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Abstract. We give a proof of the Ohsawa–Takegoshi extension theorem
with sharp estimates. The proof is based on ideas of BÃlocki to use variations of
domains to simplify his proof of the Suita conjecture, and also uses positivity
properties of direct image bundles.

1. Introduction.

The Suita conjecture, see [13], states a sharp lower bound for the Bergman kernel
of a plane domain in terms of the Robin constant. It was proved by BÃlocki in [3]. The
proof in [3] was based on a sharp version of the Ohsawa–Takegoshi extension theorem
([11]), a point of view that had been introduced and advocated by Ohsawa [12]. This
was later generalized by Guan and Zhou [6], who found a very general form of the
Ohsawa–Takegoshi theorem with sharp constant, and also gave conditions for equality in
the Suita problem. Later, in [5], BÃlocki gave a second, much simpler, proof of the Suita
conjecture, based on variation of domains and the tensor power trick to get the optimal
estimate. In connection with this, the second author proposed yet another approach for
the Suita conjecture which is sketched in [4], using plurisubharmonic variation of the
Bergman kernel, from [9], [1]. This last proof is surpringly short. The aim of this note
is to show how this method can be developed to give a proof of rather general versions
of the Ohsawa–Takegoshi theorem. Apart from being quite simple, the method has the
advantage of giving sharp estimates almost automatically and it might be useful in other
contexts as well. It is also interesting to note that Guan and Zhou show that, conversely,
their sharp version of the Ohsawa–Takegoshi theorem gives a proof of the theorem on
variation of Bergman kernels mentioned above.

In Section 2 we give the details of the proof from [4] of Suita’s conjecture. In the third
section we show how this idea can be adapted to prove the Ohsawa–Takegoshi extension
theorem. The argument uses, instead of Bergman kernels, a theorem on positivity of
direct image bundles from [2]. Throughout the paper we treat only domains in Cn.
Similar results hold also for Stein manifolds and for holomorphic sections of line bundles
instead of holomorphic functions. The proofs here work in almost the same way in this
more general setting but we have chosen to restrict to the case of domains in Cn in order
to emphasize the basic ideas.
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2. Suita’s conjecture.

Let D be a (say smoothly bounded) domain in the complex plane containing the
origin. We denote by K(z) the Bergman kernel for A2(D) restricted to the diagonal. Let
G(z) be the Green’s function for D with pole at 0. Then,

G(z) = log |z|2 − h(z)

where h is a harmonic function chosen so that G vanishes on the boundary of D. Then
h(0) := cD is the Robin constant at 0. Suita’s conjecture says that

K(0) ≥ e−cD

π
.

Here is the proof of this that is sketched in [4]. Let for t ≤ 0

Dt = {z ∈ D;G(z) < t}.

Let Kt be the Bergman kernel for Dt (on the diagonal). Since

D := {(τ, z);G(z)− Re τ < 0}

is pseudoconvex in C2, it follows from [9], [1] that log Kt(0) is a convex function of t.
When t is very large negative, Dt is a small neighbourhood of 0. On this small

neighbourhood, h(z) is almost constant so |h(z)− cD| < ε. Hence, if ∆r is the disk with
center 0 and radius r,

∆r0 ⊂ Dt ⊂ ∆r1

if r0 = e(t+cd−ε)/2 and r1 = e(t+cd+ε)/2. By the monotonicity of Bergman kernels with
respect to domains

Kt(0) ∼ e−t−cD

π

as t → −∞. Hence

k(t) := log Kt(0) + t

is in particular bounded from above as t → −∞. Since k is convex, this implies that k

is increasing on the negative half axis. Therefore k(0) ≥ limt→−∞ k(t), so

K0(0) ≥ e−cD

π
,

which ends the proof.
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The same proof gives, as in [3], a precise estimate for the Bergman kernel for domains
in higher dimensions. One then replaces the Green’s function used above by any negative
plurisubharmonic function ψ in D having a singularity like log |z|2 at the origin, and
defines

cDψ = lim sup
z→0

log |z|2 − ψ(z).

