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Abstract. In our recent paper [5] in this journal, we have studied strong
relations between metrics of spaces and box-counting dimensions by use of
Alexandroff-Urysohn metrics d induced by normal sequences. In this adden-
dum, we intend to improve the main theorems given in [5, Theorem 0.1 and 0.2]
and give the complete solution for a problem of metrics and two box-counting
dimensions.

1. Introduction.

In this addendum we improve the main theorems given in [5] and give the com-
plete solution for a problem of metrics d and box-counting dimensions dim g (X, d)
and dimp (X, d).

We follow directly the notations of [5]. For a topological space X, we denote
by dim X the topological (covering) dimension of X (see [4], [6], [7], [9]). For a
totally bounded metric d on X and € > 0, let

N(e,d) = min{|%| | % is a finite open cover of X with mesh,(%) < €},

where |A| denotes the cardinality of a set A. Then the lower and upper box-
counting dimensions of (X, d) (see [10]) are given by

: ..o log N(e, d)

] log N
dimp(X,d) = limsup m.
e—0 |log €|
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We obtain the following result which is the complete solution for a problem of
metrics and two box-counting dimensions.

THEOREM 1.1 (cf. [5, Theorem 0.2]). Let X be an infinite separable metric
space. For any a, € [dim X, o0] with a < 3, there is a totally bounded metric
d =d.g on X such that

log N (e, d)
| log €|

.6 = { mint

{er}2 | is a decreasing sequence
of positive numbers with lim e, =0 ;.
k—oo

In particular, dimz(X,d) = @ and dimp(X,d) = 3.

To prove Theorem 1.1, we need the following theorem which is more precise
result than [5, Theorem 0.1]. To prove it, we extend the technique of Banakh and
Tuncali (see [2, Theorem 6.1]).

THEOREM 1.2 (cf. [5, Theorem 0.1]).  Let X be a nonempty separable metric
space. Then

. . . log
dim X = min { lim inf —221 =4 . 18 a normal star-sequence of

1—00

finite open covers of X and a development ofX}

lo ;
L 2. 18 a normal delta-sequence of

= min < liminf
71— 00

finite open covers of X and a development ofX}.

Moreover, there exists a normal star-sequence {%;}32, of finite open covers of X
which is a development of X such that

dim X — lim 28 |%l

1— 00 1

Also, there exists a normal delta-sequence {%;}32, of finite open covers of X which
1 a development of X such that
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dim X — lim 0824l

11— 00 7

PROOF. We can suppose that dimX = n < oo. Let M = [0,1]*"T! be
the unit cube in the (2n + 1)-dimensional Euclidean space R*"*!. For a € N,
we divide the edges of M = [0,1]>"*! into a equal subintervals and we obtain
the collection ¢'(1/a) of all a®*! subcubes of M with edge 1/a. For each i =
0,1,2,... we obtain the collection %(1/3") of all 3*"*+1) subcubes of M with
edge 1/3%. Let a = {a;}$2, be any increasing sequence of natural numbers, i.e.,
ap=0<a; <ag <---<a; <ajp; <---. We shall construct an n-dimensional
Menger universal compactum M, as follows. First we put

Malag) = {0,171},
For each ag +1 =1 <17 < ay, we put
Mo (1) = {D € %(;) ’ D intersects an n-dimensional face of [0, 1]>"+1 }
For each a1 + 1 < i < ag, we put
M (1) = {D € ‘5(;) 'there is C' € Mq(a1) such that D C C and D
intersects an n-dimensional face of C}.
For each as + 1 <i < a3, we put
Mo (i) = {D € ‘5(;) 'there is C' € My(as) such that D C C and D
intersects an n-dimensional face of C’}.

We iterate this procedure with respect to the sequence a = {a;}52; and we obtain
the collection .#, (i) of subcubes with edges 1/3° for each i € N. Put

Mo (i) = | {C | C € Ma(i)} € R

Then M, (i) D Mg (i + 1) for each ¢ € N. We put
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Mg = (1) Ma(i).
i=1

By use of Anderson-Bestvina’s Characterization Theorem of Menger compacta
(see [1] and [3]), we see that M, is homeomorphic to the n-dimensional Menger
universal compactum. Note that .#,(i) C ¢(1/3%) and M, is a subset of the
standard n-dimensional Menger compactum Mg, where a = {a;}$2; and a; = 4
for i € N.

