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Abstract. In this paper maximal commutators and commutators of
maximal functions with functions of bounded mean oscillation are investi-
gated. New pointwise estimates for these operators are proved.

1. Introduction.

Given a locally integrable function f on Rn, the Hardy-Littlewood maximal function
Mf of f is defined by

Mf(x) := sup
Q3x

1
|Q|

∫

Q

|f(y)| dy, (x ∈ Rn),

where the supremum is taken over all cubes Q containing x. The operator M : f → Mf

is called the Hardy-Littlewood maximal operator.
For any f ∈ Lloc

1 (Rn) and x ∈ Rn, let M#f be the sharp maximal function of
Fefferman-Stein defined by

M#f(x) := sup
Q3x

1
|Q|

∫

Q

|f(y)− fQ|dy,

where the supremum extends over all cubes containing x, and fQ is the mean value of
f on Q. For a fixed δ ∈ (0, 1), any suitable function g and x ∈ Rn, let M#

δ g(x) :=
[M#(|g|δ)(x)]1/δ and Mδg(x) := [M(|g|δ)(x)]1/δ.

Let f ∈ Lloc
1 (Rn). Then f is said to be in BMO(Rn) if the seminorm given by

‖f‖∗ := sup
Q

1
|Q|

∫

Q

|f(y)− fQ|dy

is finite.
Let T be the Calderón-Zygmund singular integral operator
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Tf(x) := p.v.
∫

Rn

K(x− y)f(y) dy

with kernel K(x) = Ω(x)/|x|n, where Ω is homogeneous of degree zero, infinitely differ-
entiable on the unit sphere Sn−1, and

∫
Sn−1 Ω = 0.

The well-known result of Coifman, Rochberg, and Weiss [6] states that if b ∈
BMO(Rn), then [T, b] defined initially for f ∈ L∞c (Rn), by

[T, b](f) := T (bf)− bT (f), (1.1)

is bounded on Lp(Rn), 1 < p < ∞; conversely, if [Ri, b] is bounded on Lp(Rn) for
every Riesz transform Ri, then b ∈ BMO(Rn). Janson [12] observed that actually
for any singular integral T (with kernel satisfying the above-mentioned conditions) the
boundedness of [T, b] on Lp(Rn) implies b ∈ BMO(Rn).

Unlike the classical theory of singular integral operators, a simple example shows
that [T, b] fails to be of weak-type (1,1) when b ∈ BMO(Rn), and satisfies weak-type
L(log L) inequality (see [16]).

We consider the commutator of the Hardy-Littlewood maximal operator M and a
measurable function b.

Definition 1.1. Given a measurable function b the commutator of the Hardy-
Littlewood maximal operator M and b is defined by

[M, b]f(x) := M(bf)(x)− b(x)Mf(x)

for all x ∈ Rn.

The operator [M, b] was studied by Milman et al. in [15] and [2]. This operator
arises, for example, when one tries to give a meaning to the product of a function in
H1 and a function in BMO (which may not be a locally integrable function, see, for
instance, [4]). Using real interpolation techniques, in [15], Milman and Schonbek proved
the Lp-boundedness of the operator [M, b]. Bastero, Milman and Ruiz [2] proved the
next theorem.

Theorem 1.2. Let 1 < p < ∞. Then the following assertions are equivalent :

( i ) [M, b] is bounded on Lp(Rn).
( ii ) b ∈ BMO(Rn) and b− ∈ L∞(Rn).1

As we know only these two papers are devoted to the problem of boundedness of
the commutator of maximal function in Lebesgue spaces.

In order to investigate [M, b] we start with the consideration of the maximal com-
mutator, which is an easier one.

Definition 1.3. Given a measurable function b the maximal commutator is de-

1Denote by b+(x) = max{b(x), 0} and b−(x) = −min{b(x), 0}, consequently b = b+ − b− and

|b| = b+ + b−.
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fined by

Cb(f)(x) := sup
Q3x

1
|Q|

∫

Q

|b(x)− b(y)||f(y)|dy

for all x ∈ Rn.