The optimal choice of ψ here is to make it as big as possible, i.e. to take ψ = GD, the
pluricomplex Green’s function for D with pole at 0. Finally, similar estimates hold for
Bergman kernels with a plurisubharmonic weight.

3. The extension theorem.

We will now consider one setting of the Ohsawa–Takegoshi theorem. Let D be a
pseudoconvex domain in Cn and let V be a submanifold of codimension k in D. Let φ

be plurisubharmonic in D. Denote

A2(D) =
{

f ∈ H(D);
∫

D

|f |2e−φ < ∞
}

and

A2(V ) =
{

f ∈ H(V );
∫

V

|f |2e−φ < ∞
}

.

Above we integrate against the volume element of the euclidean metric on D, and the
volume element induced by the euclidean metric on V respectively. We seek to find
an extension operator from A2(V ) to A2(D) bounded by a good constant. Since the
constants will be universal we can make some standard reductions, so we assume that D

is smoothly bounded and strictly pseudoconvex, that φ is smooth and plurisubharmonic
in a neighbourhood of the closure of D, and that V extends as a submanifold across the
boundary of D as well. All this can be achieved by replacing D by a relatively compact
subdomain.

Let H(D) and H(V ) be the spaces of holomorphic functions in D and V respectively,
and let I(V ) be the subspace of H(D) of functions vanishing on V . Since any function
in H(V ) has an extension to a function in H(D), we see that the restriction operator
induces an isomorphism

r : H(D)/I(V ) → H(V ).

Via this isomorphism we get two norms on (subspaces of) H(V ). The first norm is the
L2-norm

‖f‖2A2(V ) =
∫

V

|f |2e−φ,
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(we will modify this norm somewhat later). The second norm is the norm induced by
the isomorphism r and the L2-norm on A2(D)

‖f‖20 = min
{F∈A2(D);F=f on V }

∫

D

|F |2e−φ.

In case the latter norm is finite, it is exactly the minimal norm of an extension of f to
D, and it is attained by the unique function that equals f on V and is orthogonal to
I2(V ) := I(V ) ∩A2(D).

We want to estimate the second norm by the first one and the idea is to follow the
same strategy as in Section 2. Instead of estimating the norms directly, we estimate the
dual norms, and we will do this by considering a family of intermediate domains Dt for
t ∈ (−∞, 0). The estimate we are looking for is easy for t ¿ 0, since we can take an
almost arbitrary extension if t is very small, and we then use a monotonicity property
of the intermediate norms to conclude that the estimate also holds for t = 0. There are
however two technical problems in implementing this scheme: First, the two norms we
are dealing with are not in general defined (i.e. finite) on the same subspaces of H(V ).
The first norm is in general not dominated by the second norm as there are functions in
A2(D) whose restriction to V are not square integrable on V . On the other hand, the
second norm is dominated by a constant times the first norm, but that is a special case
of what we want to prove, so it is preferable not to use this fact. The second problem
comes from the substitute for the plurisubharmonic variation of Bergman kernels that
we are going to use: The positivity of direct image bundles from [2]. The way this is
stated in [2] we cannot apply it directly to a varying family of domains, so instead we
will use a varying family of weight functions. We will therefore formulate the argument
slightly differently, but it is probably good to keep the general idea in mind.

Let dV (z) be the distance from z to V and let G be a negative plurisubharmonic
function in D which satisfies

G(z) ≤ log d2
V (z) + A (3.1)

and

G(z) ≥ log d2
V (z)−B(z) (3.2)

as z goes to V . Here A is some constant, the value of which will not be very important,
and B is a continuous function in D. Again, by restricting to a relatively compact subdo-
main we may assume that B is bounded. Since A will not appear in the final estimates,
it is actually enough to assume that (3.1) holds for some A in each relatively compact
subdomain of D. D is a pseudoconvex domain in Cn and we let V be a submanifold of
codimension k in D. The precise estimate we will prove is the following, cf [6].

