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Abstract. In this paper, we study the reproducing formula with frac-
tional orders on the parabolic Bloch space. As an application of the repro-
ducing formula, we characterize the dual and pre-dual spaces of parabolic
Bergman spaces. Furthermore, we generalize the integral pairing, which gives
the duality between the parabolic Bloch space and the parabolic Bergman
space.

1. Introduction.

Let H be the upper half-space of the (n 4 1)-dimensional Euclidean space
R""(n > 1), that is, H = {(z,t) € R"";2 € R",t > 0}. For 0 < a < 1, the
parabolic operator L(®) is defined by

L =0, + (—A.)°,

where 9, = 9/0t and A, is the Laplacian with respect to z. A continuous function
u on H is said to be L(®)-harmonic if L(®)u = 0 in the sense of distributions (for
details, see section 2). The parabolic Bloch space %, is the set of all C! class and
L(®)-harmonic functions u on H which satisfy

lu|| ez, = sup {t2a|V u(z, t)| + t|ou(z, )|} < oo,

(@t)e

where V, denotes the gradient operator with respect to . Moreover, we denote
by . the set of functions u € %, such that u(0,1) = 0. We remark that %, is a
Banach space with the norm | - ||, , and when a = 1/2, %1/2 coincides with the
harmonic Bloch space of Ramey and Yi [5].
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Our aim of this paper is the study the reproducing formula on the parabolic
Bloch space. Ramey and Yi [5] studied basic properties of the harmonic Bloch
space on H. In [4], Nishio, Shimomura, and Suzuki introduce the parabolic Bloch
space and also study basic properties of the space. In this paper, we introduce the
fractional derivatives of parabolic Bloch functions, and establish the reproducing
formula with fractional orders on the parabolic Bloch space. As an application of
the reproducing formula, we characterize the dual and pre-dual spaces of parabolic
Bergman spaces.

To state our main results, we describe some notations. For a real number
k, a fractional differential operator is given by 2 = (—9;)%, and W(®) is the
fundamental solution of the parabolic operator L() (for the explicit definitions
of Zf and W) see Section 2). First, we present the reproducing formula with
fractional orders on parabolic Bergman spaces bE (\) (for the explicit definitions,
see also Section 2), which was studied in [1]. We note that b2(\) = {0} whenever
A< —1.

THEOREM A (Theorem 5.2 of [1]). LetO0<a<1,1<p< oo, and A > —1.
And let v > —% and Kk > % be real numbers. Then, the reproducing formula

u(x,t) = Ct/+f€/ DY uly, s)ZEW D (x =y, t + 5)s" 1V (y, 5)
H
holds for all u € bE(A) and (z,t) € H, where C,, = 2" /T'(k), I'(-) is the gamma
function, and dV is the Lebesgue volume measure on H.

We present our main result in this paper. A function wf on H x H is defined
by

Wi, ty,s) = ZEW (@ —y,t +5) = ZEW D (—y, 1+ 5) (1.1)

for all (x,t), (y,s) € H. Theorem 1 gives the reproducing formula with fractional
orders on the parabolic Bloch space.

THEOREM 1. Let0 < a < 1. Andlet v > 0 and k > 0 be real numbers.
Then, the reproducing formula

w(,t) = Cy /H DV uly, )t (2, £y, 8)s" " 1dV (3, 5) (12)

holds for all u € B, and (x,t) € H, where C,; is the constant defined in Theorem
A.
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As an application of Theorem 1, we show that the dual space of bL(\) is
isomorphic to the parabolic Bloch space.

THEOREM 2. Let 0 < o <1 and A\ > —1. Then, (bL(\))* = %, under the
pairing

(u,v)\ = C’)\Jrg/ u(y, s)Zvw(y, )V (y,s), uwebL(N), v € Ba.
H

We also show that a pre-dual space of b}, ()\) is isomorphic to the subspace of
the parabolic Bloch space. The parabolic little Bloch space %, is the set of all
functions u € A, such that

lim {ti
(z,t)—»0HU{oco}

Vou(z,t)| + t|ou(z, t)|} = 0.

Moreover, we denote by gZQ,O the set of all functions u € %, o such that u(0,1) = 0.

THEOREM 3. Let 0 < a <1 and A > —1. Then, b} (\) = (,%7&70)* under the
pairing

<U,U>>\ = O)\-‘v-?/ U(y, S)-@tv(yv S)S)\+1dV(y, S)a u € bi(}\), v E @0@0-
H

In the following theorem, we show that the integral pairing (-,-)» can be
generalized.