We shall construct a normal star-sequence {# (a);}2; of finite open covers
of M, as follows. For each i € N we put

W (a); = {Inta, St(C, e (7)) | C € Mo(i)},

where St(C, #4(7)) = U{D € #a(i) | DNC # ¢} N M,. Then we see that
{# (a);}2, is a normal star-sequence of finite open covers and a development of
the space M. Also, we see that |#(a);| = | #4(7)].

Now, we consider the special sequence @ = {d;}5°; of natural numbers, where
i; = 2% for i € N and we obtain a desired n-dimensional Menger universal com-
pactum Y = M. We shall prove that the normal sequence {#(d);}32, of Y
satisfies the condition

iy 0817 (@)

71— 00 7

=n.

For each natural number k, we consider the sequence k = {k;}3°, such that k; =i
for each 1 <4 < 2% and k; = 2F(i4+1—2%) for each i > 2¥. Note that Y = My C My,
and |7 (a);| < |# (k);| for i € N. We can calculate lim;_, . logs |# (k):|/i as
follows (see [2, Theorem 6.1]). For a € N, we put

H(a) =Y 2217 C2 (0 — 2))
§=0

_ 22n+1 ca® iCZnJrl a—2 ! . aj—n
J 2a ’

Jj=0

where Cf = ¢!/(p!(¢ — p)!). Note that

1
H(a) = HD € %(a> ' D intersects an n-dimensional face of [0, 1]*7+1 }‘
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Note that there is a number 7' > 0 such that for any a € N
H(a) < 22"Hg"T.

Let 4 be a sufficiently large natural number with i > 2*. Put i = 2% + 2Fp + ¢,
where p,qg € N U {0} and 0 < g < 2¥. Then

W (k)| = H(3)* H(3% )P H(39).

Then
oy 088 [/ (R)i| _ . 2 logy H(3) + plogy H(3”") + logy H(3")
i—00 i  poco 2k 4+ 2kp 4+ ¢
logs H(3%") (2n + 1)logs 2 + logs T
= =t % '
Since
1 ); 1 k);
i 122 @] _ g [/ ()
i—00 1 1—00 (3
for any k € N, we see that
1 W (a);
Jim sup 2817 (@l
1—00 1

By [5, Theorem 0.1], we can conclude that

o 10817 (@)

1— 00 1

=nNn.

Let X be an n-dimensional compactum. Since Y is a universal space of the
class of n-dimensional spaces, we may assume that X C Y. Put % = #(a); | X
for each ¢« € N. Also by [5, Theorem 0.1], the normal sequence {%;}32; of X
satisfies the desired condition

lim 710g3.|02/¢\ =n

71— 00 7

The existence of desired normal delta-sequence can be proved similarly.



982 H. KaTo

By the proof of [5, Theorem 5.1], we have the following corollary.

COROLLARY 1.3. Let X be an infinite separable metric space. For any a, 3 €
[dim X, co] with o < 3, there is a normal star (resp. delta)-sequence {%;}52, of
finite open covers of X which is a development of X such that

logs | %
[a, O] = {hkm inf m ‘ {ix}32 is an increasing subsequence
—00 (2%

of natural numbers}

o
(7”63]7- [, B] = {hgr_l)inf g2| | {ix}?2, is an increasing
subsequence of natural numbers}).

PrOOF OF THEOREM 1.1. By Theorem 1.2, there is a normal star-sequence
{%;}22, of finite open covers of X which is a development of X such that

dim X — Tim 28314l
71— 00 7
By [5, Theorem 6.2 and Theorem 6.4], we see that there is a totally bounded
metric d = dog on X such that

[, B] = { lim inf 710g N(ex, d)

e {er}72, is a decreasing sequence

of positive numbers with klim € = O}.
—00

REMARK. In this paper, “normal” sequence of open covers is essential. We
can easily see that for any separable metric space X, there is a sequence {%;}5°,
of finite open covers of X which is a development of X such that % ;1 = {U |
U € %1} is a refinement of %; for each i and

log |%;
im 2814l _

1—00 1
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