Theorem 3.1. Let f be a function in A2(V ). Then there is a function F in A2(D)
whose restriction to V equals f , which satisfies
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∫

D

|F |2e−φ ≤ σk

∫

V

|f |2e−φ+kB ,

where σk is the volume of the unit ball in Ck.

To prove the theorem, recall that we may assume that V extends to a neighbourhood
of D̄, that D is smoothly bounded and strictly pseudoconvex and that B also extends
to a continuous function in a neighbourhood of D̄. We may then also assume that f

extends to be holomorphic over the boundary, so that we know a priori that f has some
extension F in A2(D). Then the optimal extension, that we call F0, is the projection of
F to the orthogonal complement of I2(V ). The norm of F0 can be computed as

‖F0‖A2(D) = sup |〈ξ, f〉|/‖ξ‖A2(D)∗ , (3.3)

with the sup taken over all ξ 6= 0 in the dual of A2(D) that vanish on I2(V ). Indeed, it
is enough to take ξ in some dense subspace of this space. We will take ξ = ξg of the form

〈ξ, f〉 = σk

∫

V

fḡe−φ+kB ,

where g is in C∞c (V ). It is clear that such functionals are dense in the dual of A2(D)ª
I2(V ), since if 〈ξg, f〉 = 0 for all such g, then f must vanish on V . Put

‖f‖2V := σk

∫

V

|f |2e−φ+kB .

By (3.3)

‖F0‖A2(D) ≤ sup
g
‖f‖V ‖g̃‖V /‖ξg‖A2(D)∗ ,

if we denote by g̃ the orthogonal projection of g to A2(V ) with respect to the norm ‖·‖V .
It is therefore enough to prove that

‖g̃‖V ≤ ‖ξg‖A2(D)∗ . (3.4)

We now let Dt = {z ∈ D;G(z) < t} for t < 0 and put

ψ(τ, z) := max(G(z)− Re τ, 0).

Thus ψ is a plurisubharmonic function in the left half plane times D, only depending on
(t, z) where t = Re τ . Let for p > 0

A2
t,p :=

{
h ∈ H(D); ‖h‖2t,p :=

∫

D

|h|2e−(φ+pψ(t,·)) < ∞
}

.
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As vector spaces A2
t,p are all equal to A2(D) = A2

0,p for any p. As p → ∞, ‖h‖2t,p tends
to

∫

Dt

|h|2e−φ,

so we can think of A2
t,p as a substitute for A2(Dt). To simplify notation we consider p

fixed for the moment and write

‖ξg‖t = ‖ξg‖∗t,p.

We claim that log ‖ξg‖t is a convex function of t. This fact replaces the use of plurisub-
harmonic variation of Bergman kernels in Section 2 and is the most important ingredient
in our proof. Note that, if we take g to be a point mass at a point a instead of a function
in C∞c , then ‖ξg‖2t equals the Bergman kernel Kt(a), so the convexity of log ‖ξg‖t is
indeed a generalization of the convexity of log Kt that we used earlier. To see why it
holds, note that it follows from the result on positivity of direct images in [2], Theorem
1.1, that the trivial vector bundle over the left half plane with fiber A2(D) equipped
with the norms depending on t (or τ) defined above has semipositive curvature. Hence
the dual bundle has seminegative curvature, which means that log ‖ξ‖t is subharmonic,
hence convex, if ξ is any element of the dual space A2(D)∗. (Strictly speaking this is
only proved in [2] when φ and ψ are smooth, but of course the general case follows by
approximation.)

Lemma 3.2.

‖ξg‖2t ekt = O(1)

as t → −∞. As a consequence

kξ(t) := log ‖ξg‖2t + kt

is an increasing function of t. Hence

‖ξg‖20 ≥ lim
t→−∞

‖ξg‖2t ekt.