This operator plays an important role in the study of commutators of singular inte-
gral operators with BMO symbols (see, for instance, [8], [14], [18], [19]). Garcia-Cuerva
et al. [8] proved the following.

Theorem 1.4. Let 1 < p < ∞. Cb is bounded on Lp(Rn) if and only if b ∈
BMO(Rn).

Cb enjoys weak-type L(log L) estimate.

Theorem 1.5 (see, for instance, [1] and [10]). If b ∈ BMO(Rn), then

|{x ∈ Rn : Cb(f)(x) > λ}| ≤ C

∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
dx. (1.2)

The maximal operator Cb has been studied intensively and there exist plenty of
results about it.

Our results are the following.

Theorem 1.6. Let b ∈ BMO(Rn) such that b− ∈ L∞(Rn). Then there exists a
positive constant C such that

|{x ∈ Rn : |[M, b]f(x)| > λ}|

≤ CC0(1 + log+ C0)
∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
dx, (1.3)

for all f ∈ L(1 + log+ L) and λ > 0, where C0 = ‖b+‖∗ + ‖b−‖∞.

Remark 1.7. Unfortunately, in Theorem 1.6 we have only sufficient part, and we
are not able to prove that the condition b ∈ BMO(Rn) is also necessary for inequality
(1.3) to hold.

Theorem 1.8. The following assertions are equivalent :

( i ) There exists a positive constant C such that for each λ > 0, inequality (1.2) holds
for all f ∈ L(1 + log+ L)(Rn).

( ii ) b ∈ BMO(Rn).

Remark 1.9. The fact that (ii) implies (i) is the statement of Theorem 1.5. We
give another proof for this.

For the proofs of our theorems we prove the following estimate.
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Theorem 1.10. Let b ∈ BMO(Rn) and let 0 < δ < 1. Then, there exists a positive
constant C = Cδ such that

Mδ(Cb(f))(x) ≤ C‖b‖∗M2f(x) (x ∈ Rn) (1.4)

for all f ∈ Lloc
1 (Rn).

This theorem improves the known inequality

M#
δ (Cb(f))(x) . ‖b‖∗M2f(x),

(see, for instance, [11, Lemma 1]). Indeed, since M#
δ . Mδ,

M#
δ (Cb(f))(x) . Mδ(Cb(f))(x) ≤ C‖b‖∗M2f(x) (x ∈ Rn).

By Theorem 1.10 we can prove all the theorems in a unified style. In particular we
can give easier proof for Theorems 1.2, 1.4 and 1.5 (see Theorems 1.8 and 1.13).

As corollaries of Theorem 1.10 we obtain the following.

Corollary 1.11. Let b ∈ BMO(Rn). Then, there exists a positive constant C

such that

Cb(f)(x) ≤ C‖b‖∗M2f(x) (x ∈ Rn) (1.5)

for all f ∈ Lloc
1 (Rn).

Corollary 1.12. Let b ∈ BMO(Rn) such that b− ∈ L∞(Rn). Then, there exists
a positive constant C such that

|[M, b]f(x)| ≤ C(‖b+‖∗ + ‖b−‖∞)M2f(x) (1.6)

for all f ∈ Lloc
1 (Rn).

Inequalities (1.5) and (1.6) allow us to state the boundedness of both operators
on any Banach spaces of measurable functions on which the Hardy-Littlewood maximal
operator is bounded.

Theorem 1.13. Let b ∈ BMO(Rn). Suppose that X is a Banach space of measur-
able functions defined on Rn. Assume that M is bounded on X. Then the operator Cb

is bounded on X, and the inequality

‖Cbf‖X ≤ C‖b‖∗‖f‖X

holds with constant C independent of f .
Moreover, if b− ∈ L∞(Rn), then the operator [M, b] is bounded on X, and the

inequality
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‖[M, b]f‖X ≤ C(‖b+‖∗ + ‖b−‖∞)‖f‖X

holds with constant C independent of f .