THEOREM 4. Let0<a<1and A>—1. Ifv>—(A+1) and k > 0, then

Oy  (u,v) = (u,v)x, u€ bL(\), v e A,,

where

0" (u,v) = Cu+m+>\+1/ D u(x, t) DEv(x, )t AV (2, t).
H

This paper is constructed as follows. In Section 2, we present preliminary
results. In Section 3, we study properties of fractional derivatives of parabolic
Bloch functions. In Section 4, we show the reproducing formula on the parabolic
Bloch space of Theorem 1. As an application of Theorem 1, we characterize the
dual and pre-dual spaces of parabolic Bergman spaces bl ()\) in Section 5. In
Section 6, we give a generalization of the integral pairing defined in Theorems 2
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and 3. Furthermore, we discuss Banach space isomorphisms on parabolic Bergman
spaces.

Throughout this paper, we will denote by C' a positive constant whose value
may not necessarily be the same at each occurrence.

2. Preliminaries.

First, we recall the definition of L(®)-harmonic functions. We describe the
operator (—A,)%*. Since the case @ = 1 is trivial, we only describe the case
0 < a< 1. Let CX(H) be the set of all infinitely differentiable functions on H
with compact support. For 0 < o < 1, (—=A,)® is the convolution operator defined
by

(=Az)*Y(z,t) = —cno lim (Y(y, t) — ¥(a, )y — x| " **dy  (2.1)
6—0+ ly—z|>8
for all ¢» € C°(H) and (z,t) € H, where ¢, o = —4%7~"/2T((n+2a)/2)/T(~a) >
0. A continuous function v on H is said to be L{®-harmonic on H if u satisfies
the following condition: for every ¢ € C°(H),

/ lu- L®p|dV < oo and / w- L ypdV =0, (2.2)
H H

where L(®) = —8, + (=A,)* is the adjoint operator of L(®). By (2.1) and
the compactness of supp(¢)) (the support of ), there exist 0 < t; < t2 <
o0 and a constant €' > 0 such that supp(L(®y) € § = R"™ x [t1,ts] and
|L@ep(z,t)| < C(1+]|x|)~"2* for all (x,t) € S. Thus, the integrability condition
fH - E(O‘)QMdV < oo is equivalent to the following: for any 0 < t; < ta < o0,

/tz / u(a, )10+ |of) T2V (2, 1) < oo. (2.3)

We introduce the fundamental solution of L(®). For z € R", the fundamental
solution W(®) of L(®) is defined by

W (z,t) = (271r>/R exp(—tlg** + V=T € d§ t>0

0 t <0,

where z - € denotes the inner product on R"™. It is known that W(®) is L(@)-
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harmonic on H and W(®) € C*(H), where C*(H) is the set of all infinitely
differentiable functions on H.

Next, we present definitions of fractional integral and differential operators.
Let C(R4) be the set of all continuous functions on Ry = (0,00). For a positive
real number x, let F%€ " be the set of all functions ¢ € C(R.) such that there
exists a constant € > 0 with ¢(t) = Ot "7¢) as t — oco. We remark that
FEC TV C FET"if0 <k <v. For p € FE ", we can define the fractional
integral of ¢ with order s by

D, "p(t) = 1 ] /0 T”_lap(t—i—T)dT, teR,. (2.4)

)

Furthermore, let #%€" be the set of all functions ¢ € C(R.) such that dtmgo €
Z¢~ 175 where dy = d/dt and [x] is the smallest integer greater than or equal
to k. In particular, we will write Z%° = C(R,). For ¢ € .F€", we can also
define the fractional derivative of ¢ with order x by

DFe(t) = 2, 1179 (—d)Flo(t), te Ry (2.5)

Also, we define 2Pp = . We may often call both (2.4) and (2.5) the fractional
derivative of ¢ with order k. Moreover, we call 9} the fractional differential
operator with order k. Here, we give an example of the fractional derivative of an
elementary function. Let k > 0 be a real number. And let v be a real number
such that —x < v. Then, we have

Ik +v)

it = ()

g, (2.6)

The following proposition shows that fractional differential operators hold the
commutative and exponential laws under some conditions.

PROPOSITION 2.1 (Proposition 2.1 of [1]). Let k,v > 0 be real numbers.
Then, the following statements hold.

