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Abstract. This paper introduces the notion of k-isoparametric hyper-
surface in an (n + 1)-dimensional Riemannian manifold for k = 0, 1, . . . , n.
Many fundamental and interesting results (towards the classification of homo-
geneous hypersurfaces among other things) are given in complex projective
spaces, complex hyperbolic spaces, and even in locally rank one symmetric
spaces.

1. Introduction.

A smooth non-constant function f : N → R defined on a Riemannian manifold N

is called transnormal if there is a smooth function b : R→ R such that

|∇f |2 = b(f), (1)

where ∇f is the gradient of f . If in addition there is a continuous function a : R → R
such that

4f = a(f), (2)

where 4f is the Laplacian of f , then the function f is called isoparametric (cf. [Wan87],
[GT13], [GT14]). Élie Cartan (cf. [Car38], [Car39], [Car39’], [Car40]) pointed out:
equation (1) means that the level hypersurfaces Mt := f−1(t) (where t are regular values
of f) are parallel and equation (2) further implies that these parallel hypersurfaces have
constant mean curvatures.

The preimage of the global maximum (resp. minimum) of an isoparametric (or
transnormal) function f is called the focal variety of f , denoted by M+ (resp. M−), if
nonempty. A fundamental structural result established by [Wan87] asserts that each
focal variety of a transnormal function is a smooth submanifold (may be disconnected
and have different dimensions), and each connected component Pt of Mt is a tube (tubu-
lar hypersurface) or a “half-tube” (when codim(P ) = 1) of the same radius around a
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connected component P of M±. A hypersurface M in N is called isoparametric if it is
a level hypersurface of some locally defined isoparametric function f on N . Therefore, a
hypersurface M in N is an isoparametric hypersurface if and only if all its nearby parallel
hypersurfaces have constant mean curvatures, which is a local property with respect to
the ambient space N in general, while isoparametric functions are global objects of N

that may restrict strongly the geometry and topology of the ambient space N , as stated
in [GT13].

The theory of isoparametric functions (hypersurfaces) originated from studies of hy-
persurfaces in real space forms with constant principal curvatures (see [Tho00], [Cec08]
for excellent surveys). As Élie Cartan (cf. [Car38], [Car39], [Car39’], [Car40]) as-
serted, a hypersurface in a real space form has constant principal curvatures if and
only if all its nearby parallel hypersurfaces have constant mean curvatures, thus it is an
isoparametric hypersurface defined as before. Isoparametric hypersurfaces in Euclidean
or hyperbolic space were easily classified due to the celebrated Cartan identity. However,
it turns out that isoparametric hypersurfaces in the unit spheres are more complicated
and plentiful, and thus have not been completely classified up to now (for the newest
progress, please see [GH87], [CCJ07], [Imm08], [Chi11], [DN85], [Miy13], [QT14],
[QT15], [TY13], [TXY14], etc.). In the early 1970’s, Münzner [Mün80] produced a
far-reaching generalization of Cartan’s work. He showed that an isoparametric hypersur-
face in a sphere Sn+1 is an open part of a level hypersurface, say M , of an isoparametric
function f which is the restriction to Sn+1 of a Cartan polynomial F . By a Cartan poly-
nomial (or isoparametric polynomial), we mean a homogeneous polynomial F on Rn+2

satisfying the Cartan–Münzner equations

|∇F |2 = g2|x|2g−2, x ∈ Rn+2, (3)

∆F =
g2

2
(m2 −m1)|x|g−2, (4)

where ∇F , ∆F denote the gradient and Laplacian of F on Rn+2 respectively, and m1,
m2 the multiplicities of the maximal and minimal principal curvatures of M , g = deg(F )
the number of distinct principal curvatures of M . Further, using an elegant topological
method Münzner proved the remarkable result that the number g must be 1, 2, 3, 4, or
6.

Note that the Cartan–Münzner equations (3)–(4) of the isoparametric polynomial
F on Rn+2 correspond to the equations (1)–(2) of the isoparametric function f on Sn+1

with the following equalities:

b(f) = g2(1− f2), a(f) =
g2

2
(m2 −m1)− g(n + g)f, (5)

which only mean that the level hypersurfaces Mt := f−1(t) have constant mean curva-
tures. On the other hand, due to Cartan’s result, the level hypersurfaces Mt essentially
have constant principal curvatures and hence constant mean curvatures of each order
(which are elementary symmetric polynomials of principal curvatures). This fantastic
phenomenon suggests that there are hidden n − 1 more equations describing the con-
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stancy of higher order mean curvatures of an isoparametric hypersurface in a sphere for
the isoparametric function f (resp. isoparametric polynomial F ) besides the equations
(1)–(2) (resp. Cartan–Münzner equations (3)–(4)). It is this observation that stimu-
lates us to exhibit these hidden equations (see Theorem 2.1) which should possibly be
helpful to provide a geometric or an algebraic proof of Münzner’s remarkable result on g

mentioned above.
Observing that there do exist isoparametric hypersurfaces in complex projective

spaces with non-constant principal curvatures (cf. [Wan82]), we will be concerned
with the isoparametric functions (resp. hypersurfaces) on Riemannian manifolds sat-
isfying these hidden equations (resp. more constant higher order mean curvatures). This
treatment will filter isoparametric functions (resp. isoparametric hypersurface) by k-
isoparametric functions (resp. k-isoparametric hypersurfaces) on a Riemannian manifold
Nn+1 for k = 1, . . . , n.

We now set up some notations. First of all, for an n by n real symmetric matrix
(or self-dual operator) A with n real eigenvalues (µ1, . . . , µn) =: µ and k = 1, . . . , n, we
denote by σk(A) = σk(µ) the k-th elementary symmetric polynomial of µ, i.e.,

σk(A) = σk(µ) =
∑

i1<···<ik

µi1 · · ·µik
=

∑

i1<···<ik

A

(
i1 · · · ik
i1 · · · ik

)
, σ0(A) = σ0(µ) ≡ 1, (6)

where A
(
i1···ik

i1···ik

)
’s are the principal k-minors of A; and denote by ρk(A) = ρk(µ) the k-th

power sum, i.e.,

ρk(A) = ρk(µ) =
n∑

i=1

µk
i = tr(Ak), ρ0(A) = ρ0(µ) ≡ n. (7)

In these notations, the Newton’s identities can be stated as

kσk =
k∑

i=1

(−1)i−1σk−iρi, for k = 1, . . . , n, (8)

which show in particular that for k = 1, . . . , n,

{σ1, . . . , σk} are constant if and only if {ρ1, . . . , ρk} are constant. (9)

Next, on a Riemannian manifold Nn+1, we define a sequence of partial differential oper-
ators {41, . . . ,4n+1} over C∞(Nn+1) by

4kf := σk(Hf ), for k = 1, . . . , n + 1, (10)

where Hf is the Hessian of f on Nn+1. It is respectively the Laplacian and the Monge–
Ampère operator when k = 1 and k = n + 1. Note that 4k is nonlinear when k ≥ 2.

Definition 1.1. For 1 ≤ k ≤ n, a non-constant smooth function f on a Rieman-
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nian manifold Nn+1 is called k-isoparametric, if f is a transnormal function satisfying
equation (1), and in addition there exist continuous functions a1, . . . , ak ∈ C(R), such
that

4if = ai(f), for i = 1, . . . , k. (11)

We denote by Ik(Nn+1) the set consisting of k-isoparametric functions on Nn+1. A
hypersurface Mn in Nn+1 is called k-isoparametric if it is a level hypersurface of some
locally defined k-isoparametric function f on Nn+1.

Remark 1.1. For simplicity, we will call a transnormal function f a 0-
isoparametric function, denoted by f ∈ I0(Nn+1) (and by 40f := |∇f |2). Note that
a 1-isoparametric function is exactly the usual isoparametric function introduced at the
beginning of this paper. Generally, in a Riemannian manifold Nn+1, a k-isoparametric
hypersurface can not determine a corresponding global k-isoparametric function. How-
ever, as we stated before, a 1-isoparametric hypersurface in a sphere does determine a
corresponding global isoparametric function according to Cartan–Münzner’s construc-
tion of isoparametric polynomial. Furthermore, in a compact symmetric space Nn+1, a
1-isoparametric hypersurface Mn also determines a corresponding global isoparametric
function f on Nn+1. To show this assertion, first we know that by [HLO06] Mn must be
an equifocal hypersurface (cf. [TT95], [Tan98]). Next, it follows from Terng and Thor-
bergsson [TT95] that Mn determines a transnormal system on Nn+1 with t-regular foils
of codimension one, which then by Miyaoka [Miy13’] corresponds to a global transnor-
mal function f̄ on Nn+1 whose regular level hypersurfaces are parallel to Mn and have
constant mean curvatures. Finally we get a desired global isoparametric function f on
Nn+1 via f̄ with the same level sets by some regularization.

It follows directly from the definition that the sets of 1-, 2-, . . . , n-isoparametric func-
tions (hypersurfaces) induce a filtration of isoparametric functions (hypersurfaces) on a
Riemannian manifold Nn+1 as:

(
I0(Nn+1) ⊃ )

I1(Nn+1) ⊃ · · · ⊃ In(Nn+1). (12)

By a straightforward verification, we will see in the next section that, a hypersur-
face Mn in Nn+1 is k-isoparametric if and only if all its nearby parallel hypersurfaces,
say Mt (Mt0=M), have constant i-th mean curvatures Hi(t) for i = 1, . . . , k, where
Hi(t) := σi(S(t)) = σi(µ(t)) is the i-th elementary symmetric polynomial of the shape
operator S(t) or principal curvatures µ(t) = (µ1(t), . . . , µn(t)) of Mt. In particular, Mn

is an n-isoparametric hypersurface if and only if all its nearby parallel hypersurfaces have
constant principal curvatures. In this case, Mn is called a totally isoparametric hyper-
surface and the corresponding (local) function a totally isoparametric function. In this
way, Cartan’s rigidity result can be restated as:

A 1-isoparametric hypersurface in a real space form is totally isoparametric. (13)

Although Cartan’s rigidity result can hardly hold in a general Riemannian manifold,
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we will be able to extend it to those Riemannian manifolds with some symmetries other
than real space forms, as stated in the following theorems.

Theorem 1.1. Let CPm be the complex projective space equipped with Fubini–
Study metric of constant holomorphic sectional curvature 4. Then

( i ) A 1-isoparametric hypersurface in a complex even-dimensional projective space
CP 2n is totally isoparametric. In fact, it is homogeneous.

( ii ) Each complex odd-dimensional projective space CP 2n+1 admits a 2-isoparametric
hypersurface which is not 3-isoparametric.