The paper is organized as follows. Section 2 contains some preliminaries along with
the standard ingredients used in the proofs. In Section 3 we prove the pointwise estimates.
In Section 4 we give the proof of Theorem 1.8. Finally, in Section 5 we prove Theorem
1.6 and show that [M, b] fails to be of weak type (1, 1) in general.

2. Notations and Preliminaries.

Now we make some conventions. Throughout the paper, we always denote by C a
positive constant, which is independent of main parameters, but it may vary from line
to line. However a constant with subscript such as C1 does not change in different oc-
currences. By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and
B are equivalent. For a measurable set E, χE denotes the characteristic function of E.
Throughout this paper cubes will be assumed to have their sides parallel to the coordi-
nate axes. Given λ > 0 and a cube Q, λQ denotes the cube with the same center as Q and
whose side is λ times that of Q. For a fixed p with p ∈ [1,∞), p′ denotes the dual expo-
nent of p, namely, p′ = p/(p− 1). For any measurable set E and any integrable function
f on E, we denote by fE the mean value of f over E, that is, fE = (1/|E|) ∫

E
f(x)dx.

For the sake of completeness we recall the definitions and some properties of the
spaces we are going to use.

The non-increasing rearrangement (see, e.g., [5, p. 39]) of a measurable function f

on Rn is defined by

f∗(t) = inf{λ > 0 : |{x ∈ Rn : |f(x)| > λ}| ≤ t} (0 < t < ∞).

Let p ∈ [1,∞). The Lorentz space Lp,∞ is defined by

Lp,∞(Rn) :=
{

f : ‖f‖Lp,∞(Rn) := sup
0<t<∞

t1/pf∗(t) < ∞
}

.

The most important result regarding BMO is the following theorem of F. John and
L. Nirenberg [13] (see also [7, p. 164]).

Theorem 2.1. There exists constants C1 and C2 depending only on the dimension
n, such that

|{x ∈ Q : |f(x)− fQ| > t}| ≤ C1|Q| exp
{
− C2

‖f‖∗ t

}
(2.1)

for every f ∈ BMO(Rn), every cube Q and every t > 0.

Lemma 2.2 ([7, p. 166]). Let f ∈ BMO(Rn) and p ∈ (0,∞). Then for every λ

such that 0 < λ < C2/‖f‖∗, we have
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sup
Q

1
|Q|

∫

Q

exp{λ|f(x)− fQ|}dx < ∞,

where C2 is the same constant appearing in (2.1).

Lemma 2.3 ([13] and [3]). For p ∈ (0,∞), BMO(p)(Rn) = BMO(Rn), with equiv-
alent norms, where

‖f‖BMO(p)(Rn) := sup
Q

(
1
|Q|

∫

Q

|f(y)− fQ|pdy

)1/p

.

A function Ψ : [0,∞] → [0,∞] is a Young function if it is continuous, convex and
increasing satisfying Ψ(0) = 0 and Ψ(t) →∞ as t →∞. Let us define the Ψ-average of
a function f over a cube Q by means of the following Luxemburg norm

‖f‖Ψ,Q := inf
{

α > 0 :
1
|Q|

∫

Q

Ψ
( |f(y)|

α

)
dy ≤ 1

}

(see, for instance, [17]). The following generalized Hölder’s inequality holds:

1
|Q|

∫

Q

|f(y)g(y)|dy ≤ ‖f‖Φ,Q‖g‖Ψ,Q, (2.2)

where Φ is the complementary Young function associated to Ψ.
The maximal function of f with respect to Ψ is defined by

MΨf(x) := sup
Q3x

‖f‖Ψ,Q.

The main example that we are going to use is Φ(t) = t(1 + log+ t) with maximal
function defined by ML(log L). The complementary Young function is given by Ψ(t) ≈ et

with the corresponding maximal function denoted by Mexp L.
Recall the definition of quasinorm of Zygmund space:

‖f‖L(1+log+ L) :=
∫

Rn

|f(x)|(1 + log+ |f(x)|)dx

The size of M2 is estimated as follows.