(1) If pe FE€7", then Z; "p € C(R4).

(2) Ifpe FE€ "7, then 9, "D, Vo =2, " V.

(3) If dfp € FE€V for all integers 0 < k < [k] — 1 and dt['ﬂga e g [xl=r)-v,
then 2D, o = Dy " Dfo = DL V.

4) If deﬂ(p e F¢ M=) for all integers 0 < k < [r] — 1, dtMM(p €
FZE~"1=%) for all integers 0 < ¢ < [v] — 1, and dtﬁﬂ—”ﬂga €
jcg—(r’ﬂ—ﬁ)—(rﬂ—l’)} then @f@;w — @f+u¢.
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We also need the following result.

PROPOSITION 2.2. Let k > 0 be a real number. If dtmap e Z¢ 1 and
limy oo d¥o(t) = 0 for all integers 0 < k < [k] — 1, then D, "Dfp = .

PrOOF. First, we show the case k € IN by the induction. If kK = 1, then by
the condition lim;_, . ¢(t) = 0, we have

T—00

Dy Dro(t) = — /000 dip(t +7)dT = — lim @(t +7) + ¢(t) = ¢(t) (2.7)

for all t € R, . Next, assume that the statement holds for some x € N. Suppose
it € ZF¢ Y and limy_o d¥o(t) = 0 for all integers 0 < k < k. Since
lim;_, o d¥p(t) = 0 for all integers 0 < k < x — 1, by the assumption of the
induction &, it is sufficient to show dfyp € F€ ™" and Qt_(’ﬁl)@fﬂcp =9; "Dl .
Since dft'p € ZE™ Y ¢ Z€ 7 and limy_o dF(t) = 0, (2.7) implies that
D DN o= DT D DE = D (2.8)

Also by (2.6) and the condition df*'p € ZF%~ "tV there exists € > 0 such that
ldfe)] =125 et)] =12, 27 o) < C | |27 ot + 7)ldr
0
< C/ (t4+ 1)~ FFD=2dr = Otr—F
0

for ¢ sufficiently large. Hence we have dfp € .F% ™ ". Moreover, (2) of Proposition
2.1 and (2.8) imply that

7, VG o= 979 D o = 97 T,
Thus we obtain the statement in case kK € N.

Let k € Ry \ N. Suppose that dtmgo e .Z¢ 1" and limy_ dFo(t) = 0 for
all integers 0 < k < [k] — 1. Then (2) of Proposition 2.1 implies that

@;n pr — @;N@;U"ﬂ —K) @JK] o= @ti [#] @tf"ﬂ ©.

Since [k] is a positive integer, we get the desired result. This completes the proof.
O
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The following proposition gives basic properties of fractional derivatives of
the fundamental solution W(®). TLet Ny = N U {0}. For a multi-index 3 =
(Br,...,Bn) € N, let 85 = 9181 Joz . 9xPr where |8] = 81+ B2+ - - + Bn.

PROPOSITION 2.3 (Theorems 1 and 3.1 of [1]). Let0 < a <1, € N{,
and Kk > —n/2a be a real number. Then the following statements hold.

(1) The derivative 82 2FW' ) is well-defined. Moreover, there exists a constant
C > 0 such that

n+16]

|02 2EW @) (2, )] < Ot + |o*) 2 "

for all (z,t) € H.
(2) If0 < g < o0 and 8 > —1 satisfy the condition n/2a+ 0+ 1 — ((n+|0])/2a
+k)q < 0, then there exists a constant C > 0 such that

/ |08 DEW ) (2 — g, t + 5)|"s7dV (y, 5) < CFaToTI=(5Z +m)a
H

for all (z,t) € H.
(3) Let v be a real number such that k +v > —n/2a. Then,

PP PEW ) () = 0P P W (a,1)

for all (z,t) € H.
(4) 9°2pW @ s L) -harmonic on H.

Here, we present the following lemma, which is frequently used in later argu-
ment.

LEMMA 2.4 (Lemma 3.3 of [3]). Let 0 and ¢ be real numbers such that 0 > —1
and n/2a+ 0+ 1 —c < 0. Then, there exists a constant C > 0 such that

0
S n
dV (y,s) = Ctezat0+1=c
/H<t+s+|x—y|2a>c @)

for all (z,t) € H.