Proof. If h is a function in A2
t for t large negative the submeanvalue inequality

gives that

∫

V ∩supp(g)

|h|2e−φ+kB ≤ C ′e−kt

∫

Dt

|h|2e−φ ≤ C ′e−kt‖h‖2t,p.

Hence

‖ξg‖2t ≤ Ce−kt

as we wanted. This implies that



A proof of the Ohsawa–Takegoshi theorem with sharp estimates 1467

kξ(t) = log ‖ξg|2t + kt

is bounded from above as t goes to minus infinity, which together with the convexity
implies that kξ is increasing. ¤

For the converse direction we use the following lemma which implies that for a fixed
function H, say holomorphic in a neighbourhood of V ∩ D̄, the norms ‖H‖A2(Dt) are
asymptotically majorized by ekt/2‖h‖A2(V ), if h is the restriction of H to V .

Lemma 3.3. Let χ be a continuous function on D̄. Then

lim sup
t→−∞

e−kt

∫

Dt

χ ≤ σk

∫

V

χekB .

We omit the easy proof. As a preparation for the final lemma we need a technical
estimate.

Lemma 3.4. Let ν(t) be an increasing function for t < 0 and assume that ν(t) ≤
ekt. Then for p > k

lim inf
t→−∞

e−kt

∫ 0

t

e−p(s−t)dν(s) ≤ k + 1
p− k

.

Proof. Let

f(t) := e−kt

∫ 0

t

e−p(s−t)dν(s).

It suffices to prove that

∫ 0

−T

f(t)dt ≤ T
k + 1
p− k

(3.5)

for T large. But

∫ 0

−T

f(t)dt =
∫∫

−T<t<s<0

e−pse(p−k)tdtdν(s) ≤ 1
p− k

∫ 0

−T

e−ksdν(s).

Integrating by parts we get

∫ 0

−T

e−ksdν(s) ≤ ν(0) + k

∫ 0

−T

ds ≤ T (1 + k),

so we are done. ¤

Lemma 3.5. For any δ > 0
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lim
t→−∞

‖ξg‖2t ekt ≥ ‖g̃‖2V − δ,

if p is large enough. (Note that the limit exists by Lemma 3.2.)

Proof. The holomorphic function g̃ on V can be approximated in L2 norm on
V by a function g′ that extends holomorphically to a neighbourhood of D̄. For this we
recall that V extends to a submanifold V ′ in a neighbourhood of D̄ and approximate g̃

by a holomorphic function on V ′ that extends across the boundary of V ′ ∩D. (See the
appendix for a discussion why this is possible.) This function can then be extended to a
neighbourhood of D̄ by general Stein theory. Then

‖ξg‖t ≥
∣∣∣∣σk

∫

V

g′g̃e−φ+kB

∣∣∣∣
/
‖g′‖A2

t,p
≥ (1− ε)‖g̃‖2V /‖g′‖A2

t,p
(3.6)

if the approximation is good enough. The proof will be concluded if we can prove for
arbitrary ε′ > 0 and with sufficiently large p that

lim inf
t→−∞

e−kt/2‖g′‖A2
t,p
≤ ‖g̃‖V + ε′ (3.7)

since we know that the limit in the lemma exists. But

‖g′‖2A2
t,p

=
∫

Dt

|g′|2e−φ +
∫

t<G

|g′|2e−φ−pψ =: I + II.

By Lemma 3.3

I =
∫

Dt

|g′|2e−φ ≤ (1 + ε)ekt‖g′‖2V ≤ (1 + ε)2ekt‖g̃‖2V ,

if t is sufficiently large and

‖g′‖V ≤ (1 + ε)‖g̃‖V .

We will now prove that II is small compared to I. For this we estimate |g′|2e−φ by its
maximum M on D. Write ν(t) for the volume of Dt. By Lemma 3.3, ν(t) ≤ Cekt for a
certain constant C. Then

II ≤ M

∫ 0

t

e−p(s−t)dν(s).