Lemma 2.4 ([16, Lemma 1.6]). There exists a positive constant C such that for
any function f and for all λ > 0,

|{x ∈ Rn : M2f(x) > λ}| ≤ C

∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
dx. (2.3)
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3. Pointwise estimates.

Operators Cb and [M, b] essentially differ from each other. For example, Cb is a
positive and sublinear operator, but [M, b] is neither positive nor sublinear. However, if
b satisfies some additional conditions, then operator Cb controls [M, b].

Lemma 3.1. Let b be any non-negative locally integrable function. Then

|[M, b]f(x)| ≤ Cb(f)(x) (3.1)

for all f ∈ Lloc
1 (Rn).

Proof. It is easy to see that for any f, g ∈ Lloc
1 (Rn) the following pointwise

estimate holds:

|Mf(x)−Mg(x)| ≤ M(f − g)(x). (3.2)

Since b is non-negative, we can write, by (3.2),

|[M, b]f(x)| = |M(bf)(x)− b(x)Mf(x)| = |M(bf)(x)−M(b(x)f)(x)|
≤ M(bf − b(x)f)(x) = M((b− b(x))f)(x) = Cb(f)(x). ¤

Lemma 3.2. Let b be any locally integrable function on Rn. Then

|[M, b]f(x)| ≤ Cb(f)(x) + 2b−(x)Mf(x). (3.3)

holds for all f ∈ Lloc
1 (Rn).

Proof. Since

|[M, b]f(x)− [M, |b|]f(x)| ≤ 2b−(x)Mf(x)

(see [2, p. 3330], for instance),

|[M, b]f(x)| ≤ |[M, |b|]f(x)|+ 2b−(x)Mf(x), (3.4)

and by Lemma 3.1 we have

|[M, b]f(x)| ≤ C|b|f(x) + 2b−(x)Mf(x).

Since ||a| − |b|| ≤ |a− b| holds for any a, b ∈ R, we get C|b|f(x) ≤ Cbf(x) for all x ∈ Rn.
¤

Proof of Theorem 1.10. Let x ∈ Rn and fix a cube Q 3 x. Let f = f1 + f2,
where f1 = fχ3Q. Since for any y ∈ Rn
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Cb(f)(y) = M((b− b(y))f)(y) = M((b− b3Q + b3Q − b(y))f)(y)

≤ M((b− b3Q)f1)(y) + M((b− b3Q)f2)(y) + |b(y)− b3Q|Mf(y),

we have

(
1
|Q|

∫

Q

(Cb(f)(y))δdy

)1/δ

.
(

1
|Q|

∫

Q

|M((b− b3Q)f1)(y)|δdy

)1/δ

+
(

1
|Q|

∫

Q

|M((b− b3Q)f2)(y)|δdy

)1/δ

+
(

1
|Q|

∫

Q

|b(y)− b3Q|δ(Mf(y))δdy

)1/δ

= I + II + III. (3.5)

Since

∫

Q

|M((b− b3Q)f1)(y)|δdy ≤
∫ |Q|

0

[(M((b− b3Q)f1))∗(t)]δdt

≤
[

sup
0<t<|Q|

t(M((b− b3Q)f1))∗(t)
]δ ∫ |Q|

0

t−δdt,

using the boundedness of M from L1(Rn) to L1,∞(Rn) we have

∫

Q

|M((b− b3Q)f1)(y)|δdy . ‖(b− b3Q)f1‖δ
L1(Rn)|Q|−δ+1

= ‖(b− b3Q)f‖δ
L1(3Q)|Q|−δ+1.

Thus

I . 1
|Q|

∫

3Q

|b(y)− b3Q||f(y)|dy.

By (2.2), we get

I . ‖b− b3Q‖exp L,3Q‖f‖L log L,3Q.

