to the differential operator

A (see Remark 2.1) we obtain that (the elliptic gain of 2 derivatives from f in the

framework of L2 Sobolev spaces)

{
Au = f ∈ L2(Ω),

Bγu = 0 on Γ
=⇒ u ∈W 2,2(Ω).

Hence, if A2 is a closed linear operator defined by formula (2.2), we obtain that

D(A2) =
{
u ∈W 2−δ,2(Ω) : Au ∈ L2(Ω), Bγu = 0 on Γ

}

=
{
u ∈W 2,2(Ω) : Bγu = 0 on Γ

}

= D(A2).

Therefore, we have proved that the index of the operator

A2 − λI = A2 − λI : L2(Ω) −→ L2(Ω)

is equal to zero for all complex number λ ∈ C. By combining this fact with Theorem

6.11, we have proved the following fundamental theorem:

Theorem 12.1. Let 1 < p < ∞. If condition (H) is satisfied, then the index of

the operator Ap − λI is equal to zero for all complex number λ ∈ C.

Step 3: The next theorem plays an essential role in the proof of the a priori estimate

(2.4) (and estimate (2.1)):

Theorem 12.2. Let 1 < p <∞ and θ ∈ (−π, π). Assume that the a priori estimate

(7.2) holds true for all functions ũ ∈W 2,p(Ω×S) satisfying Bγũ = 0 on Γ×S. Then, for

every −π < θ < π there exists a constant R(θ) > 0 depending on θ such that if λ = r2 eiθ

and |λ| = r2 ≥ R(θ), we have, for all functions u ∈ W 2,p(Ω) satisfying Bγu = 0 on Γ

(that is, u ∈ D(Ap)),

|u|2,p + |λ|1/2 · |u|1,p + |λ| · ‖u‖p ≤ C(θ) ‖(A− λ)u‖p, (12.1)

with a constant C(θ) > 0 depending on θ. Here | · |j,p (j = 1, 2) is the seminorm on the

Sobolev space W 2,p(Ω) defined by the formula

|u|j,p =



∫

Ω

∑

|β|=j
|Dβu(x)|p dx




1/p

.

Proof. Now let u(x) be an arbitrary function in the domain D(Ap):

u ∈W 2,p(Ω) and Bγu = 0 on Γ.

We choose a function ζ(y) in C∞(S) such that
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



0 ≤ ζ(y) ≤ 1 on S,

supp ζ ⊂
[
π

3
,

5π

3

]
,

ζ(y) = 1 for
π

2
≤ y ≤ 3π

2
,

and let

ṽη(x, y) = u(x)⊗ ζ(y)eiηy for all x ∈ Ω, y ∈ S and η ≥ 0.

Then we have the assertions

ṽη ∈W 2,p(Ω× S),

Λ̃(θ)ṽη =

(
A+ eiθ

∂2

∂y2

)
ṽη

= (A− η2eiθ)u⊗ ζ(y)eiηy + 2(iη)eiθu⊗ ζ ′(y)eiηy + eiθu⊗ ζ ′′(y)eiηy,

and also

Bγ (ṽη(x′, y)) = (Bγu(x′))⊗ ζ(y)eiηy = 0 on Γ× S.

Thus, by applying the a priori estimate (7.2) to the functions

ṽη(x, y) = u(x)⊗ ζ(y)eiηy ∈ D(Ãp(θ)) for all η ≥ 0,

we obtain that

∥∥u⊗ ζeiηy
∥∥

2,p
≤ C̃(θ)

(∥∥∥Λ̃(θ)(u⊗ ζeiηy)
∥∥∥
p

+
∥∥u⊗ ζeiηy

∥∥
p

)
. (12.2)

We can estimate each term of inequality (12.2) as follows:

∥∥u⊗ ζeiηy
∥∥
p

=

(∫

Ω×S
|u(x)|p|ζ(y)|p dxdy

)1/p

= ‖ζ‖p · ‖u‖p. (12.3)