The homogeneity conclusion in (i) follows from the following sequence of equiva-
lent conditions for an isoparametric hypersurface M̃2n−1 in CPn by putting results of
[Wan82], [Kim86], [Par89]1 and [Xia00] together:

M̃ has constant principal curvatures

⇔ M̃ is Hopf, i.e., Jν̃ is principal

⇔ one of the focal submanifolds is complex

⇔ M̃ is homogeneous (i.e. an open part of a homogeneous hypersurface)

⇔ l ≡ 2 ⇔ l ≡ const ⇔ g̃ ≡ const

⇔ M̃ is totally isoparametric, (14)

where ν̃ is a unit normal vector field on M̃ , J the canonical complex structure of CPn,
g̃ the number of distinct principal curvatures of M̃ and l the number of non-horizontal
eigenspaces of the shape operator on M := π−1(M̃) by the Hopf fibration π : S2n+1 →
CPn.

It is worth to point out that hypersurfaces with constant principal curvatures in any
Riemannian manifold other than a real space form are far from being classified; and even
the set of g, the number of distinct principal curvatures, has not been determined so well
as Münzner did for such hypersurfaces in spheres (see [Ber10] for a detailed survey).
Combining with the remarkable classification of homogeneous hypersurfaces in complex
projective spaces by Takagi [Tak73, Theorem 1.1 (i)] classifies completely isoparametric
hypersurfaces in CP 2n indeed. Our classification should be compared with the case of
complex hyperbolic space CHn in which [DD12] recently constructed inhomogeneous
examples of isoparametric hypersurfaces for each n ≥ 3.

Examples in Theorem 1.1(ii) are constructed explicitly by projecting certain OT-
FKM-type isoparametric hypersurfaces in spheres by the Hopf fibration. Here, the de-
duction that 1-isoparametric is sufficient for 2-isoparametric in CPn (or more generally
in an Einstein manifold) can be easily seen from relations of the shape operators of M

and M̃ by the Hopf fibration (or from the Riccati equation).

1It was pointed out by [Xia00] that there exist some mistakes in [Par89]. However, the conclusions

we cited are correct.
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A deeper exploration of these relations by the Hopf fibration and the equivalence
sequence (14) will lead us to a classification of isoparametric hypersurfaces in CPn with
constant 3rd mean curvatures as follows:

Theorem 1.2. A 1-isoparametric hypersurface in CPn with constant 3rd mean
curvature, i.e., H3 ≡ const, is totally isoparametric and hence homogeneous.

We expect this theorem to play a special role in solving Chern conjecture, which
asserts that a closed hypersurface in a sphere with constant 1st and 2nd mean curvatures
must be an isoparametric hypersurface (cf. [SW08], [GT12]). This conjecture has been
proved only for the case of 3-dimensional closed hypersurfaces in S4, while remains open
for higher dimensional cases. On the other hand, one has not any example of inhomoge-
neous hypersurface with constant principal curvatures in Riemannian symmetric spaces
other than real space forms (cf. [Ber10]). It turns out that there are some relations
between these two questions as stated in the following.

Corollary 1.1. Suppose that M̃ is an inhomogeneous hypersurface in CPn with
constant mean curvatures H1,H2,H3. Then the inverse image M = π−1(M̃) in S2n+1

under the Hopf fibration is a non-isoparametric hypersurface with constant first mean
curvature H1 and constant second mean curvature H2 − 1, giving a counterexample to
Chern conjecture.

In general, the ambient space N is lack of such “satisfied structures” (e.g., Hopf
fibration, complex structure, explicit representation of curvature tenser, etc.) as CPn,
resulting in obstructions for us to get rigidity results as Theorems 1.1, 1.2 for CPn.
However, when N is a complex space form or more generally a locally rank one symmetric
space, there still exist certain symmetries of the curvature tensor, which make the Riccati
equation more useful in dealing with parallel hypersurfaces in such spaces than in general
Riemannian manifolds as in [GT14]. For example, by making use of the Riccati equation,
we obtain the following rigidity result (compared with Theorem 1.2 where H3 ≡ const is
an assumption weaker than 3-isoparametric):

Theorem 1.3. A 3-isoparametric hypersurface Mn in a locally rank one symmetric
space Nn+1 is 5-isoparametric. If in addition Nn+1 is locally a complex space form, then
Mn is totally isoparametric.

Remark 1.2. The key point in the proof of this theorem is that the normal Jacobi
operator Kν : TM → TM defined by Kν(X) := R(ν,X)ν = (∇[ν,X] − [∇ν ,∇X ])ν, for
X ∈ TM , where ν is a unit normal vector field on M , has constant eigenvalues and is
parallel along the normal geodesics. In fact, if both tr(Kν) and tr(K2

ν ) are constant, in
the same way we find that 3-isoparametric is sufficient for 4-isoparametric in a locally
symmetric space. Fortunately, there are many locally symmetric spaces with constant
tr(Kξ) and constant tr(K2

ξ ), independent of the choice of the unit tangent vector ξ.
Such locally symmetric spaces are involved in the Lichnerowicz conjecture and have been
classified in [CGW82].

The following rigidity result is another application of the Riccati equation. To state
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it, we need to introduce the concept of curvature-adapted or compatible hypersurfaces
(resp. submanifolds), namely, whose normal Jacobi operator Kν and shape operator Sν

(resp. Sν ⊕ I) commute, or equivalently, are simultaneously diagonalizable for each unit
normal vector ν (cf. [Ber91], [Gra04]).

Theorem 1.4. Let Mn be a curvature-adapted hypersurface in a locally rank one
symmetric space Nn+1. If either

( i ) Mn has constant principal curvatures, or
( ii ) Mn is a 1-isoparametric hypersurface,

then Mn is totally isoparametric.

Remark 1.3. The proof of Theorem 1.4(i) yields also that a tube (tubular hyper-
surface) Mn around a curvature-adapted submanifold of constant principal curvatures in
a locally rank one symmetric space Nn+1 is a curvature-adapted hypersurface of constant
principal curvatures and thus totally isoparametric.

Remark 1.4. It is clear to see that (cf. [Gra04]), given a curvature-adapted
hypersurface M in a locally symmetric space N , each nearby parallel hypersurface Mt

is automatically curvature-adapted. Theorem 1.4 holds also for a hypersurface M in an
Osserman manifold whose nearby parallel hypersurfaces Mt are all curvature-adapted.
In fact, the proof of Theorem 1.4 depends mainly on the constancy of eigenvalues of the
Jacobi operator, while an Osserman manifold is exactly a Riemannian manifold N whose
Jacobi operator has constant eigenvalues including multiplicities, independent of the
choice of the unit tangent vector and the point on N . Essentially, Osserman conjectured
that an Osserman manifold (named later) is a locally rank one symmetric space. This
conjecture has been verified to be true except for the case when dimN = 16 (cf. [Chi88],
[Nik05], [BGN09]).

In a locally rank one symmetric space Nn+1 with non-constant sectional curvatures,
all known examples of totally isoparametric hypersurfaces are homogeneous. Recall that
for a hypersurface in CPn, totally isoparametric is equivalent to homogeneous by the
equivalence sequence (14). In all probability, this equivalence still holds, at least, in each
compact case (CPn, HPn, OP 2). On the other hand, curvature-adapted hypersurfaces in
complex space forms (CPn, CHn, Cn) are just Hopf hypersurfaces. Similar to Kimura’s
work in CPn (cf. [Kim86]), Berndt [Ber89] proved that a Hopf hypersurface with con-
stant principal curvatures in CHn is necessarily homogeneous. Based on this remarkable
result, Theorem 1.4 (ii) yields

Corollary 1.2. A 1-isoparametric Hopf hypersurface in CHn is homogeneous.

We conclude this section with some remarks. In virtue of the classification of homo-
geneous hypersurfaces in CHn by [BT07], 1-isoparametric Hopf hypersurfaces in CHn

are consequently classified. An interesting phenomenon appeared in CHn that there
exist many non-Hopf homogeneous hypersurfaces, which is quite different from that in
CPn (cf. [Ber10]). As is well known, a hypersurface in a non-flat complex space form
is curvature-adapted if and only if it is Hopf. The concept of curvature-adapted hy-
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persurface gives a natural generalization of Hopf hypersurfaces in Hermitian manifolds
to more general Riemannian manifolds. Surprisingly, Berndt ([Ber91]) proved that a
hypersurface in quaternionic projective space HPn is curvature-adapted if and only if
it is homogeneous. While in quaternionic hyperbolic space HHn, the classification of
curvature-adapted hypersurfaces is still an open problem (cf. [Mur14], [Ber91]). More-
over, the classification of curvature-adapted hypersurfaces in octonionic space forms is
still elusive.

2. Hidden Cartan–Münzner equations.

This section will be devoted to the establishment of an inductive formula for those
(n− 1) equations implied by Cartan–Münzner equations (3)–(4) for isoparametric func-
tions (polynomials) on Sn+1. We first show the following geometric characterization of
a k-isoparametric hypersurface Mn defined by a (local) k-isoparametric function f on a
Riemannian manifold Nn+1:

Lemma 2.1. A hypersurface is k-isoparametric if and only if each of its nearby
parallel hypersurfaces has constant i-th mean curvatures for i = 1, . . . , k.

Proof. Let Mn := f−1(t0) be a k-isoparametric hypersurface in a Riemannian
manifold Nn+1, where t0 is a regular value of the (local) k-isoparametric function f

satisfying equations (1) and (11). For ε > 0 sufficiently small, t ∈ (t0 − ε, t0 + ε),
Mt := f−1(t) is still a hypersurface that is parallel to M by equation (1), since now
∇f/|∇f | is the tangent vector field along the normal geodesic of M at each point. It
is well known that the shape operator, say S(t), of Mt with respect to the unit normal
vector field ν = ∇f/|∇f | is characterized by (cf. [CR85]):

〈S(t)X, Y 〉 =
−Hf (X, Y )

|∇f | , (15)

where X, Y are tangent vectors to Mt and Hf the Hessian of f . Now let {e1, . . . , en} be
a local orthonormal basis of Mt and ei the eigenvector of S(t) with respect to principal
curvature µi for i = 1, . . . , n. Then it follows from equation (1) that Hf (ei, ν) = 0
and Hf (ν, ν) = b′(f)/2. Thus under the orthonormal frame {e1, . . . , en, ν} of Nn+1, the
Hessian Hf is expressed as the diagonal matrix

Hf = diag
(−

√
b(f)µ1, . . . ,−

√
b(f)µn, b′(f)/2

)
. (16)

Therefore, a straightforward calculation using (16) shows that 4jf := σj(Hf ) can be
expressed in terms of the mean curvatures Hi := Hi(t) = σi(S(t)) for i ≤ j as:

4jf =
(−

√
b(f)

)j
Hj +

(−
√

b(f)
)j−1 b′(f)

2
Hj−1, (17)

and conversely,
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Hj =
1

(2
√

b(f))j

( j∑

i=1

(−1)i2i(b′(f))j−i4if + (b′(f))j

)
. (18)