Lemma 2.2 shows that there exists a constant C > 0 such that for any cube Q,

‖b− bQ‖exp L,Q ≤ C‖b‖∗.

Then we have

I . ‖b‖∗ML log Lf(x). (3.6)
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Let us estimate II. Since II is comparable to infy∈Q M((b−b3Q)f)(y) (see [7, p. 160],
for instance), we have

II . M((b− b3Q)f)(x).

Again by (2.2) and Lemma 2.2, we get

II . sup
x∈Q

‖b− b3Q‖exp L,3Q‖f‖L log L,3Q . ‖b‖∗ML log Lf(x). (3.7)

Let δ < ε < 1. To estimate III we use Hölder’s inequality with exponents r and r′,
where r = ε/δ > 1:

III ≤
(

1
|Q|

∫

Q

|b(y)− b3Q|δr′dy

)1/δr′( 1
|Q|

∫

Q

(Mf(y))δrdy

)1/δr

.

By Lemma 2.3 we get

III . ‖b‖∗
(

1
|Q|

∫

Q

(Mf(y))εdy

)1/ε

≤ ‖b‖∗Mε(Mf)(x). (3.8)

Finally, since M2 ≈ ML log L (see [16, p. 174] and [9, p. 159], for instance), we get, by
(3.5)–(3.8),

Mδ(Cb(f))(x) ≤ C‖b‖∗
(
Mε(Mf)(x) + M2f(x)

)
. (3.9)

Since

Mε(Mf)(x) ≤ M2f(x), when 0 < ε < 1,

we have (1.4). ¤

Proof of Corollary 1.11. Since, by the Lebesgue differentiation theorem

Cb(f)(x) ≤ Mδ(Cb(f))(x),

the statement follows from Theorem 1.10. ¤

Now we are in a position to prove Corollary 1.12.

Proof of Corollary 1.12. By Lemma 3.2 and Corollary 1.11, we have

|[M, b]f(x)| ≤ C
(‖b‖∗M2f(x) + b−(x)Mf(x)

)
. (3.10)

Since f ≤ Mf and ‖b‖∗ ≤ ‖b+‖∗ + ‖b−‖∗ . ‖b+‖∗ + ‖b−‖L∞ , we obtain Corollary 1.12.
¤
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4. Proof of Theorem 1.8.

(i) ⇒ (ii). Let Q0 be any fixed cube and let f = χQ0 . For any λ > 0 we have

|{x ∈ Rn : Cb(f)(x) > λ}| =
∣∣∣∣
{

x ∈ Rn : sup
x∈Q

1
|Q|

∫

Q∩Q0

|b(x)− b(y)|dy > λ

}∣∣∣∣

≥
∣∣∣∣
{

x ∈ Q0 : sup
x∈Q

1
|Q|

∫

Q∩Q0

|b(x)− b(y)|dy > λ

}∣∣∣∣

≥
∣∣∣∣
{

x ∈ Q0 :
1
|Q0|

∫

Q0

|b(x)− b(y)|dy > λ

}∣∣∣∣

≥ |{x ∈ Q0 : |b(x)− bQ0 | > λ}|,

since

|b(x)− bQ0 | ≤
1
|Q0|

∫

Q0

|b(x)− b(y)|dy.

By assumption we have

|{x ∈ Q0 : |b(x)− bQ0 | > λ}| ≤ C|Q0| 1
λ

(
1 + log+ 1

λ

)
.

For 0 < δ < 1 we have

∫

Q0

|b− bQ0 |δ = δ

∫ ∞

0

λδ−1|{x ∈ Q0 : |b(x)− bQ0 | > λ}|dλ

= δ

{ ∫ 1

0

+
∫ ∞

1

}
λδ−1|{x ∈ Q0 : |b(x)− bQ0 | > λ}|dλ

≤ δ|Q0|
∫ 1

0

λδ−1dλ + Cδ|Q0|
∫ ∞

1

λδ−1 1
λ

(
1 + log+ 1

λ

)
dλ

= |Q0|+ Cδ|Q0|
∫ ∞

1

λδ−2dλ =
(

1 + C
δ

1− δ

)
|Q0|.