∥∥∥Λ̃(θ)(u⊗ ζeiηy)
∥∥∥
p
≤
∥∥(A− η2eiθ)u⊗ ζeiηy

∥∥
p

+ 2η
∥∥u⊗ ζ ′eiηy

∥∥
p

+
∥∥u⊗ ζ ′′eiηy

∥∥
p

≤ ‖ζ‖p ·
∥∥(A− η2eiθ)u

∥∥
p

+ (2η‖ζ ′‖p + ‖ζ ′′‖p) ‖u‖p. (12.4)

∥∥u⊗ ζeiηy
∥∥p

2,p
=
∑

|α|≤2

∫

Ω×S

∣∣Dα
x,y(u(x)⊗ ζ(y)eiηy)

∣∣p dxdy

≥
∑

|α|≤2

∫

Ω

∫ 3π/2

π/2

∣∣Dα
x,y(u(x)⊗ eiηy)

∣∣p dxdy
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=
∑

k+|β|≤2

∫

Ω

∫ 3π/2

π/2

∣∣ηkDβu(x)
∣∣p dxdy

≥ π
(∑

|β|=2

∫

Ω

∣∣Dβu(x)
∣∣p dx+ ηp

∑

|β|=1

∫

Ω

∣∣Dβu(x)
∣∣p dx

+ η2p

∫

Ω

|u(x)|pdx
)

= π
(
|u|p2,p + ηp|u|p1,p + η2p‖u‖pp

)
. (12.5)

Therefore, by carrying these three inequalities (12.3), (12.4) and (12.5) into inequal-

ity (12.2) we obtain that

|u|2,p + η |u|1,p + η2‖u‖p ≤ C̃ ′(θ)
(∥∥(A− η2eiθ)u

∥∥
p

+ η ‖u‖p
)
,

with a constant C̃ ′(θ) > 0 independent of η. If η is so large that

η ≥ 2C̃ ′(θ),

then we can eliminate the last term on the right-hand side to obtain that

|u|2,p + η |u|1,p + η2‖u‖p ≤ 2C̃ ′(θ)
∥∥(A− η2eiθ)u

∥∥
p
.

This proves the desired a priori estimate (12.1) if we take

λ := η2eiθ, R(θ) := 4 C̃ ′(θ)2, C(θ) := 2 C̃ ′(θ).

The proof of Theorem 12.2 is now complete. �

By combining Theorems 7.1 and 12.2, we have the desired a priori estimate (2.4)

(and estimate (2.1)) for the operator Ap − λI:

Corollary 12.3. Let 1 < p < ∞. Assume that the condition (H) is satisfied.

Then, for every 0 < ε < π/2 there exist constants rp(ε) > 0 and cp(ε) > 0 such that we

have, for all λ = r2 eiθ satisfying r ≥ rp(ε) and −π + ε ≤ θ ≤ π − ε,

|u|2,p + |λ|1/2 · |u|1,p + |λ| · ‖u‖p ≤ cp(ε) ‖(Ap − λI)u‖p, u ∈ D(Ap). (12.6)

Proof. By the a priori estimate (12.1), it follows that if λ = r2 eiθ, −π < θ < π

and if |λ| = r2 ≥ R(θ), then we have, for all functions u ∈ D(Ap),

|u|2,p + |λ|1/2 · |u|1,p + |λ| · ‖u‖p ≤ C(θ)‖(Ap − λI)u‖p.

However, we find from the proof of Theorem 12.2 that the constants R(θ) and C(θ)

depend continuously on θ ∈ (−π, π), so that they may be chosen uniformly in θ ∈
[−π + ε, π − ε], for every ε > 0. This proves the existence of the constants rp(ε) and

cp(ε). Namely, the a priori estimate (12.6) holds true for all λ = r2 eiθ satisfying r ≥ rp(ε)
and θ ∈ [−π + ε, π − ε].
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The proof of Corollary 12.3 is complete. �

Step 4: The a priori estimate (12.6) asserts that the operator Ap − λI is injective

if λ belongs to the set

Σp(ε) =
{
λ = r2 eiθ : r ≥ rp(ε),−π + ε ≤ θ ≤ π − ε

}
.

Hence it is bijective for all λ ∈ Σp(ε), since the index of the operator Ap − λI is equal to

zero for all complex number λ ∈ C (Theorem 12.1).