By Lemma 3.4

II ≤ MC
1 + k

p− k
ekt

for a sequence of t tending to −∞.
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All in all

e−kt‖g′‖2A2
t,p
≤ e−kt(I + II) ≤ (1 + ε)2‖g̃‖2V + ε,

if p is large enough, for a sequence of t tending to −∞. Hence we have proved (3.7)
which together with (3.6) gives the lemma. ¤

By Lemmas 3.2 and 3.5 we now get

‖ξg‖A2(D)∗ ≥ lim
t→−∞

‖ξg‖te
kt/2 ≥ ‖g̃‖V − δ,

for any δ > 0. This proves (3.4) and therefore Theorem 3.1.

3.1. The adjoint formulation.
In this subsection we give a variant of Theorem 3.1, corresponding to the so called

‘adjoint formulation’ of the Ohsawa–Takegoshi theorem. This means that we think of f

and F0 as holomorphic forms of maximal degree instead of functions. We are then given
a holomorphic (n− k, 0)-form f on V , and we want to find a holomorphic (n, 0)-form on
D, F0, such that

F0 = f ∧ dg1 ∧ · · · ∧ dgk

on V , if g1, . . . , gk are holomorphic functions on D whose common zero locus is V . We
also assume dg := dg1 ∧ · · · ∧ dgk does not vanish on V .

Theorem 3.6. Let D be a pseudoconvex domain in Cn and let V be a holomorphic
submanifold of D defined by the equation g = (g1, . . . , gk) = 0, where g is holomorphic
and dg = dg1 ∧ · · · ∧ dgk 6= 0 on V . Let φ be plurisubharmonic in D. Assume |g| ≤ 1 in
D. Then there is a holomorphic (n, 0)-form F0 in D, such that

F0 = f ∧ dg

on V , and

∫

D

cnF0 ∧ F̄0e
−φ ≤ σk

∫

V

cn−kf ∧ f̄ e−φ,

where σk is the volume of the unit ball in Ck.

Here cn = (i)n2
is a unimodular constant chosen so that cnF0 ∧ F̄0 is positive. This

follows in the same way as Theorem 3.1 if we let G = log |g|2. The only difference in the
proof is that we replace Lemma 3.3 by the following statement.

Lemma 3.7. Let χ′ be a continuous 2(n− k)-form on D̄ and let

χ = ckχ′ ∧ dg ∧ dḡ.



1470 B. Berndtsson and L. Lempert

Then

lim
t→−∞

e−kt

∫

log |g|2<t

χ = σk

∫

V

χ′.

This is easily proved using a partition of unity and choosing local coordinates
(z1, . . . , zn) such that (z1, . . . , zk) = (g1, . . . , gk).

3.2. A more general version.
In the version of the extension theorem we have considered so far, the submanifold V

was defined by a negative plurisubharmonic function G. In this section we will discuss a
more general case when G satisfies a bound G < ψ, where ψ is another plurisubharmonic
function. This more liberal growth condition means intuitively that the variety V is
allowed to be bigger. One is then still able to extend, but the extended function needs
to be larger as well.

Such situations also occur naturally when V is defined as the zero locus of a holo-
morphic section, s, of a vector bundle E over V , cf. [10]. Indeed, if we assume the norm
of s with respect to a hermitian metric h on E is bounded by 1, and that the curvature
of h satisfies a bound

Θh ≤ ddcψ ⊗ I,

then G := log |s|2h +ψ will be a plurisubharmonic function satisfying G < ψ. This follows
since

ddc log |s|2h ≥ −〈Θ
hs, s〉h
|s|2h

.