Thus b ∈ BMOδ(Rn). By Lemma 2.3 we get b ∈ BMO(Rn).
(ii) ⇒ (i). By Theorem 1.11 and Lemma 2.4, we have

|{x ∈ Rn : Cb(f)(x) > λ}| ≤
∣∣∣∣
{

x ∈ Rn : M2f(x) >
λ

C‖b‖∗

}∣∣∣∣

≤ C

∫

Rn

C‖b‖∗|f(x)|
λ

(
1 + log+

(
C‖b‖∗|f(x)|

λ

))
dx.

Since the inequality
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1 + log+(ab) ≤ (1 + log+ a)(1 + log+ b) (4.1)

holds for any a, b > 0, we get

|{x ∈ Rn : Cb(f)(x) > λ}|

≤ C‖b‖∗(1 + log+ ‖b‖∗)
∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
dx. ¤

5. Proof of Theorem 1.6.

By Lemma 3.2, we have

|{x ∈ Rn : |[M, b]f(x)| > λ}|

≤
∣∣∣∣
{

x ∈ Rn : Cb(f)(x) >
λ

2

}∣∣∣∣ +
∣∣∣∣
{

x ∈ Rn : |2b−|Mf(x) >
λ

2

}∣∣∣∣

≤
∣∣∣∣
{

x ∈ Rn : Cb(f)(x) >
λ

2

}∣∣∣∣ +
∣∣∣∣
{

x ∈ Rn : 2‖b−‖∞Mf(x) >
λ

2

}∣∣∣∣.

By (4.1), we have

∣∣∣∣
{

x ∈ Rn : Cb(f)(x) >
λ

2

}∣∣∣∣

≤ CC0(1 + log+ C0)
∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
dx. (5.1)

On the other hand, since the maximal operator M is a weak type (1,1), we get

∣∣∣∣
{

x ∈ Rn : 2‖b−‖∞Mf(x) >
λ

2

}∣∣∣∣ ≤ C‖b−‖∞
∫

Rn

|f(x)|
λ

dx. (5.2)

Combining (5.1) and (5.2), we get (1.3). ¤

Remark 5.1. We show that [M, b] fails to be of weak type (1, 1) in general. We
use the idea due to C. Perez (see [16, p. 175]). Let b(x) = log |1+x| ∈ BMO(Rn) and let
f(x) = χ(0,1)(x). It is easy to see that for any x < 0

Mf(x) = sup
0<t<1

t

t− x
=

1
1− x

.

On the other hand, for any x < 0

M(bf)(x) = sup
0<t<1

∫ t

0
log |1 + y|dy

t− x
= sup

0<t<1

(1 + t) log(1 + t)− t

t− x
=

2 log 2− 1
1− x

.
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Thus

[M, b]f(x) =
2 log 2− 1

1− x
− log |1 + x|

1− x
.

If x < −100, then

log |1 + x| − (2 log 2− 1) >
1
2

log |x|.

Therefore, for any λ > 0,

λ|{x ∈ R : |[M, b]f(x)| > λ}| ≥ λ

∣∣∣∣
{

x < 0 :
∣∣∣∣
2 log 2− 1

1− x
− log |1 + x|

1− x

∣∣∣∣ > λ

}∣∣∣∣

≥ λ

∣∣∣∣
{

x < −100 :
1
2

log |x|
1− x

> λ

}∣∣∣∣

≥ λ

∣∣∣∣
{

x < −100 :
1
4

log |x|
|x| > λ

}∣∣∣∣

= λ(ϕ−1(−100)− ϕ−1(4λ)),

where ϕ is the increasing function ϕ : (−∞,−e) → (0, e−1), given by ϕ(x) = log |x|/|x|.
Observe that the right hand side of the estimate is unbounded as λ → 0:

lim
λ→0

λϕ−1(λ) = lim
λ→∞

λϕ(λ) = ∞.
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