Summing up, we have proved that the resolvent set of Ap contains the set Σp(ε) and

that the resolvent (Ap − λI)−1 satisfies the estimate

∥∥(Ap − λI)−1
∥∥ ≤ cp(ε)

|λ| for all λ ∈ Σp(ε). (2.4)

Now the proof of Theorem 2.4 (and also Theorem 2.2) is complete. �

13. Proof of Theorem 2.5.

This last section is devoted to the proof of Theorem 2.5. The proof is divided into

three steps.

Step 1: We start with the following proposition:

Proposition 13.1. Let n < p < ∞. Assume that the condition (H) is satisfied.

Then, for every ε > 0 there exists a constant r′p(ε) > 0 such that if λ = r2 eiθ with

r ≥ r′p(ε) and −π + ε ≤ θ ≤ π − ε, we have, for all functions u ∈ D(Ap),

|λ|1/2|u|C1(Ω) + |λ| · |u|C(Ω) ≤ c′p(ε)|λ|n/2p‖(A− λ)u‖p, (13.1)

with a constant c′p(ε) > 0 depending on p and ε, but independent of u and λ.

Proof. First, by applying Theorem 3.2 with p := r > n, θ := n/p and ν := 0 we

obtain from the Gagliardo–Nirenberg inequality (3.1) that

|u|C(Ω) ≤ C|u|
n/p
1,p ‖u‖1−n/pp . (13.2)

Here and in the following the letter C denotes a generic positive constant depending on

p and ε, but independent of u and λ.

By using inequality (12.6), we obtain from inequality (13.2) that

|u|C(Ω) ≤ C
(
|λ|−1/2‖(A− λ)u‖p

)n/p (
|λ|−1‖(A− λ)u‖p

)1−n/p

= C|λ|−1+n/2p‖(A− λ)u‖p.

This proves that

|λ| · |u|C(Ω) ≤ C|λ|n/2p‖(A− λ)u‖p for all functions u ∈ D(Ap). (13.3)
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Similarly, by applying inequality (13.2) to the functions Diu ∈W 1,p(Ω), 1 ≤ i ≤ n,

we obtain that

|Diu|C(Ω) ≤ C|Diu|n/p1,p ‖Diu‖1−n/pp ≤ C|u|n/p2,p |u|
1−n/p
1,p

≤ C (‖(A− λ)u‖p)n/p
(
|λ|−1/2‖(A− λ)u‖p

)1−n/p

= C|λ|−1/2+n/2p‖(A− λ)u‖p.

This proves that

|λ|1/2|u|C1(Ω) ≤ C|λ|n/2p‖(A− λ)u‖p for all functions u ∈ D(Ap). (13.4)

Therefore, the desired a priori estimate (13.1) follows by combining inequalities

(13.3) and (13.4).

The proof of Proposition 13.1 is complete. �

Step 2: The next proposition plays an essential role in the proof of the a priori

estimate (2.6) for the operator A:

Proposition 13.2. Assume that the conditions (G) and (H) are satisfied. Then,

for every ε > 0 there exists a constant r(ε) > 0 such that if λ = r2 eiθ with r ≥ r(ε) and

−π + ε ≤ θ ≤ π − ε, we have, for all functions u ∈ D(A),

|λ|1/2|u|C1(Ω) + |λ| · |u|C(Ω) ≤ c(ε)|(A− λ)u|C(Ω), (13.5)

with a constant c(ε) > 0.

Proof. We shall make use of a λ-dependent localization argument in order to

adjust the term ‖(A − λ)u‖p in inequality (13.1) to obtain inequality (13.5), just as in

[37] (see Masuda [26] for the Dirichlet case). The proof of Proposition 13.2 is divided

into four substeps.

Substep 2-1: We remark that

A ⊂ Ap for all 1 < p <∞.

Indeed, since we have, for any u ∈ D(A),

u ∈ C(Ω) ⊂ Lp(Ω), Au ∈ C(Ω) ⊂ Lp(Ω) and Bγu = 0 on Γ,

it follows from an application of [18, Theorem 1, part (i)] (see Remark 2.1) that

u ∈W 2,p(Ω).