Preparing these equations, we are now in a position to complete the proof of the lemma.
First, for a given k-isoparametric function f , the equations (11) and (18) yield that
H1, . . . , Hk are functions of f , thus constant on each Mt. Consequently, the nearby
parallel hypersurfaces of a k-isoparametric hypersurface have constant mean curvatures
H1, . . . , Hk. Conversely, if each nearby parallel hypersurface M ′

t := expM (tν) of Mn (the
image of Mn under the normal exponential map at distance t ∈ (−ε, ε)) has constant
mean curvatures H1, . . . , Hk (continuously depend on t), we can define a function f on
the local neighborhood

⋃
t∈(−ε,ε) M ′

t ⊂ Nn+1 of Mn in Nn+1 by f |M ′
t

:= t for t ∈ (−ε, ε).
Clearly |∇f |2 = 1 and by (17), 41f, . . . ,4kf are constant on each M ′

t and continuously
depend on t = f . Namely, f is a local k-isoparametric function on Nn+1 and thus Mn

is k-isoparametric. ¤

In particular, an n-isoparametric hypersurface Mn has constant mean curvatures
H1, . . . , Hn, thus constant principal curvatures. This justifies the notion of totally
isoparametric. As mentioned in the introduction, by Cartan’s rigidity result (13), we
know that for an isoparametric function f = F |Sn+1 satisfying (5) on Sn+1, the restric-
tion of a Cartan polynomial F satisfying (3) and (4), the mean curvatures H1, . . . , Hn,
or equivalently Q1 := ρ1(S(t)), . . . , Qn := ρn(S(t)), where S(t) is the shape operator of
the level hypersurface Mt := f−1(t), are constant on Mt and continuously (smoothly, in
fact) depend on f = t ∈ (−1, 1). This argument together with (17) allows us to construct
(n− 1) smooth functions a2, . . . , an ∈ C∞(R) other than the functions b and a in (5) by

42f = a2(f), . . . ,4nf = an(f); (19)

or equivalently, (n− 1) smooth functions p2, . . . , pn ∈ C∞(R) (p1 = a1 = a) by

ρ2(Hf ) = p2(f), . . . , ρn(Hf ) = pn(f). (20)

Correspondingly, we find out the (n−1) hidden Cartan–Münzner equations for polynomial
F involving 4iF := σi(HF ), or equivalently, involving ρi(HF ). So once we have formulae
for one of the sets {Hi}, {Qi}, {ai}, {pi}, {σi(HF )|Sn+1 =: σ̄i}, and {ρi(HF )|Sn+1 =: ρ̄i},
the others can be obtained by Newton’s identities (8), the equalities (17), (18), and the
relation between the Hessian Hf of f on Sn+1 and the Hessian HF of F on Rn+2. In this
way, the Münzner’s geometric construction of f and the formulae for principal curvatures
of Mt lead us to an inductive formula for the set {Qi}, and then for the set {ρ̄i} as follows
(Qi, ρ̄i are regarded as functions of t = f ∈ (−1, 1)):

Theorem 2.1. In the same notations as above, for k = 1, . . . , n− 1, the following
equalities are valid.

Qk+1 =
g

k

√
1− t2

dQk

dt
−Qk−1,
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Q0 = n, Q1 =
m1g

2

√
1 + t

1− t
− m2g

2

√
1− t

1 + t
.

ρ̄k+1 =





−g2

k
(1− t2)

dρ̄k

dt
− g(g − 2)tρ̄k + g2(g − 1)ρ̄k−1

+2gk+1(g − 1)k(g − 2), for k odd;

−g2

k
(1− t2)

dρ̄k

dt
− g(g − 2)tρ̄k + g2(g − 1)ρ̄k−1

+2gk+1(g − 1)k(g − 2)t, for k even,

ρ̄0 = n + 2, ρ̄1 =
g2

2
(m2 −m1).

Remark 2.1. Since F is a homogeneous polynomial of degree g on Rn+2, we could
homogenize the expressions of ρ̄k so as to extend the Cartan–Münzner equations (3), (4)
on Rn+2. For instance, by the inductive formula, we list (n ≥ 4):

ρ2(HF ) = −g3

2
(g − 2)(m2 −m1)F |x|g−4 + g2(g − 1)(n + 2g − 2)|x|2g−4,

ρ3(HF ) =
g4

4
(g − 2)(g − 4)(m2 −m1)F 2|x|g−6 − ng3(g − 1)(g − 2)F |x|2g−6

+
g4

4
(g2 − 2)(m2 −m1)|x|3g−6,

ρ4(HF ) = −g5

12
(g − 2)(g − 4)(g − 6)(m2 −m1)F 3|x|g−8

+
2n

3
g4(g − 1)(g − 2)(g − 3)F 2|x|2g−8

− g5

12
(g − 2)(5g2 − 2g − 12)(m2 −m1)F |x|3g−8

+
(

n

3
g4(g − 1)(g2 + g − 3) + 2g4(g − 1)4

)
|x|4g−8.

Proof. According to Münzner [Mün80], the level hypersurface Mn
t := f−1(t)

(t ∈ (−1, 1)) of f has g distinct principal curvatures {λi = cot(τ + ((i− 1)π/g))|i =
1, . . . , g} with multiplicities mi satisfying mi = mi+2 (subscripts mod g), where f = t =
cos(gτ) on Mt and τ ∈ (0, π/g) is in fact the oriented (with respect to the unit normal
vector field ν := ∇f/|∇f |) distance from Mt to the focal submanifold M+ := f−1(1) (cf.
[CR85]). As a consequent result we have

Qk = m1

[(g+1)/2]∑

i=1

(
cot

(
τ +

2(i− 1)π
g

))k

+ m2

[g/2]∑

i=1

(
cot

(
τ +

(2i− 1)π
g

))k

. (21)

Since it is difficult to give a general formula for high order power sum of the cotangent
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functions, we turn to give an inductive formula instead of a general formula for Qk.
Observe that

d

dτ
(cot(τ + θ))k = −k

(
(cot(τ + θ))k−1 + (cot(τ + θ))k+1

)
,

dt

dτ
= −g sin(gτ) = −g

√
1− t2,

and thus

(cot(τ + θ))k−1 + (cot(τ + θ))k+1 =
g

k

√
1− t2

d

dt
(cot(τ + θ))k

which implies immediately the first inductive formula of the theorem by taking sum in
(21).

To distinguish the notations, we denote by ∇ and D the Levi-Civita connections on
Sn+1 and Rn+2, respectively. By definition, we have for X, Y ∈ T Sn+1,

HF (X, Y ) = X(Y F )− (DXY )F = X(Y F )− (∇XY )F + 〈X, Y 〉∂F

∂r

= Hf (X, Y ) + 〈X, Y 〉gf, (22)

where ∂F/∂r is the partial derivative of F with respect to the radial direction.
Let {e1, . . . , en} be the principal orthonormal frame of Mt as in the proof of Lemma

2.1 and be arranged such that under this frame the shape operator

S(t) = diag(µ1, . . . , µn) = diag(λ1Im1 , . . . , λgImg
).

Then {e1, . . . , en, νx := ∇f(x)/|∇f(x)|} is an orthonormal frame of TxSn+1 and under
this frame the Hessian Hf can be expressed as in formula (16), while {e1, . . . , en, νx, x}
is an orthonormal frame of Rn+2 at x ∈ Sn+1. It is easily seen that

HF (ei, x) = 0, HF (νx, x) = (g − 1)|∇f |, HF (x, x) = g(g − 1)f,

and thus by (16), (22), the Hessian HF at x ∈ Sn+1 can be expressed as

HF =




−
√

b(f)µ1 + gf
. . .

−
√

b(f)µn + gf
b′(f)

2
+ gf (g − 1)

√
b(f)

(g − 1)
√

b(f) g(g − 1)f




(23)

which has eigenvalues {−g
√

1− f2µ1 + gf, . . . ,−g
√

1− f2µn + gf, g(g − 1),−g(g − 1)}
by using formula (5). Consequently, we have on Mt = f−1(t),
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ρ̄k = m1

[(g+1)/2]∑

i=1

(
− g

√
1− t2 cot

(
τ +

2(i− 1)π
g

)
+ gt

)k

+ m2

[g/2]∑

i=1

(
− g

√
1− t2 cot

(
τ +

(2i− 1)π
g

)
+ gt

)k

+ gk(g − 1)k(1 + (−1)k). (24)

At last, by taking derivative of ρ̄k with respect to t in (24) and using the relation t =
cos(gτ), we arrive at the second inductive formula of the theorem. ¤

Example. As is well known, Cartan’s polynomial F : R3m+2 −→ R for isopara-
metric hypersurfaces in spheres with g = 3 distinct principal curvatures can be written
as

F (x) = u3 − 3uv2 +
3
2
u(XX + Y Y − 2ZZ) +

3
√

3
2

v(XX − Y Y ) +
3
√

3
2

(XY Z + XY Z).

In this formula, x = (u, v, X, Y, Z) ∈ R3m+2, u and v are real parameters, while X, Y , Z

are coordinates in the algebra F = R,C,H (Quaternions) or O (Cayley numbers), for the
case m1 = m2 = m = 1, 2, 4, or 8, respectively. For example, we compute the Hessian of
F in the case of m = 1:

HF = 3




2u −2v X Y −2Z

−2v −2u
√

3X −√3Y 0

X
√

3X u +
√

3v
√

3Z
√

3Y

Y −√3Y
√

3Z u−√3v
√

3X

−2Z 0
√

3Y
√

3X −2u




.

Then direct calculations lead to

41(F ) = 0, 42(F ) = −63|x|2, 43(F ) = −54F,

44(F ) = 35 · 4|x|4, 45(F ) = 23 · 35|x|2F.