Theorem 3.8. Let G be a plurisubharmonic function in D satisfying conditions
(3.1) and (3.2), and assume G < ψ, where ψ is plurisubharmonic in D. Let f be a
function in A2(V ). Assume that φ is plurisubharmonic in D and satisfies ddcφ ≥ δddcψ,
where δ > 0. Then there is a function F in A2(D) whose restriction to V equals f and
satisfies the estimate

∫

D

|F |2e−φ−kψ ≤ (k/δ + 1)σk

∫

V

|f |2e−φ+kB .

We will prove Theorem 3.8 by reducing it to Theorem 3.1. Let

D̃ := {(z0, z) ∈ C×D; |z0|2 < e−ψ}.

Then D̃ is pseudoconvex in Cn+1 and there is a natural projection map p from D̃ to D.
Let Ṽ = p−1(V ). Assume for the moment that ψ is bounded by a constant a. Take ε > 0
and let C = C(ε, ψ) = log(1 + εea). Note that C(ε, ψ) → 0 as ε → 0. Let

G̃(z0, z) := G(z) + log(|z0|2 + ε)− C.
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Then G̃ is negative and plurisubharmonic in D̃. Let f̃(z0, z) = zk
0f(z). Take 0 <

δ ≤ 1. By Theorem 3.1, with B replaced by B − log(|z0|2 + ε) + C and φ replaced by
φ + (1− δ) log |z0|2, there is a function F̃ in A2(D̃) that extends f̃ and satisfies

∫

D̃

|F̃ |2
|z0|2−2δ

e−φ ≤ σk

∫

Ṽ

|f̃ |2
|z0|2−2δ(|z0|2 + ε)k

e−φ+kB(1 + εea)k.

A standard limiting argument shows that an extension satisfying this estimate can be
found also for ε = 0 and without the assumption that ψ be bounded. Then, replacing F̃

by

∫ 2π

0

F̃ (eiθ·)e−kiθdθ/2π,

we see that we may assume that F̃ = zk
0F (z). Theorem 3.8 then follows (for δ ≤ 1) if we

carry out the integration with respect to z0 and replace the arbitrary plurisubharmonic
function φ by φ + δψ. For δ > 1 we write δ = m + δ′, where m is an integer and δ′ < 1,
and run the same argument with f̃ := zk+m

0 f .

4. Appendix.

In this appendix we state and prove the approximation result that was used in the
proof of Lemma 3.5. It could be derived from a theorem of Kerzman ([8, Theorem 1.4.1]),
which deals with Lp-approximation, but we include a quick proof along different lines.

Proposition 4.1. Let X be a Stein manifold and let

Ω = {z ∈ X; ρ(z) < 0}

be a relatively compact subdomain of X, defined by a smooth strictly plurisubharmonic
function in X with dρ 6= 0 on ∂Ω. Let dV be a smooth volume form on X, and let f be
a holomorphic function on Ω such that

∫

Ω

|f |2dV < ∞.

Then there is a sequence of functions fj, holomorphic on all of X, such that

lim
t→∞

∫

Ω

|f − fj |2dV = 0.

Proof. We first approximate f by holomorphic functions that are smooth up
to the boundary of Ω. For this we take a sequence of cut-off function χj , compactly
supported in Ω that increase to 1 in Ω. Then χjf tend to f in L2(Ω), so if we denote
by P the Bergman projection operator for L2(Ω, dV ), fj := P (χjf) also tend to f in
L2. These functions are of course holomorphic, and it follows from the regularity of the
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∂̄-Neumann problem that they are smooth up to the boundary, since

fj = χjf − vj ,

where vj is the L2-minimal solution of ∂̄v = f∂̄χj .
We may thus assume from the start that f is smooth up to the boundary. We then

only need to extend f smoothly to a function F with compact support in X. Solve
∂̄uj = ∂̄F with L2-estimates for the weights e−j max(ρ,0). Then F − uj are holomorphic
on X and tend to f in L2(Ω, dV ), since

∫

X

|∂̄F |2e−j max(ρ,0)dV =
∫

ρ>0

|∂̄F |2e−jρdV

tends to zero. ¤
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