Now let x0 be an arbitrary point of the closure Ω = Ω ∪ Γ.

(1) First, let x′0 be a boundary point of the submanifold Γ0 = {x′ ∈ Γ : a(x′) = 0}.
Just as in Egorov–Kondratev [13, Section 2, A special partition of unity], we make use

of a smooth coordinate transformation χ defined in a neighborhood of x′0 such that:
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(a) the transformation χ flattens a part of the boundary Γ into the plane xn = 0.

(b) the transformation χ maps a part of the submanifold Γ0 into the hyperplane x1 = 0

of the plane xn = 0.

(c) the transformation χ straightens out the oblique vector field ν as

∂

∂ν
=

∂

∂x1
.

If Q(x, r) is an open cube with side length 2r and with center x, we may assume

that

χ : Q(x0, η0) ∩ Ω −→ Q(0, ε) ∩Rn
+ for some constant η0 > 0.

Then we let

G0 = Q(x′0, η0) ∩ Ω,

G′ = Q(x′0, η) ∩ Ω, 0 < η < η0,

G′′ = Q(x′0, η/2) ∩ Ω, 0 < η < η0.

Now we choose a function ϕ(x) in C∞0 (Rn) such that





ϕ(x) = 0 outside Q(0, 1),

∂ϕ

∂x1
(x) = 0 on Q

(
0,

1

2

)
,

ϕ(x) > 0 on Q(0, 1).

If we introduce a localizing function

ϕ0(x, η) := ϕ

(
x− x′0
η

)
, x′0 ∈ Γ0, 0 < η < η0,

then we find that




ϕ0(x, η) = 0 outside Q(x′0, η),

∂ϕ0

∂x1
(x, η) = 0 on Q

(
x′0,

η

2

)
,

ϕ0(x, η) > 0 on Q(x′0, η),

and further that the function ϕ0(x, η) satisfies the oblique derivative condition

∂

∂ν
(ϕ0(x, η)) =

∂

∂x1
(ϕ0(x, η)) = 0 on Q

(
x′0,

η

2

)
.

Moreover, from an open covering of Γ0 by cubes Q(x′, η) we can choose a finite subcover-

ing {Q(x′`, η`)} together with smooth functions {ϕ0(x, η`)}. Then we have the assertion
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∂

∂ν
(ϕ0(x, η`)) = 0 in a tubular open neighborhood Q of Γ0.

(2) Secondly, let x′0 be a boundary point outside the tubular neighborhood Q of Γ0

in Γ. In this case, since the oblique vector field ν is not tangent to the boundary Γ on

Γ \Q, we make use of a smooth coordinate transformation χ defined in a neighborhood

of x′0 such that:

(d) the transformation χ flattens a part of the boundary Γ into the plane xn = 0.

(e) the transformation χ straightens out the oblique vector field ν as

∂

∂ν
=

∂

∂xn
.

Similarly, we choose a function ϕ(x) in C∞0 (Rn) such that





ϕ(x) = 0 outside Q(0, 1),

∂ϕ

∂xn
(x) = 0 on Q

(
0,

1

2

)
,

ϕ(x) > 0 on Q(0, 1).

Then we find that a localizing function

ϕ0(x, η) := ϕ

(
x− x′0
η

)
, x′0 ∈ Γ \Q, 0 < η < η0,

satisfies the conditions




ϕ0(x, η) = 0 outside Q(x′0, η),

∂ϕ0

∂xn
(x, η) = 0 on Q

(
x′0,

η

2

)
,

ϕ0(x, η) > 0 on Q(x′0, η),

and also the oblique derivative condition

∂

∂ν
(ϕ0(x, η)) =

∂

∂xn
(ϕ0(x, η)) = 0 on Γ \Q.

(3) Thirdly, let x0 be an interior point of an open set W b Ω, bounded away from

Γ. In this case, we make use of a smooth coordinate transformation such that

χ : Q(x0, η0) −→ Q(0, ε).

Then we let

G0 = Q(x0, η0),

G′ = Q(x0, η), 0 < η < η0,

G′′ = Q(x0, η/2), 0 < η < η0.
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Now we choose a function ϕ(x) in C∞0 (Rn) such that

{
ϕ(x) = 0 outside Q(0, 1),

ϕ(x) > 0 on Q(0, 1).