3. Isoparametric hypersurfaces in complex projective spaces.

In this section we begin by establishing an equivalence condition for an isoparamet-
ric hypersurface M̃2n−1 in CPn to have constant 3rd mean curvature H3, that is the
constancy of an S1-invariant function, say α, on M2n := π−1(M̃2n−1) ⊂ S2n+1 (π is the
Hopf fibration). As a consequence, M̃2n−1 is 3-isoparametric if and only if α is constant
on each nearby parallel hypersurface Mt of M2n. Next, we turn to prove Theorem 1.1
and Theorem 1.2. In particular, we construct explicitly some S1-invariant OT-FKM-
type isoparametric polynomials on R4n+4, calculating the function α which turns out
non-constant on some level hypersurface. In this way, we get finally the examples in (ii)
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of Theorem 1.1, as desired.
Let M̃2n−1 be a hypersurface in CPn with unit normal vector field ν̃. Observe that

the unit normal vector field ν of M2n := π−1(M̃2n−1) ⊂ S2n+1 (π is the Hopf fibration)
is just the horizontal lift of ν̃, i.e., π∗ν = ν̃. For simplicity, we will use the same symbols
for Levi-Civita connections, shape operators, Hessians, etc., on spheres and Euclidean
spaces as last section and only add a tilde to the corresponding symbols on CPn. Let
J̃ be the complex structure on CPn induced from the canonical complex structure J

on R2n+2 by the Hopf fibration, so that Jx is the tangent vector field of the S1-fibre
through x ∈ S2n+1. It follows that Jν is the horizontal lift of J̃ ν̃, thus a global unit
tangent vector field of M2n perpendicular with Jx. These arguments allow us to choose
a local orthonormal basis {ẽ1, . . . , ẽ2n−2, J̃ ν̃} on M̃2n−1, so that the shape operator S̃ν̃ of
M̃2n−1 is expressed by a symmetric matrix S̃. Following [Wan82], the shape operator Sν

of M2n under the orthonormal basis {e1, . . . , e2n−2, Jν, Jx} (π∗ei = ẽi) can be expressed
by a symmetric matrix S:

S =




0

S̃
...
−1

0 · · · −1 0




(25)

To see the relation of S and S̃ above, we remark that the Hopf fibration is a Rieman-
nian submersion with totally geodesic S1-fibres, and it follows that [Jx, ν] = 0, and
〈S̃ν̃(X̃), Ỹ 〉 = 〈Sν(X), Y 〉 for X̃, Ỹ ∈ T M̃2n−1 and their horizontal lift X, Y ∈ TM2n.
Hence

−Sν(Jx) = ∇Jxν = ∇νJx = JDνx = Jν. (26)

Now define the S1-invariant function α on M2n (it will play an important role in this
section) by

α := 〈Sν(Jν), Jν〉 = 〈ν,∇JνJν〉 = 〈S̃ν̃(J̃ ν̃), J̃ ν̃〉 ◦ π. (27)

Therefore, using (25), we derive that

σ1(Sν) = σ1(S̃ν̃) ◦ π, σ2(Sν) = σ2(S̃ν̃) ◦ π − 1, (28)

σ3(Sν) = σ3(S̃ν̃) ◦ π − (σ1(S̃ν̃) ◦ π − α).

Note that the inverse images under the Hopf fibration of parallel hypersurfaces in CPn

are still parallel hypersurfaces in S2n+1. Now by (28) we obtain the following.

Proposition 3.1 (cf. [Wan82]). A hypersurface M̃2n−1 in CPn is isoparametric
if and only if its inverse image M2n := π−1(M̃2n−1) under the Hopf fibration π is an
isoparametric hypersurface in S2n+1.
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Corollary 3.1. Let M̃2n−1 be a 1-isoparametric hypersurface in CPn. Then

a) It must be 2-isoparametric;
b) It has constant 3rd mean curvature H3 if and only if the function α defined by (27)

is constant on M2n := π−1(M̃);
c) It is 3-isoparametric if and only if the function α is constant on each (nearby) parallel

hypersurface Mt of M2n := π−1(M̃).

Proof. It follows immediately from Proposition 3.1, Cartan’s rigidity result (13),
identities in (28), as well as Lemma 2.1. ¤

Suppose we are now given an isoparametric hypersurface M̃ in CPn. Let F :
R2n+2 → R be the isoparametric polynomial (satisfying Cartan–Münzner equations (3)–
(4)) corresponding to the isoparametric hypersurface M = π−1(M̃) ⊂ S2n+1, the inverse
image of M̃ , and f = F |S2n+1 . Denote by the same symbol J the matrix representa-
tion of the corresponding complex structure J in terms of the Euclidean coordinates2

x = (x1, . . . , x2n+2)t =
∑2n+2

k=1 xk∂xk = Dxt · x, namely,

J(Dxt) := J(∂x1, . . . , ∂x2n+2) = (∂x1, . . . , ∂x2n+2) · J = Dxt · J,

hence J(V ) = J · V , for any vector V on R2n+2.
In these notations, we are ready to give an explicit formula for the function α

defined by (27) on M in terms of F and J . Indeed, α can be regarded as a function on
S2n+1\{M±} as follows.

Proposition 3.2. The function α on each parallel hypersurface Mt := f−1(t) =
F−1(t) ∩ S2n+1 of M can be described as a sum

α =
1

g3(1− F 2)3/2

{
g3F (3− 2F 2) + ΩF

}
, (29)

where ΩF := DF t · J · D2F · J · DF |S2n+1 and D2F = D(DF t) is the matrix of the
Hessian HF .

Proof. At any point p ∈ Mt ⊂ S2n+1, it is clear that the spherical gradient of f

is expressed by

∇f(p) = DF − 〈DF, p〉p = DF − gfp,

and we can define the unit normal vector field of Mt by

2Throughout this paper, by using the congruence RN ∼= TxRN , we identify ∂xk = ∂/∂xk = Dxk with

the k-th coordinate vector field (0, . . . , 1, . . . , 0)t for 1 ≤ k ≤ N , and Dxt = (∂x1, . . . , ∂x2n+2) with the
identity matrix I. The superscript t means transposition, vectors are written in columns as points and

also regarded as (N × 1)-matrices. The derivative D gives a column vector when it acts on a function

as gradient, and thus gives a matrix when it acts on a row vector of functions. A dot “ · ” between
matrices means standard matrix product, and 〈A, B〉 := tr(At ·B) denotes the inner product of A, B in

the (m× n) matrix space M(m, n).
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ν = ∇f/|∇f | = ∇f/
√

b.

Thus J(ν)p = (1/
√

b)J(DF − gfp) = (1/
√

b)J · (DF − gfp), and by definition,

α|p = 〈νp,∇Jνp
Jν〉 =

1
b
√

b
〈DF − gfp,∇J(DF−gfp)J(DF − gfx)〉

=
1

b
√

b
〈DF − gfp, DJ(DF−gfp)J(DF − gFx)〉

=
1

b
√

b
〈DF − gfp, J(DJ(DF−gfp)(DF − gFx))〉

=
1

b
√

b
〈DF − gfp, J(D(DF − gFx)t|x=p · J(DF − gfp))〉

=
1

b
√

b
〈DF − gfp, J((D2F − gDF · xt − gFDxt)|x=p · J(DF − gfp))〉

=
1

b
√

b
〈DF − gfp, J · (D2F − gDF · pt − gFI) · J · (DF − gfp)〉

=
1

b
√

b
(DF t − gfpt) · J · (D2F − gp ·DF t − gFI) · J · (DF − gfp). (30)

where x is the position vector field extending p. Note that Mt is S1-invariant and thus
Jp ∈ TpMt, which implies DF tJp = 〈∇f, Jp〉 = 0 and thus D2F · Jp = JDF . In
addition, we have on hand several simple equalities:

J2 = −I, ptJp = 0, |∇f |2 = b = g2(1− f2),

|DF |2|p = g2, pt ·DF = gF.

Applying these equalities, we conclude

(DF t − gFpt) · Jp ·DF t = 0,

(DF t − gFpt) · J · gFI · J · (DF − gFp) = −g3f(1− f2),

(DF t − gFpt) · J ·D2F · J · (DF − gFp) = DF t · J ·D2F · J ·DF + 2g3F − g3F 3.

Substituting all these equalities in (30), we get immediately the desired formula (29). ¤

Now we investigate the function α on the OT-FKM-type isoparametric hypersurfaces
in spheres which almost cover all isoparametric hypersurfaces with four distinct princi-
pal curvatures (cf. [CCJ07]). For a symmetric Clifford system {A0, . . . , Am} on R2r,
i.e., Ai’s are symmetric matrices satisfying AiAj + AjAi = 2δijI2r, the OT-FKM-type
isoparametric polynomial F on R2r is then defined as (cf. [FKM81]):

F (z) = |z|4 − 2
m∑

p=0

〈Apz, z〉2, (31)
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where we take the coordinate system z = (xt, yt)t = (x1, . . . , xr, y1, . . . , yr)t ∈ R2r. By
orthogonal transformations, we can write

A0 =

(
I 0
0 −I

)
, A1 =

(
0 I

I 0

)
, (32)

Aj =

(
0 −Ej

Ej 0

)
, j = 2, . . . , m,

where {E2, . . . , Em} is a skew-symmetric Clifford system on Rr, i.e., Ei’s are skew-
symmetric matrices satisfying EiEj + EjEi = −2δijIr. It can be verified that the level
hypersurfaces of this polynomial restricted to the unit sphere have 4 distinct constant
principal curvatures with multiplicities m1 = m and m2 = r−m−1, provided r−m−1 >

0. Now fixing a complex structure J on R2r under the coordinate system as J =
(

0 −I

I 0

)
,

we define the corresponding S1-action on R2r by eiθ · z = (cos θ +
√−1 sin θ)z = cos θz +

sin θJz. We prepare in advance the following equalities which will be useful later.

A0J = −JA0 = −A1, A1J = −JA1 = A0, A0A1 = −A1A0 = −J, (33)

AjJ = JAj , for j = 2, . . . , m.

Proposition 3.3. The OT-FKM-type isoparametric polynomial F defined by (31)
and (32) is S1-invariant under the fixed complex structure J and thus induces an isopara-
metric function f̃ on CP r−1 through the Hopf fibration. Moreover, the function ΩF

defined in (29) at the point z ∈ S2r−1 can be expressed as a sum

1
64

ΩF = 2F 2 − F − 2 + 8(1 + F )
(〈A0z, z〉2 + 〈A1z, z〉2)

+ 16
m∑

q=2

( m∑
p=2

〈Apz, z〉〈Aqz, JApz〉
)2

. (34)

Remark 3.1. When m = 1, ΩF = 64(−2F 2 − F + 2) and thus α is constant on
each level hypersurface of f = F |S2r−1 . Consequently, it follows from Proposition 3.1
that the isoparametric function f̃ on CP r−1 induced from f is now 3-isoparametric.

Proof. By a direct calculation using (33), we have for j ≥ 2 that

〈Ajz, z〉 = 〈AjJz, Jz〉, 〈AjJz, z〉 = 0,

which imply

〈Aje
iθz, eiθz〉 = 〈Aj(cos θz + sin θJz), cos θz + sin θJz〉 = 〈Ajz, z〉.

Using
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〈A0e
iθz, eiθz〉2 + 〈A1e

iθz, eiθz〉2 = 〈A0z, z〉2 + 〈A1z, z〉2,

we verify the S1-invariance of F , i.e., F (eiθz) = F (z) for any eiθ ∈ S1.
To compute ΩF , first we observe that

1
4
DF = |z|2z − 2

m∑
p=0

〈Apz, z〉Apz,

1
4
D2F = |z|2I + 2zzt − 2

m∑
p=0

〈Apz, z〉Ap − 4
m∑

p=0

ApzztAp.