Finally, we present the definition of the parabolic Bergman space b2 (\). And
we also present properties about parabolic Bergman functions. For 1 < p < oo
and A > —1, LP(\) is the set of all Lebesgue measurable functions f on H which
satisfy
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T ( / f(w,t)l”t*dV(w,t))p < oo

The parabolic Bergman space b?()) is the set of all L(®)-harmonic functions u
on H which belong to LP(X). Here we denote LP = LP(0) and b2 = b2 (0). As a
remark, b2 (\) = {0} whenever A < —1 (see Proposition 4.3 of [2]). And let b
be the set of all L(®)-harmonic functions v on H which satisfy

[fl|Lee = ess sup|f(z,t)] < oo.
(z,t)eH
We remark that b>° C %, by Theorem 5.4 of [4]. In order to prove our reproducing

formula, we need the following lemma.

LEMMA 2.5 (Lemma 3.1 of [6] and Theorem 7.4 of [4]). Let0 < o < 1,
1<p<oo, and A > —1. If u € bE()\), then u satisfies the Huygens property, that
18,

u(z,t) = / u(z —y,t — )W (y,s)dy
holds for allx € R"™ and 0 < s < t < o0. Ifu € B, then u also satisfies the

Huygens property.

Proposition 2.6 gives the basic properties of fractional derivatives of parabolic
Bergman functions.

PROPOSITION 2.6 (Proposition 4.1 of [1]). Let 0 < a <1, 1 < p < o0,
A>—1,8€ Ny, and £ > —(n/2a + X+ 1)1/p be a real number. If u € bL(N),
then the following statements hold.

(1) The derivatives 0% Zfu and PF0Pu are well-defined, and
P DEu(x,t) = 2FOPu(x,t)
for all (z,t) € H. Moreover, there exists a constant C > 0 such that
|02 Zrula, )] < Ot E D ul| )

for all (z,t) € H.
(2) Let v be a real number such that Kk +v > —(n/2a + A+ 1)1/p. Then,
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DY 0° Dru(x,t) = 0P DFtu(a,t)
for all (z,t) € H.
(3) 92 PDFu is LY -harmonic on H.

In order to characterize the dual and pre-dual spaces of bl ()\), we need the
following proposition.

PROPOSITION 2.7 (Corollary 3.2 of [2]). Let0 < a <1,1<p< o0, and
A > —1. Then, the following statements hold.

(1) For k> (A+1)/p, the operator P defined by

P f(a ) = /H Pl $)ZEW @ (@ — gt + )55 dV (y, s)

is a bounded projection from LP(X) onto bE ().
(2) Let1 < p < oo and q be the exponent conjugate to p. Then, (bE(N\))* = b2 (\)
under the pairing

(1, v = Au(x,t)v(x,t)t*dV(x,t), we b (M), vebl(N).

(3) For a real number v > —(\ + 1)/p, there exists a constant C =
C(n,p,a,\,v) >0 such that

C M ull oy < ([t 27l 1y < Cllullzoeny
for all uw € bE(N).

3. Fractional derivatives of parabolic Bloch functions.

In this section, we study fractional derivative of parabolic Bloch functions.
First, we generalize the definition of the function w, and give basic properties.
For a multi-index 8 € N§ and a real number £ > —n/2a, a function w?* on

H x H is defined by

for all (x,t), (y,s) € H. Here we remark that wf = w%".

PROPOSITION 3.1. Let 0 < a« < 1, B € N, and kK > —n/2a be a real
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number.

(1) For any compact set K C R™ and T > 1, there exist constants C1,Cs > 0
such that

C1|z| Colt — 1]
(14 s+ [yl2e) 5+t

|w§’“(a:,t;y,s)| = CESEIESS

(1+ s+ [y[*)

for all (z,t) € K x [T~1,T] and (y,s) € H.
(2) Let (z,t) € H be fized. Then, there exists a constant C' > 0 such that

Wl (2,5, 5)| < C(1+ 5+ [y[>*) "2 57

for all (y,s) € H, where 0 = min{1,1/2a}.

(3) Let (z,t) € H be fized. Then, wi(z,t;-,-) € Bayo-
(4) Moreover, let |8]/2cc+ K > 0. Then, there exists a constant C > 0 such that

/ |wB (@, 8)[s 3 1AV (y,5) < C(1+ log(1+ |]) + [ log )
H

for all (z,t) € H.