We find that a localizing function

ϕ0(x, η) := ϕ

(
x− x0

η

)
, x0 ∈W b Ω, 0 < η < η0,

satisfies the conditions
{
ϕ0(x, η) = 0 outside Q(x0, η),

ϕ0(x, η) > 0 on Q(x0, η).

Substep 2-2: For the localizing function ϕ0(x, η), we can prove the following lemma:

Lemma 13.3. If u ∈ D(A), then ϕ0(x, η)u ∈ D(Ap) for all 0 < η < η0 and

1 < p <∞.

Proof. (i) First, we recall that

u ∈W 2,p(Ω) for all 1 < p <∞.

Hence we have the assertion

ϕ0(x, η)u ∈W 2,p(Ω).

(ii) Secondly, it is easy to verify that the function ϕ0(x, η)u, x ∈ Ω, satisfies the

boundary condition

Bγ (ϕ0(x, η)u) =
∂

∂ν
(ϕ0(x, η)u) = 0 on Γ.

Indeed, this is obvious if we have the condition

supp (ϕ0(x, η)u) ⊂ Q(x0, η), x0 ∈W b Ω.

Moreover, if we have the condition

supp (ϕ0(x, η)u) ⊂ Q(x0, η) ∩ Ω, x0 ∈ Γ,

then it follows that

Bγ (ϕ0(x, η)) =
∂

∂ν
(ϕ0(x, η))

=





∂

∂x1
(ϕ0(x, η)) = 0 in the tubular neighborhood Q of Γ0 in Γ,

∂

∂xn
(ϕ0(x, η)) = 0 on Γ \Q.



1324 K. Taira

Therefore, we have the assertion

Bγ (ϕ0(x, η)u) = ϕ0(x, η)(Bγu) + u (Bγϕ0(x, η)) = 0 on Γ,

since Bγu = 0 on Γ.

Summing up, we have proved that

ϕ0(x, η)u ∈ D(Ap) for all 0 < η < η0 and 1 < p <∞.

The proof of Lemma 13.3 is complete. �

Substep 2-3: Now we take a positive number p such that

n < p <∞.

Then, by Lemma 13.3 we can apply inequality (13.1) to the function ϕ0(x, η)u with

u ∈ D(A) to obtain that

|λ|1/2|u|C1(G′′) + |λ| · |u|C(G′′)

≤ |λ|1/2 |ϕ0(x, η)u|C1(G′) + |λ| · |ϕ0(x, η)u|C(G′)

= |λ|1/2 |ϕ0(x, η)u|C1(Ω) + |λ| · |ϕ0(x, η)u|C(Ω)

≤ C|λ|n/2p ‖(A− λ)(ϕ0(x, η)u)‖Lp(Ω)

= C|λ|n/2p ‖(A− λ)(ϕ0(x, η)u)‖Lp(G′) for all 0 < η < η0, (13.6)

since we have the assertions
{
ϕ0(x, η) = 1 on G′′,

supp (ϕ0(x, η)u) ⊂ G′.

However, we have the formula

(A− λ)(ϕ0(x, η)u) = ϕ0(x, η) ((A− λ)u) + [A,ϕ0(x, η)]u, (13.7)

where [A,ϕ0(x, η)] is the commutator of A and ϕ0(x, η) defined by the formula

[A,ϕ0(x, η)]u = A(ϕ0(x, η)u)− ϕ0(x, η)Au

= 2

n∑

i,j=1

aij(x)
∂ϕ0

∂xi

∂u

∂xj

+




n∑

i,j=1

aij(x)
∂2ϕ0

∂xi∂xj
+

n∑

i=1

bi(x)
∂ϕ0

∂xi


u. (13.8)

Here we need the following elementary inequality:

Lemma 13.4. We have, for all functions v ∈ Cj(G′), j = 0, 1, 2,
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‖v‖W j,p(G′) ≤ |G′|1/p ‖v‖Cj(G′),

where |G′| denotes the measure of G′.