Then by definition,

1
64

ΩF =
(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
· J ·

(
I + 2zzt − 2

m∑
p=0

〈Apz, z〉Ap − 4
m∑

p=0

ApzztAp

)

· J ·
(

z − 2
m∑

p=0

〈Apz, z〉Apz

)
,

which will be calculated by 4 parts as follows:

( i )
(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
· J · I · J ·

(
z − 2

m∑
q=0

〈Aqz, z〉Aqz

)

=
1
4
DF t · J · I · J · 1

4
DF = − 1

16
|DF |2 = −1;

( ii )
(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
· J · 2zzt · J ·

(
z − 2

m∑
q=0

〈Aqz, z〉Aqz

)

= 8
m∑

p,q=0

〈Apz, z〉〈Aqz, z〉ztApJz · ztJAqz

= −8
( 1∑

p=0

〈Apz, z〉〈JApz, z〉
)2

= 0;

(iii)
(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
· J ·

(
− 2

m∑
q=0

〈Aqz, z〉Aq

)
· J ·

(
z − 2

m∑

j=0

〈Ajz, z〉Ajz

)

= −2
m∑

q=0

〈Aqz, z〉
(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
· JAqJ ·

(
z − 2

m∑

j=0

〈Ajz, z〉Ajz

)

= −2
1∑

q=0

〈Aqz, z〉
{(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
·Aq ·

(
z − 2

m∑

j=0

〈Ajz, z〉Ajz

)}

+2
m∑

q=2

〈Aqz, z〉
{(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
·Aq ·

(
z − 2

m∑

j=0

〈Ajz, z〉Ajz

)}
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= 6
(〈A0z, z〉2 + 〈A1z, z〉2)− 6

m∑
p=2

〈Apz, z〉2

−8
1∑

q=0

〈Aqz, z〉
(
〈Aqz, z〉3 +

∑

p6=q

〈Apz, z〉2〈Aqz, z〉
)

+8
m∑

q=2

〈Aqz, z〉
(
〈Aqz, z〉3 +

∑

p6=q

〈Apz, z〉2〈Aqz, z〉
)

= −3(1− F ) + 12
(〈A0z, z〉2 + 〈A1z, z〉2) + 2(1− F )2

−8
(〈A0z, z〉2 + 〈A1z, z〉2)(1− F );

(iv)
(

zt − 2
m∑

p=0

〈Apz, z〉ztAp

)
· J ·

(
− 4

m∑
q=0

AqzztAq

)
· J ·

(
z − 2

m∑

j=0

〈Ajz, z〉Ajz

)

= −4
1∑

q=0

ztJAqz · ztAqJz + 16
∑
p,q

〈Apz, z〉ztApJAqz · ztAqJz

−16
∑

p,q,j

〈Apz, z〉〈Ajz, z〉ztApJAqz · ztAqJAjz

= 4
(〈A0z, z〉2 + 〈A1z, z〉2) + 16

1∑
p,q=0

〈Apz, z〉〈Apz, JAqz〉〈AqJz, z〉

+16
m∑

q=0

( m∑
p=0

〈Apz, z〉〈Aqz, JApz〉
)2

= 4
(〈A0z, z〉2 + 〈A1z, z〉2) + 16

m∑
q=2

( m∑
p=2

〈Apz, z〉〈Aqz, JApz〉
)2

.

Finally, taking sum of (i), (ii), (iii), (iv), we complete the proof of the proposition.
¤

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 (i). We prefer to prove this assertion by making use of
several known results although there might be some direct approaches. The notations
remain the same as before.

First, a result of Park [Par89] asserts that: If M2N = π−1(M̃2N−1) is the inverse
image of an isoparametric hypersurface M̃2N−1 in CPN , then the number g of distinct
principal curvatures of the isoparametric hypersurface M in S2N+1 must be 2, 4 or 6;
and if g = 6, then the two multiplicities satisfy m1 = m2 = 1 and thus N = 3 in this
case. So when N = 2n is even, g must be only 2, or 4. Hence it suffices to analyze these
two cases for our aim.

When g = 2, Proposition 2.1 in [Xia00] stated that M̃ has 2 or 3 constant principal
curvatures, thus is totally isoparametric and homogeneous by equivalence sequence (14).

When g = 4, firstly, according to Abresch [Abr83], we can show that either one
of the multiplicities {m1,m2} equals 1, or m1 = m2 = 2. In fact, since dimR CP 2n =
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4n, it follows that the corresponding isoparametric hypersurface in the sphere is of 4n
dimension, that is, m1 + m2 = 2n. Hence in the main theorem of [Abr83], the case 4A

is excluded; the case 4B1 occurs only when min{m1,m2} = 1; and the case 4B2 occurs
only when m1 = m2 = 2, as we claimed.

In the first case, i.e., min{m1,m2} = 1, by virtue of [Tak76], the isoparametric
hypersurface M4n in the sphere S4n+1 must be homogeneous, and corresponds to the
isotropy representation of the rank two symmetric space W := SO(2n + 3)/S(O(2) ×
O(2n + 1)), where 2n = m1 + m2. Let o(2n + 3) = k ⊕ p be the Cartan decomposition,
where k is the Lie algebra of O(2) × O(2n + 1). Then the isoparametric hypersurface
M4n is congruent to a principal orbit of the adjoint action of S(O(2) × O(2n + 1)) on
the vector space p ∼= R4n+2. In this representation, it is not difficult to show that there
is a unique complex structure (up to a sign, the standard complex structure) on p such
that M4n is S1-invariant with respect to this complex structure, as [Xia00] claimed.
This property helps us deduce that the number l of non-horizontal principal eigenspaces
of M4n equals 2 identically. Hence by the equivalence sequence (14), M̃4n−1 is totally
isoparametric and homogeneous.

At last, we need to prove that the second case, i.e., m1 = m2 = 2, is impossible.
Without loss of generality, we can assume that M4n is compact. Recall that a topo-
logical theorem of Münzner [Mün80] determines the cohomology rings of a compact
isoparametric hypersurface in a sphere. By applying it, we have Hq(M4n,Z2) = 0 for
any odd number q, H0(M4n,Z2) = H4n(M4n,Z2) = Z2, and H2k(M4n,Z2) = Z2 ⊕ Z2,
for k = 1, . . . , 2n−1. It follows from Poincaré duality that the Euler characteristic χ(M)
of M4n is equal to 2g = 8 > 0. On the other hand, since M4n is the inverse image of
a hypersurface M̃4n−1 in CP 2n, Jx (x is the position vector of M) is a globally defined
tangent vector field without singularities on M and thus by the Hopf index theorem, the
Euler characteristic χ(M) = 0, a contradiction which completes the proof of Theorem
1.1(i). ¤

Proof of Theorem 1.1 (ii). By Proposition 3.1 and Corollary 3.1, it suffices
to construct a required S1-invariant isoparametric hypersurface M (resp. isoparametric
polynomial F ) in S4n+3 (resp. on R4n+4) such that the function α is non-constant on
M . More specifically, because of Proposition 3.3 we will look for symmetric Clifford
systems {A0, A1, . . . , Am} on R4n+4 in the form (32), such that the function ΩF for
the corresponding OT-FKM-type isoparametric polynomial F defined by (31), could
be not only computed explicitly by formula (34), but also non-constant on some level
hypersurface M of F |S4n+3 . Towards the aim, the first non-trivial case is when m = 2,
where we successfully find an example for each n ≥ 1.

Note that when m = 2, the formula (34) can be deduced to

ΩF = 64
(− 2F 2 − F + 2− 8(1 + F )〈A2z, z〉2). (35)

Let E2 =
(

0 −In+1
In+1 0

)
be the sub-matrix of A2 in (32) with 2r = 4n + 4. Then it is

easily verified that {A0, A1, A2} is now a symmetric Clifford system.
Now for z = (xt, yt)t = (x1, . . . , x2n+2, y1, . . . , y2n+2)t ∈ R4n+4 (n ≥ 1), the OT-

FKM-type isoparametric polynomial F can be written as
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F (z) = |z|4 − 2
{
(|x|2 − |y|2)2 + 4〈x, y〉2 + 4〈E2x, y〉2}. (36)

Let M = F−1(0)
⋂

S4n+3, and z = (xt, yt)t, ž = (x̌t, y̌t)t be two points in M with
x1 = x̌1 = 1/

√
2, y1 = y2 = y̌n+2 = y̌n+3 = 1/2 and the other coordinates vanishing.

Then it is easily calculated that ΩF (z) = 128 and ΩF (ž) = −128. Equivalently, α is
non-constant on M . Therefore, the isoparametric hypersurface M̃ = π(M) in CP 2n+1 is
not 3-isoparametric, as desired. ¤

It is worthy remarking that the isoparametric polynomial F in (36) also induces a
homogeneous hypersurface in CP 2n+1 under some other complex structure, by compar-
ing Takagi’s ([Tak73]) classification. Next, we calculate the function α (or equivalently
ΩF defined in (29)) explicitly for the inhomogeneous example of Ozeki–Takeuchi [OT75]
with g = 4 and multiplicities (m1,m2) = (3, 4r) under two different complex structures.
Both functions turn out non-constant on a level hypersurface in the sphere. As a re-
sult, these two induced isoparametric hypersurfaces in CP 4r+3 are not 3-isoparametric.
From another point of view, by comparing Takagi’s classification, we know that these
two induced isoparametric hypersurfaces in CP 4r+3 are not homogeneous, and hence by
Theorem 1.2 they are not 3-isoparametric.

More Examples. First we decompose the quaternionic space H2r+2 ∼= R8r+8

(r ≥ 1) as H2r+2 = (H×Hr)× (H×Hr), i.e., for

z = (x1, . . . , x4r+4, y1, . . . , y4r+4)t ∈ R8r+8 ∼= H2r+2,

we write z = (ut, vt)t, where u = (u0, û) ∈ H×Hr, v = (v0, v̂) ∈ H×Hr, û = (u1, . . . , ur),
v̂ = (v1, . . . , vr), and

ui = x4i+1 + x4i+2i + x4i+3j + x4i+4k ∈ H ∼= R4,

vi = y4i+1 + y4i+2i + y4i+3j + y4i+4k ∈ H ∼= R4.

Then the isoparametric polynomial F of the inhomogeneous example of Ozeki–Takeuchi
[OT75] with g = 4 and multiplicities (m1,m2) = (3, 4r) is defined by

F (z) = |z|4 − 2
{
4
(|u · v̄t|2 − 〈u, v〉2) +

(|û|2 − |v̂|2 + 2〈u0, v0〉
)2}

, (37)

where the canonical involution v̄i = y4i+1−y4i+2i−y4i+3j−y4i+4k and the quaternionic
multiplication in H are used.