PROOF.
(1) The chain rule implies that

Wiz, tyy, s)| < |02 DEW ) (2 — y, t+ 5) — O DFW ) (—y,t + 5)|

+ |8§9§W(’l)(—y, t+s)— 35.@[”1/[/(0‘)(—% 1+ s)|

1
= ‘ / x -V B DEW D (ra — y, t + s)dr
0

t
+ ’/ AP PF AW (—y 1 4 5)dr
1

. (3.1)

Since z € K, there exists a constant M > 0 such that |rz| < M for all 0 < r < 1.
If |y| > 2M, then we have

1
[yl < |re —y[+ |rz| < |re—y|+ M < Im—y\+§\y|~

Therefore, we have |y| < 2|rz —y|. If |y| < 2M, then since T-1 <t < T, we have
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ly| < 2MTT~ < 2MTt < 2MT(t + |rz — y)).

Therefore, we have t + |y| < (2MT 4 1)(t + |rz — y|). Hence by (1) of Proposition
2.3, there exist constants Cq,Cs > 0 such that the right-hand side of (3.1) is less
than or equal to

n+(8| _

t
[ sty
1

n+|68l+1
[e3

1
Cl\x|/ (t+s+|re—y>*) " 22 Fdr4Cy
0

Cl ‘.Z‘|
(L4 5 4 [yl =5

n+|8] _
" Colt — 1] {1+<t+s+|y|2a) o T 1}
(t+ s+ |y[22) T2 45 (1 + s + |y[2*) L+ s+ |y[> '

Since T~! <t < T, we get the desired result.
(2) Let (z,t) € H be fixed. Then, we can get the desired result by (1), directly.
(3) Let (x,t) € H be fixed. Then by (4) of Proposition 2.3, wi(z,t;-,-) is
L(®)-harmonic on H. And by (2) of Proposition 3.1, there exists a constant C' > 0
such that

<

|3ij2(x,t;y,s)| < C(l + s+ |y|20‘)7%*1€70',

|Zwi(z,t;y,s)| < C(1+s+ |y|?*) " 2a —r1me
for all (y,s) € H and 1 < j < n, where 0 = min{1, 1/2a}. Hence we have
sﬁ|vng(x,t;y,s)| — 0, s‘@swg(:ﬂ,t;y,sﬂ —0
as (y,s) — 0H U {oc0}.

(4) Let x> 0 be a real number. And put p = ((1+ |z])/(1 + log(1 + |z[)))**.
Then,

/|w§’“(x,t;y7S)\S%“’ld‘/(y,b’)
H
< / 02 2EW Nz —y,t +5) = IZDFW ) (z —y, p+ s)|s%+"_1dV(y7 s)
H

+ / 02 W) (@ =y, p+ ) = DL DEW @ (—y, p+ )| % T+ LdV (y, 5)
H
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+ / |08 2 W@ (—y, p+ 5) = L DEW ) (—y, 1+ 5)|s %=+ 1aV (y, 5).
H
(3.2)

By (2) of Proposition 2.3, the first term of the right-hand side in (3.2) is less than
or equal to

t
‘ [ [ 1021w = gr 9| vy, s)ar
p JH

p
/ T Ydr
t

By the chain rule and (2) of Proposition 2.3, the second term is less than or equal
to

<C < C(|logt| + log p).

1
/ \x|/ V0P DEW @) (r — y, p+ 8)|s % 7571V (y, s)dr < Clz|p~ 7.
0 H
Also, by (2) of Proposition 2.3, the third term is less than or equal to

p
/ / 022 I W ) (—y, 7+ 5[5 % Tr LAV (y, 5)dT < Clog p.
1 H

Thus by the definition p, we complete the proof. O

Next, we give basic properties of fractional derivatives of the parabolic Bloch
functions. We present properties of ordinary derivatives of parabolic Bloch func-
tions. Let (8,k) € (N x No) \ {(0,0)}. The following estimate is established in
Theorem 7.3 of [4]: if u € B, then u € C®(H), 0°PFu is L(®)_harmonic on H,
and there exists a constant C' > 0 such that

|u(z, )| < C(1+log(1+ |z|) + |logt]), (3.3)

108 Dfu(a, )] < Ct % |lul| s, (3.4)

for all (z,t) € H. In the following proposition, we give basic properties of fractional
derivatives of parabolic Bloch functions.