Proof. It suffices to note that we have, for all functions w ∈ C(G′),
∫

G′
|w(x)|pdx ≤ |G′| |w|p

C(G′)
.

This proves Lemma 13.4. �

Since we have, for some constant c > 0,

|G′| ≤ |Q(x0, η)| ≤ cηn, 0 < η < η0,

it follows from an application of Lemma 13.4 that

‖ϕ0(x, η)((A− λ)u)‖Lp(G′) ≤ c1/pηn/p|(A− λ)u|C(G′), 0 < η < η0. (13.9)

Furthermore, we remark that

|Dβϕ0(x, η)| = O
(
η−|β|

)
as η ↓ 0.

Hence it follows from an application of Lemma 13.4 that

∥∥∥∥
∂ϕ0

∂xj

∂u

∂xj

∥∥∥∥
Lp(G′)

≤ C

η
|u|1,p,G′ ≤ Cη−1+n/p|u|C1(G′). (13.10)

‖(Aϕ0(x, η))u‖Lp(G′) ≤
C

η2
|u|Lp(G′) ≤ Cη−2+n/p|u|C(G′). (13.11)

By using inequalities (13.10) and (13.11), we obtain from formula (13.8) that

‖[A,ϕ0(x, η)]u‖Lp(G′)

≤ C
(
η−1+n/p|u|C1(G′) + η−2+n/p|u|C(G′) + η−1+n/p|u|C(G′)

)

≤ C
(
η−1+n/p|u|C1(Ω) + η−2+n/p|u|C(Ω)

)
. (13.12)

In view of formula (13.7), it follows from inequalities (13.9) and (13.12) that

‖(A− λ)(ϕ0(x, η)u)‖Lp(G′)

≤ ‖ϕ0(x, η)((A− λ)u)‖Lp(G′) + ‖[A,ϕ0(x, η)]u‖Lp(G′)

≤ Cηn/p
(
|(A− λ)u|C(G′) + η−1|u|C1(Ω) + η−2|u|C(Ω)

)

for all 0 < η < η0. (13.13)

Therefore, by combining inequalities (13.6) and (13.13) we obtain that

|λ|1/2|u|C1(G′′) + |λ| · |u|C(G′′)
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≤ C|λ|n/2p ‖(A− λ)(ϕ0(x, η)u)‖Lp(G′)

≤ C|λ|n/2p ηn/p
(
|(A− λ)u|C(G′) + η−1|u|C1(G′) + η−2|u|C(G′)

)

≤ C|λ|n/2p ηn/p
(
|(A− λ)u|C(Ω) + η−1|u|C1(Ω) + η−2|u|C(Ω)

)

for all 0 < η < η0. (13.14)

We remark that the closure Ω = Ω ∪ Γ can be covered by a finite number of sets of

the forms

Q(x′0, η/2) ∩ Ω, x′0 ∈ Γ,

and

Q(x0, η/2), x0 ∈W b Ω.

Hence, by taking the supremum of inequality (13.14) over x ∈ Ω we find that

|λ|1/2|u|C1(Ω) + |λ| · |u|C(Ω)

≤ C|λ|n/2pηn/p
(
|(A− λ)u|C(Ω) + η−1 |u|C1(Ω) + η−2 |u|C(Ω)

)
,

for all functions u ∈ D(A). (13.15)

Here we recall that

0 < η < η0. (13.16)

Substep 2-4: We are in a position to choose the localization parameter η. To do

so, we let

r̃p(ε) := max
{
r′p(ε), r

′′
p (ε)

}
, (13.17)

0 < K < r̃p(ε), (13.18)

where the constant K will be chosen later on.

For a complex number λ = r2 eiθ with r ≥ r̃p(ε), we let

η :=
η0

|λ|1/2K. (13.19)

Then the parameter η satisfies condition (13.16), since we have, by formulas (13.17)

and (13.18),

η =
η0

|λ|1/2K =
η0

r
K ≤ η0

r̃p(ε)
K < η0.