Let

A0 =




0 I4

I4r 0
I4 0

0 −I4r


 , Ap =




Dp

. . .
Dp−Dp

. . .
−Dp




for p = 1, 2, 3,
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where D1 =
(

0 −1
1 0

0 −1
1 0

)
, D2 =

( −1 0
0 1

1 0
0 −1

)
, and D3 =

(
0 −1
−1 0

0 1
1 0

)
. Then a straight-

forward calculation shows that {A0, A1, A2, A3} is a symmetric Clifford system (though
not in the form (32)) and the polynomial F defined by (37) can also be expressed as the
OT-FKM-type isoparametric polynomial:

F = |z|4 − 2
3∑

p=0

〈Apz, z〉2. (38)

In the following, we will calculate the function α under two different complex struc-
tures:

(i) Let J be the complex structure on R8r+8 ∼= H2r+2 as the orthogonal transforma-
tion induced by the right multiplication of i whose matrix representation is

J =




D0

D0

. . .
D0




where D0 =




0 −1
1 0

0 1
−1 0


 . (39)

Evidently, F is S1-invariant under this complex structure and f = F |S8r+7 thus induces
an isoparametric function f̃ on CP 4r+3 through the corresponding Hopf fibration.

By direct calculations , we have the following relations

D0Dp = DpD0, JAp = ApJ, for p = 0, 1, 2, 3,

D1D2 = −D2D1 = D3, D2D3 = −D3D2 = D1, D3D1 = −D1D3 = D2.

Therefore,

(JAp)t = −JAp, (ApJAq)t = ApJAq, for p, q = 0, 1, 2, 3, p 6= q,

which help us deduce the formula for ΩF (defined in (29)) under J in (39) as

ΩF = 64
{

2F 2 − F − 2 + 16
3∑

q=0

( 3∑
p=0

〈Apz, z〉〈JAqz, Apz〉
)2}

.

(ii) Let J ′ be another complex structure on R8r+8 ∼= H2r+2 as the orthogonal trans-
formation induced by the left multiplication of i whose matrix representation is

J ′ =




D1

D1

. . .
D1




, where D1 was given before. (40)
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Similarly, F is also S1-invariant under J ′ and thus induces an isoparametric function f̃ ′

on CP 4r+3 through the corresponding Hopf fibration.
Again, by direct calculations, we have the following relations

J ′A0 = A0J
′, J ′A1 = A1J

′

J ′A2 = −A2J
′ = A3, J ′A3 = −A3J

′ = −A2,

and hence ApJ
′Aq is skew-symmetric for almost all p 6= q except for A0J

′A1, A1J
′A0,

A2J
′A3 = −I, A3J

′A2 = I which are symmetric. Then we can deduce the formula for
ΩF (defined in (29)) under J ′ in (40) as

1
64

ΩF = 2F 2 − F − 2 + 8(1 + F )
(〈A2z, z〉2 + 〈A3z, z〉2)

+ 16
(〈A0z, z〉2 + 〈A1z, z〉2)〈A0J

′A1z, z〉2.

In conclusion, let M = F−1(0)
⋂

S8r+7, and z = (xt, yt)t, ž = (x̌t, y̌t)t be two points
in M with x1 = (1/2)

√
2 +

√
2, y1 = y̌5 = (1/2)

√
2−√2, x̌1 = y̌1 = (1/2

√
2)

√
2 +

√
2,

and the other coordinates vanishing. Then it is easily calculated that, under both complex
structures J , J ′ defined in (i), (ii) above, ΩF (z) = 128 and ΩF (ž) = −128. Therefore, α

is non-constant on M under both J and J ′. This means that the isoparametric hyper-
surfaces M̃ = π(M), M̃ ′ = π′(M) in CP 4r+3 are not 3-isoparametric, where π and π′ are
the corresponding Hopf fibrations S8r+7 −→ CP 4r+3 induced by J and J ′, respectively.

To conclude this section, we come to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that M̃2n−1 is an isoparametric hypersurface
in CPn of constant 3rd mean curvature H3 with unit normal vector field ν̃. Then
M2n = π−1(M̃2n−1) is an isoparametric hypersurface in S2n+1. As we pointed out
before, it has g = 2, 4, or 6 distinct constant principal curvatures λ1 > · · · > λg. Let Tλi

be the principal distribution on M corresponding to λi and thus TM = Tλ1 ⊕ · · · ⊕ Tλg
.

By Corollary 3.1, α := 〈SνJν, Jν〉 is now constant on M . We will use the same notations
as those at the beginning of this section.

Let x be the position vector field of M . Then Jx is the vertical vector field tangent
to the S1-fibres of the Hopf fibration. Represent Jx as

Jx = φ1ε1 + · · ·+ φgεg, (41)

where εi ∈ Tλi is a unit vector and φi ≥ 0 is the length of the component of Jx in Tλi

for i = 1, . . . , g. It follows from (26) and (41) that

SνJx = λ1φ1ε1 + · · ·+ λgφgεg = −Jν, (42)

which together with the fact that Jx, Jν are orthogonal unit vectors implies

φ2
1 + · · ·+ φ2

g = 1, λ1φ
2
1 + · · ·+ λgφ

2
g = 0, λ2

1φ
2
1 + · · ·+ λ2

gφ
2
g = 1. (43)
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Similarly, by (42) we have

α = 〈SνJν, Jν〉 = λ3
1φ

2
1 + · · ·+ λ3

gφ
2
g. (44)

Note that the number l of non-horizontal eigenspaces of Sν equals the number of non-zero
φi’s. By the equivalence sequence (14), it suffices to prove l ≡ const case by case with
respect to g = 2, 4, or 6.

(i) When g = 2, it follows immediately from (43) that

φ1 =
√ −λ2

λ1 − λ2
, φ2 =

√
λ1

λ1 − λ2
, λ1 = − 1

λ2
> 0,

which imply α = λ1 + λ2 ≡ const, l ≡ 2 and thus M̃ is homogeneous by (14) (see also
[Xia00]).

(ii) When g = 4, it follows immediately from (43) and (44) that




φ2
1

φ2
2

φ2
3

φ2
4


 =




1 1 1 1
λ1 λ2 λ3 λ4

λ2
1 λ2

2 λ2
3 λ2

4

λ3
1 λ3

2 λ3
3 λ3

4




−1 


1
0
1
α


 ,

which implies that l ≡ const provided α ≡ const and thus M̃ is homogeneous by (14).
(iii) When g = 6, as mentioned before, [Par89] proved that m1 = m2 = m must

be 1. We need only to prove that α is always non-constant in this case. By virtue of
[Xia00], for any c1, c2, c3 satisfying c2

1 + c2
2 + c2

3 = 1, there is a point x ∈ M such that

φi(x)2 =
c2
i

1 + λ2
i

, φi+3(x)2 =
c2
i

1 + λ2
i+3

, for i = 1, 2, 3.

Then

α(x) = (λ1 + λ4)c2
1 + (λ2 + λ5)c2

2 + (λ3 + λ6)c2
3.

Now let c1 = 1, c2 = c3 = 0 and x′ ∈ M be the corresponding point. Then α(x′) =
λ1 +λ4. Similarly, let c1 = c3 = 0, c2 = 1 and x′′ ∈ M be the corresponding point. Then
α(x′′) = λ2 + λ5. Therefore, α is always non-constant on M as we required.

The proof is now complete. ¤

Proof of Corollary 1.1. Assume that M̃ is an inhomogeneous hypersurface
in CPn with constant 1st, 2nd, and 3rd mean curvatures H1,H2,H3. Then by equalities
(28), the inverse image M = π−1(M̃) in S2n+1 under the Hopf fibration has constant 1st
mean curvature H1 and constant 2nd mean curvature H2− 1. It suffices to show that M

is not an isoparametric hypersurface. We will prove this by contradiction.
Suppose M is isoparametric. It follows from Proposition 3.1 that M̃ is also an
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isoparametric hypersurface in CPn. Since M̃ has constant 3rd mean curvature by as-
sumption, it is homogeneous by Theorem 1.2, which contradicts the assumption that M̃

is an inhomogeneous hypersurface. ¤

4. Isoparametric hypersurfaces in rank one symmetric spaces.

In this section, by using the Riccati equation we first derive some “weakly” induc-
tive formulae for Qk := ρk(S(t)) on parallel hypersurfaces Mt in a general Riemannian
manifold in the spirit of Theorem 2.1. Next, by using further symmetries of the Jacobi
operator on a complex space form, more generally, on a locally rank one symmetric space,
we will prove Theorem 1.3 and Theorem 1.4.

For our purpose, let {Mt : t ∈ (−ε, ε)} be a family of parallel hypersurfaces in a
Riemannian manifold Nn+1, νt the unit normal vector field on Mt, S(t) = Sνt

the shape
operator of Mt, and R(t) = Kνt the normal Jacobi operator (see definition in Remark
1.2) on Mt. It is convenient to denote the covariant derivatives of the operators S(t),
R(t) along normal geodesics of Mt by S′(t) := ∇νt

S(t), R′(t) := ∇νt
R(t), respectively.

In this way, the well known Riccati equation can be given by (cf. [Gra04]):

S′(t) = S(t)2 + R(t). (45)

By taking trace with respect to a parallel orthonormal frame {E1, . . . , En} along a normal
geodesic of Mt, we get the Riccati equation for the mean curvature H(t) of Mt:

H ′(t) = ‖S(t)‖2 + Ric(t), (46)

where Ric(t) = Ric(νt, νt) denotes the Ricci curvature of N in the normal direction of
Mt.

Proposition 4.1. A 1-isoparametric hypersurface in an Einstein manifold Nn+1

must be 2-isoparametric.

Proof. Observe that H(t) is now a function depending only on t, and hence
H ′(t) is constant on Mt. Since Ric(t) ≡ ρ the Einstein constant, the conclusion follows
immediately from the equality (46), Lemma 2.1 and Newton’s identities (8). ¤

For i ≥ 0, j ≥ 0, t ∈ (−ε, ε), we introduce a function Γij(t) on Mt by

Γij(t) := tr
(
S(t)iR(t)j

)
. (47)

Clearly, Γi0(t) = tr(S(t)i) = ρi(S(t)) =: Qi(t). As discussed before, applying Lemma
2.1 and Newton’s identities (8), once we find some inductive formulae for the Qi’s on
Mt as those in Theorem 2.1, we would establish similar rigidity results with Cartan’s
rigidity result (13), Theorem 1.1 (i) and Theorem 1.2. Towards this aim, we simply take
a derivative of Qi with respect to t to obtain:
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Lemma 4.1. With notations as above,

Qi+1(t) =
1
i
Q′i(t)− Γi−1,1(t). (48)

Proof. It follows directly from the definitions and the Riccati equation (45) that

Q′i(t) = tr
(∇νtS(t)i

)
=

i−1∑

j=0

tr
(
S(t)j

(∇νtS(t)
)
S(t)i−1−j

)

= i tr
(
S(t)i−1S′(t)

)
= i

(
tr(S(t)i+1) + tr(S(t)i−1R(t))

)

= i
(
Qi+1(t) + Γi−1,1(t)

)

as required. ¤

However, the inductive formula (48) does not work effectively unless the functions
Γi−1,1(t) are constant on Mt. So we need to investigate some inductive properties of the
functions Γi−1,1(t) as the following.