ProproSITION 3.2. Let0<a <1, &€ N§, and k > 0 be a real number. If
u € By, then the following statements hold.
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(1) The derivatives 02 Dfu and ;02w are well-defined, and
P Dru(x,t) = 2F0Pu(x,t) (3.5)

for all (x,t) € H. Moreover, for (8,k) # (0,0), there exists a constant C' > 0
such that

_lBl_
|02 D u(z,t)] < Ot 2 ~||ul| 4, (3.6)

for all (z,t) € H.
(2) Let v > 0 be a real number. Then,

Y% Dru(x,t) = OP DTV u(x, t) (3.7)

for all (z,t) € H. If v < 0 is a real number such that K +v > 0 and
(B, +v) #(0,0), then (3.7) also holds.
(3) 92w is L) -harmonic on H.

Proor.

(1) Let u € AB,. Since u € C*(H), we have 85.@t[”]u = 9[*”65% And
by (3.4), we have 859tmu(m,-) e ¢ U175 for all z € R™. These imply
that derivatives 0 Zfu and 270%u are well-defined. Also, since u € C*(H),
differentiating through the integral, (3.4) implies that

0 otu =082, gl = g7 M7 gi gy
= -@t_(lrﬁ—‘_m)-@t’rn—l 651" = _@fafth

We show the estimate of 92 2 u. By (2.5), (2.6), and (3.4), there exists a constant
C > 0 such that

|9t“6£u(x,t)| = |9t_([’ﬂ_n).@t['ﬂ 85u(x,t)|

18

< C(2; M) ful, = O 5 ul
(2) First, we assume v > 0. By (3.5) and (4) of Proposition 2.1, we have
DO Dru = DY DFEOPu = DFHOPu = 02 9 . (3.8)

Let v < 0 such that k + v > 0 and (3, k + v) # (0,0). This implies that |5]/2a +
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k +v > 0. Therefore, (3.6) implies that 02 Zfu(x,-) € F€ for all x € R". By
(3.8), we have

DPOP D = DYOPDET TV u = DV DTV O DT .
Thus, Proposition 2.2 implies that
DDV DT = 0P P .

(3) Let (8,k) # (0,0). For any 0 < t; < t3 < 00, it is easy to show that

%) to
/ TW*’H/ / (t+ )75 (14 [a]) "2 dadtdr < oo.
0 t1 "

Thus by (2.6), (3.6), and (2.3), 92 P u satisfies the integrability condition (2.2).
Moreover, for all ¢p € C°(H), the Fubini theorem implies that

/ AP DFu(w, ) LY (x, t)dV (z, t)
H

1 /OO l_ "_K_l/ ﬁ rlﬂ“ ~
= TI# L2 u(x, t+ 7 Ly (z,8)dV (z, t)dr = 0.
F(’VI{—I . R) o I t ( ) ( ) ( )
This completes the proof. O

The following estimate is used in the proof of the reproducing formula for
parabolic Bloch functions.

PROPOSITION 3.3. Let0<a <1, € N§, and k > 0 be a real number.

(1) For any T > 1, there exists a constant C > 0 such that
lafgfu(x,t +5) — P DFu(0,1 + s)|

|| [t —1]
< cun%{ n (3.9)
(1+ 3)7‘@51%@ (1+ S)%Jmﬂ

for allu € B, (z,t) € R* x [T~1,T], and s > 0.
(2) Let (z,t) € H be fived. Then there exists a constant C > 0 such that

18]

|5'f@fU(x,t +5) — 9% PFu(0,1 + s)| < O +s)72 "0,
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for allu € B, and s > 0, where o = min{l,1/2a}.
Proor.
(1) By (1) of Proposition 3.2, there exist constants Cy,Cy > 0 such that
02 DFu(z,t + s) — 08 fu(0,1 + 5)|
< |02 Dru(z,t + s) — 2 DFu(0,t + s)|

+ 102 2Fu(0,t + s) — 02 DFu(0,1 + s)|

1 t
§/ 2| | V202 Dfu(ra, t + s)|dr + ‘/ AP D u(0, 1 + s)dr
0 1

18]

1
gcl/ 2|t + 5)~ SR 1 Oy
0

¢
/ (t+ s)_lfa_“_ldT‘
1

|18]+1

< Cyfa|(t+5) "B E 4 Colt — 1(t+ )%

Since T~! <t < T, we get the estimate (3.9).
(2) Let (z,t) € H be fixed. Then, we can get the desired result by (1). This
completes the proof. O

4. The reproducing formula on the parabolic Bloch space.

In this section, we give the reproducing formula with fractional orders on
the parabolic Bloch space. First, we prepare the following lemma, which is an
important tool for the proof of the reproducing formula.