Hence it follows from inequality (13.15) that

|λ|1/2|u|C1(Ω) + |λ| · |u|C(Ω)
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≤ C ηn/p0 Kn/p|(A− λ)u|C(Ω) +
(
C η

n/p−1
0 K−1+n/p

)
|λ|1/2 · |u|C1(Ω)

+
(
C η

n/p−2
0 K−2+n/p

)
|λ| · |u|C(Ω) for all functions u ∈ D(A). (13.20)

However, since the exponents −1 + n/p and −2 + n/p are both negative for n < p <∞,

we can choose the constant K so large that

C η
n/p−1
0 K−1+n/p < 1, C η

n/p−2
0 K−2+n/p < 1.

For example, we may take

K > C̃ :=
1

η0
max

{
C1/σ, C1/(σ+1)

}
, σ = 1− n

p
> 0. (13.21)

Then the desired inequality (13.5) follows from inequality (13.20). Indeed, if we let

r(ε) := max
{
r̃p(ε), C̃ + 1

}
,

and choose the constant K such that

C̃ < K < r(ε),

then, for all complex numbers λ = r2 eiθ with r ≥ r(ε) we have, by conditions (13.17),

(13.18), (13.19) and (13.21),

0 < η < η0,

0 < K < |λ|1/2,
C η

n/p−1
0 K−1+n/p < 1,

C η
n/p−1
0 K−1+n/p < 1.

Now the proof of Proposition 13.2 is complete. �

Step 3: Finally, the next proposition (together with Proposition 13.2) proves that

the resolvent set of A contains the set

Σ(ε) =
{
λ = r2 eiθ : r ≥ r(ε), −π + ε ≤ θ ≤ π − ε

}
,

that is, the resolvent (A− λI)−1 exists for all λ ∈ Σ(ε).

Proposition 13.5. If λ ∈ Σ(ε), then, for any function f ∈ C(Ω) there exists a

unique function u ∈ D(A) such that (A− λI)u = f .

Proof. Since we have the assertion

f ∈ C(Ω) ⊂ Lp(Ω) for all 1 < p <∞,

it follows from an application of Theorem 2.4 that if λ ∈ Σ(ε) there exists a unique
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function u(x) ∈W 2,p(Ω) such that

(A− λ)u = f in Ω (13.22)

and that

Bγu = a(x′)
∂u

∂n
+ α(x′) · u = 0 on Γ.

However, the part (ii) of Theorem 3.1 asserts that

u ∈W 2,p(Ω) ⊂ C2−n/p(Ω) ⊂ C1(Ω) if n < p <∞.

Furthermore, in view of formula (13.22) it follows that

Au = f + λu ∈ C(Ω).

Summing up, we have proved that

{
u ∈ D(A),

(A− λI)u = f.

The proof of Proposition 13.5 is complete. �

Now Theorem 2.5 follows by combining Propositions 13.5 and 13.2. �
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[11] R. Čunderĺık, K. Mikula and M. Mojzeš, Numerical solution of the linearized fixed gravimetric

boundary-value problem, J. Geod., 82 (2008), 15–29.

[12] Ju. V. Egorov, Subelliptic operators, Uspekhi Mat. Nauk 30:2 (182) (1975), 57–114, 30:3 (183)

(1975), 57–104 (in Russian); English translation: Russian Math. Surveys, 30:2 (1975), 59–118,

30:3 (1975), 55–105.

[13] Ju. V. Egorov and V. A. Kondratev, The oblique derivative problem, Math. USSR Sb., 7 (1969),

139–169.

[14] A. Friedman, Partial differential equations, Holt, Rinehart and Winston Inc., New York, New

York, 1969.

[15] D. Fujiwara, On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ.

Tokyo Sec. IA, 17 (1970), 123–152.

[16] D. Fujiwara and K. Uchiyama, On some dissipative boundary value problems for the Laplacian,

J. Math. Soc. Japan, 23 (1971), 625–635.

[17] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of

the 1998 edition, Classics in Math., Springer-Verlag, Berlin, 2001.

[18] P. Guan and E. Sawyer, Regularity estimates for the oblique derivative problem, Ann. of Math.,

137 (1993), 1–70.

[19] P. Holota, Coerciveness of the linear gravimetric boundary-value problem and a geometrical in-

terpretation, J. Geod., 71 (1997), 640–651.
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