Lemma 4.2. With notations as above,

Γi+1,1(t) =
1
i

{
Γ′i1(t)−

i−1∑

j=0

tr
(
S(t)jR(t)S(t)i−1−jR(t)

)− tr
(
S(t)iR′(t)

)}
. (49)

Proof. Similarly, it follows directly from the definitions and the Riccati equation
(45) that

Γ′i1(t) =
i−1∑

j=0

tr
(
S(t)jS′(t)S(t)i−1−jR(t)

)
+ tr

(
S(t)iR′(t)

)

= i Γi+1,1(t) +
i−1∑

j=0

tr
(
S(t)jR(t)S(t)i−1−jR(t)

)
+ tr

(
S(t)iR′(t)

)
. ¤

In order to make these inductive formulae work effectively, we put some restrictions
on the ambient manifold so as to control the last two terms on the right side of (49). To
be more precise, we have the following result stated in Remark 1.2.

Corollary 4.1. Let Nn+1 be a locally symmetric space with the property that, the
first and second elementary symmetric polynomials on eigenvalues of its Jacobi operator
Kξ are constant and independent of the choice of the unit tangent vector ξ ∈ T N . Then
any 1-isoparametric hypersurface in N must be 2-isoparametric, additionally, any 3-
isoparametric hypersurface in N must be 4-isoparametric.

Proof. The first assertion is a consequence of Proposition 4.1, since N is now an
Einstein manifold. To prove the second assertion, it suffices to show that
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Q4(t) = Γ40(t) = tr(S(t)4)

is constant on each nearby parallel hypersurface Mt of a 3-isoparametric hypersurface M

in N for t ∈ (−ε, ε). Since M is 3-isoparametric, Q1(t), Q2(t) and Q3(t) are all constant
on Mt and thus smooth functions depending only on t. Then by (48),

Γ11(t) =
1
2
Q′2(t)−Q3(t)

is a smooth function depending only on t. Consequently, by (49),

Γ21(t) = Γ′11(t)− tr(R(t)2)

is a smooth function depending only on t, since by assumptions we have

tr(R(t)2) ≡ const and R′(t) ≡ 0.

Again by (48),

Q4(t) =
1
3
Q′3(t)− Γ21(t)

is a smooth function depending only on t, which completes the proof. ¤

As mentioned in Remark 1.2, the restrictions we put in this corollary is not so strong
that, there exist many locally symmetric spaces with rank greater than one satisfying
these conditions. Now we will be concerned with the locally rank one symmetric spaces
Nn+1. Obviously, the Jacobi operator Kξ has constant eigenvalues independent of the
choice of the unit tangent vector ξ ∈ T N . This property will be useful in the establish-
ment of further rigidity results. To warm up before the proof of the theorems, we deal
with the case when Kξ has only one constant eigenvalue c besides the trivial 0-eigenvalue,
i.e., when Nn+1 is a real space form with constant sectional curvature c. Now, we derive
Cartan’s rigidity result (13) as a simple application of the inductive formulae (48)–(49).

Proof of (13). With notations as before, R(t) ≡ cI, Γi1(t) = cQi(t) and R′(t) ≡
0 under any orthonormal frame of Mt. Then either of (48) and (49) can be deduced to

Qi+1(t) =
1
i
Q′i(t)− cQi−1(t),

which immediately implies (13) by induction (note that the preceding formula differs
from that in Theorem 2.1 as the parameter t has different meanings). ¤

Proof of Theorem 1.3. Obviously we need only to consider the case when
Nn+1 is a locally rank one symmetric space with non-constant sectional curvatures. In
this case the Jacobi operator Kξ has two distinct non-zero constant eigenvalues κ1, κ2 in-
dependent of ξ. Let Mn be a 3-isoparametric hypersurface in Nn+1 and Mt (t ∈ (−ε, ε))
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nearby parallel hypersurfaces with unit normal vector fields νt. Then there exists a local
orthonormal frame {e1(t), . . . , en(t)} of Mt parallel along normal geodesics of M , i.e.,
∇νtei(t) = 0, such that under this frame,

R(t) = Kνt
|TMt

= diag(κ1In−m, κ2Im), (50)

where m = 1, 3, or 7 corresponding to the case when N is locally a complex space form,
a quaternionic space form, or an octonionic space form, respectively. Therefore, as in the
proof of Corollary 4.1, Q1(t), Q2(t), Q3(t),Γ11(t),Γ21(t), Q4(t) are all smooth functions
depending only on t. Decompose S(t)i into the same blocks as R(t) above for i ≥ 0,
namely,

S(t)i =

(
Ai Bi

Bt
i Ci

)
, A0 = In−m, C0 = Im, B0 = 0, (51)

where Ai, Ci are symmetric matrices of order n−m and m, respectively. These arguments
yield

Qi(t) = tr(Ai) + tr(Ci), Γij(t) = κj
1 tr(Ai) + κj

2 tr(Ci). (52)

Notice that κ1, κ2 are two distinct constants. It follows that if for some i, j ≥ 1,
Qi(t), Γij(t) are smooth functions depending only on t, then by (52), tr(Ai), tr(Ci)
and hence Γik(t) are also smooth functions depending only on t for any k ≥ 1. Now
since Q1(t), Q2(t),Γ11(t),Γ21(t) are such functions, Γ1k(t), Γ2k(t) are smooth functions
depending only on t for any k ≥ 1. Then by (48), (49) again,

Γ31(t) =
1
2
Γ′21(t)− Γ12(t), Q5(t) =

1
4
Q′4(t)− Γ31(t),

are smooth functions depending only on t, which means that M is 5-isoparametric. It
completes the proof of the first part of the theorem.

Now assume Nn+1 is locally a complex space form. Then m = 1 in the diagonal-
ization (50) of R(t), and Ci in the block decomposition (51) of S(t)i is a real number
(function) for each i ≥ 1. To prove the second part of the theorem, i.e., a 3-isoparametric
hypersurface M in Nn+1 must be totally isoparametric, it suffices to prove the following:

Lemma 4.3. With notations and assumptions as above. If for some i ≥ 1,
Q1(t), . . . , Qi+2(t), Γ11(t), . . . ,Γi1(t) are smooth functions depending only on t, then so
are Qi+3(t) and Γi+1,1(t).

Since then by the inductive formula (48), the assumption that M is 3-isoparametric
will imply Q1(t), Q2(t), Q3(t) and Γ11(t) are smooth functions depending only on t. So
by this lemma we can show inductively that Γk1(t) and Qk(t) are smooth functions
depending only on t for each k ≥ 1. Therefore, M is totally isoparametric as required.

Proof of Lemma 4.3. Under the assumptions, it follows from (52) that
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tr(A1), . . . , tr(Ai), C1, . . . , Ci are smooth functions depending only on t. Note that
S(t)jS(t)i−1−j = S(t)i−1 for each 0 ≤ j ≤ i − 1. Substituting this into the block
decomposition (51), we get

AjAi−1−j + BjB
t
i−1−j = Ai−1, CjCi−1−j + Bt

jBi−1−j = Ci−1.

Hence,

tr(BjB
t
i−1−j) = tr(Bt

jBi−1−j) = Ci−1 − CjCi−1−j

is a smooth function depending only on t, and so is

tr(AjAi−1−j) = tr(Ai−1)− tr(BjB
t
i−1−j).

On the other hand, a direct calculation shows that for each 0 ≤ j ≤ i− 1,

tr
(
S(t)jR(t)S(t)i−1−jR(t)

)

= κ2
1 tr(AjAi−1−j) + 2κ1κ2 tr(BjB

t
i−1−j) + κ2

2 CjCi−1−j

is then a smooth function depending only on t. Therefore, by (49),

Γi+1,1(t) =
1
i

{
Γ′i1(t)−

i−1∑

j=0

tr
(
S(t)jR(t)S(t)i−1−jR(t)

)}

is a smooth function depending only on t, and so is, by (48),

Qi+3(t) =
1

i + 2
Q′i+2(t)− Γi+1,1(t). ¤

The proof of Theorem 1.3 is now complete. ¤

Proof of Theorem 1.4. Use the same notations as before. Let Mn be a
curvature-adapted hypersurface in a locally rank one symmetric space Nn+1 of non-
constant sectional curvatures. Denote by Mt, t ∈ (−ε, ε) nearby parallel hypersurfaces of
M0 = M . Evidently, each Mt is curvature-adapted and the principal orthonormal eigen-
vectors {ei(t)|i = 1, . . . , n} of Mt can be chosen to be parallel along normal geodesics
such that under this frame, the normal Jacobi operator R(t) can be diagonalized as in
(50), and the shape operator S(t) can be diagonalized as

S(t) = diag(µ1(t), . . . , µn(t)),

where µi(t)’s are principal curvature functions of Mt (cf. [Gra04]). Moreover,

S′(t) = diag(µ′1(t), . . . , µ
′
n(t)),
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and thus the Riccati equation (45) can be written as

µ′i(t) = µi(t)2 + κi, for i = 1, . . . , n, (53)

where κi = κ1 for i ≤ n − m and κi = κ2 for i > n − m. Therefore, since κi’s are
constant, the principal curvatures µi(t)’s of Mt, t ∈ (−ε, ε), are uniquely determined by
initial values µi(0)’s, the principal curvatures of M . So when µi(0)’s are constant on M ,
µi(t)’s are constant on Mt, which completes the proof of the first part (i).

As for the second part (ii), the assumption that M is 1-isoparametric implies that
Q1(t) =

∑n
i=1 µi(t) is a smooth function depending only on t. Introduce two functions

by

Φi(t) :=
n−m∑
p=1

µp(t)i, Ψi(t) :=
n∑

p=n−m+1

µp(t)i.

Then we have

Qi(t) = Φi(t) + Ψi(t), Γi1(t) = κ1 · Φi(t) + κ2 ·Ψi(t), (54)

and by (53),

Φ′i(t) = i(Φi+1(t) + κ1Φi−1(t)), Ψ′i(t) = i(Ψi+1(t) + κ2Ψi−1(t)), (55)

and meanwhile, formula (48) can be rewritten as

1
i
Q′i(t) = Qi+1(t) + κ1Qi−1(t) + (κ2 − κ1)Ψi−1(t). (56)

Taking the k-th derivative of Q1(t) with respective to t by (55), (56) inductively, we
obtain

1
k!

Q
(k)
1 (t) = Qk+1(t) +

k−1∑

j=0

(
ckjQj(t) + dkjΨj(t)

)
, (57)

where ckj , dkj are some constants depending only on the indices and κ1, κ2. As Q1(t)
is a smooth function depending only on t, so is Q

(k)
1 (t), i.e., Q

(k)
1 (t) is constant on Mt

for each k ≥ 0. Fixing t ∈ (−ε, ε) in (57), then it follows that the principal curvatures
µ1(t), . . . , µn(t) of Mt are solutions of the algebraic equations

Pk+1(x1, . . . , xn) := ρk+1(x1, . . . , xn) + P̂k(x1, . . . , xn) = 0, for k = 0, . . . , n− 1, (58)

where ρj(x1, . . . , xn) :=
∑n

i=1 xj
i is the j-th power sum over the variables (x1, . . . , xn) as

in (7), while
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P̂k(x1, . . . , xn) :=
k−1∑

j=0

(
ckj ρj(x1, . . . , xn) + dkj ρj(xn−m+1, . . . , xn)

)− 1
k!

Q
(k)
1 (t)

is a polynomial of degree less than k with constant coefficients for k ≥ 1 and P̂0 := −Q1(t)
is a constant.

Finally, the case n ≤ 2 is not possible, since Nn+1 is a locally rank one symmetric
space of non-constant sectional curvature. For n ≥ 3, we can not derive directly from (56)
that Qi(t)’s or µi(t)’s are constant on Mt. However, making use of the following lemma
and (58), we know that (µ1(t), . . . , µn(t)) belongs to a finite subset of Cn and thus µi(t)’s
are constant on Mt since Mt is connected. It means that M is totally isoparametric.

The proof is now complete. ¤

Now, we have to state explicitly the lemma on algebraic geometry used above.

Lemma 4.4. For each n ≥ 1, define polynomials Pk ∈ C[x1, . . . , xn] by

Pk := ρk(x1, . . . , xn) + P̃k−1(x1, . . . , xn), for k = 1, . . . , n,

where ρk is the k-th power sum polynomial as before, P̃k−1 is an arbitrary polynomial
of degree less than k. Then P1, . . . , Pn form a regular sequence in C[x1, . . . , xn]. Con-
sequently, the dimension of each variety Vk in Cn defined by P1 = · · · = Pk = 0 is less
than or equal to n− k for k = 1, . . . , n. In particular, Vn is a finite subset of Cn.

Proof. First recall (cf. [Eis95], [Mat80]) that a sequence r1, . . . , rk in a commu-
tative ring R with identity is called a regular sequence if (1) the ideal (r1, . . . , rk) 6= R;
(2) r1 is not a zero divisor in R; and (3) ri+1 is not a zero divisor in the quotient ring
R/(r1, . . . , ri) for i = 1, . . . , k − 1.

Now we will work on the polynomial ring R = C[x1, . . . , xn]. Obviously, it is a
Cohen-Macaulay ring, possessing the property that dim(R/(P1, . . . , Pk)) = n − k for a
regular sequence P1, . . . , Pk in R. Meanwhile, we know that dim(Vk) = dim(R/I(Vk)),
where I(Vk) ⊃ (P1, . . . , Pk) is the ideal of the variety Vk. Therefore, when P1, . . . , Pn

form a regular sequence, dim(Vk) ≤ n − k for k = 1, . . . , n. In particular, dim(Vn) = 0.
The last assertion is due to the facts that every variety in Cn can be expressed as a union
of finite irreducible varieties and that a zero-dimensional irreducible variety in Cn is just
a point. To complete the proof of the lemma, it suffices to show that the polynomials
P1, . . . , Pn form a regular sequence in R.

Obviously, P1 forms a regular sequence in R. Suppose that P1, . . . , Pn do not form
a regular sequence, there exists some k with 1 ≤ k < n such that Pk+1 is a zero divisor
modulo (P1, . . . , Pk) in R. Then we may choose a relation of minimal degree of the form

f1P1 + · · ·+ fk+1Pk+1 = 0, (59)

where f1, . . . , fk+1 are polynomials of minimal degrees modulo (P1, . . . , Pk). Denote by
D(> 0) the maximal degree of fiPi’s. Let fi1Pi1 , . . . , firPir be those of maximal degree D

for some 1 ≤ i1 < · · · < ir ≤ k +1. Then one can pick out the homogeneous components
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f̃i1ρi1 , . . . , f̃ir
ρir

of maximal degree from them in equation (59) such that

f̃i1ρi1 + · · ·+ f̃ir
ρir

= 0, (60)

where f̃i1 , . . . , f̃ir
are the homogeneous components of maximal degrees of fi1 , . . . , fir

,
respectively. Recall a well known fact that the power sum polynomials ρ1, . . . , ρn form a
regular sequence in R ([Smi95]). Then by (60), r > 1 and f̃ir

∈ (ρ1, . . . , ρir−1), which
imply that there exist homogeneous polynomials a1, . . . , air−1 such that

f̃ir
= a1ρ1 + · · ·+ air−1ρir−1,

and therefore,

fir
= a1P1 + · · ·+ air−1Pir−1 + f̂ir

≡ f̂ir
, mod (P1, . . . , Pk),

where f̂ir
is a polynomial of degree less than D − ir = deg(fir

), which contradicts the
original choice of minimal relation (59).

The proof is now complete. ¤

We conclude this section with a brief proof of Remark 1.4.

Proof of Remark 1.4. Suppose that the ambient manifold Nn+1 is an Osser-
man manifold. Its Jacobi operator Kξ, by definition, has constant eigenvalues indepen-
dent of ξ and points all over N . This property guarantees that the normal Jacobi operator
R(t) = Kνt

of the parallel hypersurface Mt in Nn+1 has constant eigenvalues κ1, . . . , κn

for any t ∈ (−ε, ε), though the covariant derivative R′(t) := ∇νtR(t) along normal
direction νt might not vanish, different from the case in a locally rank one symmetric
space. Further, we suppose that each Mt in N is curvature-adapted, that is, the shape
operator S(t) and the normal Jacobi operator R(t) are simultaneously diagonalizable,
which is automatically satisfied for a curvature-adapted hypersurface in a locally sym-
metric space. Therefore, the assertion in Remark 1.4 actually does nothing but abandon
the assumption R′(t) = 0 in Theorem 1.4.

Let ε1(t), . . . , εn(t) be a local orthonormal frame of Mt smoothly depending on t

such that they are eigenvectors of R(t) and S(t) at the same time, corresponding to
eigenvalues κ1, . . . , κn and µ1(t), . . . , µn(t), respectively. Then under this frame,

〈S′(t)εi(t), εi(t)〉 = µi(t)2 + κi.

The left side of the preceding equation can be deduced to

〈S′(t)εi(t), εi(t)〉 =
〈∇νt(S(t)εi(t))− S(t)∇νtεi(t), εi(t)

〉

= µ′i(t) +
〈(

µi(t)I − S(t)
) ∇νt

εi(t), εi(t)
〉

= µ′i(t).
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Hence, we still have the Riccati equation (53) in this case:

µ′i(t) = µi(t)2 + κi.

With this equality, we are able to complete the proof of Remark (1.4). For this purpose,
we distinguish two cases. First, if M has constant principal curvatures, it follows directly
from the identity above that M is totally isoparametric; Next, if M is 1-isoparametric,
we can also take the k-th derivative of Q1(t) to obtain a sequence of algebraic equations
Pk = 0, k = 0, 1, . . . , n−1, for (µ1(t), . . . , µn(t)) similar to (58). By means of Lemma 4.4,
we know that µ1(t), . . . , µn(t) are constant on Mt and thus M is totally isoparametric,
as desired. ¤

Acknowledgements. The authors would like to thank Professors Q. S. Chi,
C. K. Peng and G. Thorbergsson for their valuable suggestions and helpful comments
during the preparation of this paper. The authors also thank the referees for their useful
suggestions.

References

[Abr83] U. Abresch, Isoparametric hypersurfaces with four or six distinct principal curvatures, Math.

Ann., 264 (1983), 283–302.

[Ber89] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic

space, J. Reine Angew. Math., 395 (1989), 132–141.

[Ber91] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math., 419

(1991), 9–26.

[Ber10] J. Berndt, A note on hypersurfaces in symmetric spaces, Proceedings of the Fourteenth

International Workshop on Diff. Geom., 14 (2010), 1–11.

[BGN09] M. Brozos-Vázquez, P. Gilkey, and S. Nikčević, Geometric realizations of curvature, Nihon-
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à 9 dimensions, Revista Univ. Tucuman, Serie A, 1 (1940), 5–22.

[CCJ07] T. E. Cecil, Q. S. Chi and G. R. Jensen, Isoparametric hypersurfaces with four principal

curvatures, Ann. Math., 166 (2007), 1–76.

[Cec08] T. E. Cecil, Isoparametric and Dupin Hypersurfaces, SIGMA, 4 (2008), arXiv:0809.1433.

[CGW82] P. Carpenter, A. Gray and T. J. Willmore, The curvature of Einstein symmetric spaces,

Quart. J. Math. Oxford, 33 (1982), 45–64.

[Chi88] Q. S. Chi, A curvature characterization of certain locally rank one symmetric spaces, J. Diff.

Geom., 28 (1988), 187–202.

[Chi11] Q. S. Chi, Isoparametric hypersurfaces with four principal curvatures, II, Nagoya Math. J.,

204 (2011), 1–18.

[CR85] T. E. Cecil and P. T. Ryan, Tight and taut immersions of manifolds, Research Notes in

Math., 107, Pitman, London, 1985.

[DD12] J. C. Dı́az-Ramos and M. Domı́nguez-Vázquez, Inhomogeneous isoparametric hypersurfaces

http://dx.doi.org/10.1007/BF01459125
http://dx.doi.org/10.1007/BF01459125
http://dx.doi.org/10.1515/crll.1989.395.132
http://dx.doi.org/10.1515/crll.1991.419.9
http://dx.doi.org/10.1515/crll.1991.419.9
http://dx.doi.org/10.1090/S0002-9947-07-04305-X
http://dx.doi.org/10.1007/BF02410700
http://dx.doi.org/10.1007/BF01580289
http://dx.doi.org/10.4007/annals.2007.166.1
http://dx.doi.org/10.1093/qmath/33.1.45
http://dx.doi.org/10.1215/00277630-1431813
http://dx.doi.org/10.1215/00277630-1431813


A filtration for isoparametric hypersurfaces 1211

in complex hyperbolic spaces, Math. Z., 271 (2012), 1037–1042.

[DN85] J. Dorfmeister and E. Neher, Isoparametric hypersurfaces, case g = 6, m = 1, Comm.

Algebra, 13 (1985), 2299–2368.

[Eis95] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag,

New York, 1995.

[FKM81] D. Ferus, H. Karcher, and H. F. Münzner, Cliffordalgebren und neue isoparametrische Hy-
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