LEMMA 4.1. Let0<a<1,0>0,0<9d <1, and c1,co > 0. Then the
following statements hold.

(1) If u € B, then for each € > 0, there exists a constant C > 0 such that
u(y, )| < C(1+ 5%+ 57 + [y[**9)

for all (y,s) € H.
(2) If k >0 and 0 < € < g, then for every y € R",

(1+ (c1s +0)° + (x5 + )7 + [y**9)s”
(Lt eas + [y ) Fbese

as s — OQ.
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(3) If k >0 and 0 < € < min{k, o}, then

€ —€ 2ae) ok—1
/ 1+ (c1s+0)*+ (c1s+ )¢+ |y|**°)s AV (y.5) < oo
H

(14 cas + [y|)sate

PROOF.
(1) By (3.3), there exists a constant C' > 0 such that

[uly, 5)| < C(1 +log(1 +[yl) + [log s|)
for all (y,s) € H. Also, for each € > 0, there exists a constant C' > 0 such that
log(1+[y[) < Cly|***, [logs| < C(s* +57°). (4.1)

(2) Since 0 < § < 1, there exists a constant C' = C(cy, ¢, n, a, k,0) > 0 such
that

1+ (c15+6)° + (c15 + 6) ¢ + [y|*°e
(14 cos + |y[2o)zatrte

L+ (s+0)°+ (s+0)° + [y|*™

< C n
SRR MR E
1+ s+ |y|2a5 N s—¢€
(1 + s+ |y|2a)ﬁ+n+a (1 + s+ |y|2a)ﬁ+n+a

1 57¢
C T n -
R e (e e VD

(4.2)

Since 0 < € < 0, we have

(L4 (c15+6)° + (c15+6) 7 + [y[?€)s”
(Lt a5 + [y ) Fnse

<C ! + i —0
: -
L@+ styPe)zateme - (T4 s+ [yPe)eate

as s — 00.
(3) By (4.2), there exists a constant C' > 0 such that
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€ —€ 2ae k—1
/<1+<cls+6> s o) bt
H

(T cas + [y 777

Sn—l SH—E—l
<C 7 + av(y,s).
= /H { (I+s+ [yPoysateto= T (T+s+ y|2a)2u+n+a} (v, )

Sincek —1>k—e—1>—-1land —0 —e < —0 + € < 0, Lemma 2.4 implies that

Snfl Snfefl
dV(y,s) < oo
A e (R MED ER ) A

This completes the proof. O

For 6 > 0 and a function w on H, we define us by us(z,t) = u(z,t+0). First,
we show the reproducing formula for fractional derivatives of us.

PROPOSITION 4.2. Let 0 < o« < 1 and 6 > 0. And let v,k > 0 be real
numbers with v+ k > 0. Then,

us(x,t) —us(0,1) = Cu+n/ D us(y, s)wa (@, iy, s)s" 1AV (y,s)  (4.3)
H

holds for all u € B, and (z,t) € H, where Cy is the constant defined in Theorem
A.

PrOOF. Let u € %, and § > 0. And let m,k € NNy such that m + k > 0.
First, we show that

us(x,t) —ugs(0,1)

(e e)mtF

T(m + k) /H Di"us(y, cr18)wg (@, 1y, ca8)s™ AV (y,5)  (4.4)

for all (z,t) € H and real numbers ¢1,co > 0. We prove the equality (4.4) for
m € N and k = 0. By (2) of Proposition 3.1, (1) of Proposition 3.2, and Lemma
2.4, we obtain

/ DM us(y, crs)||wa@, t;y, cas)[s™ 1V (y, s) < oc.
H

Since Z{"us € b C B, by (1) and (3) of Proposition 3.2, the Fubini theorem
and Lemma 2.5 imply that
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[ 7 usty )l sy ca0)sm V(0. )
H
= / D"us(y, c18) (W(o‘)(x —y,t+ ca8) — W(O‘)(—y7 1+ 025))dysm_1ds
0 R’!L

= / (2" us(z,t + (c1 + c2)s) — 277 us(0, 14 (c1 + c2)s))s™ 'ds. (4.5)
0

Integrating by parts m —1 times, (2) of Proposition 3.3 implies that the right-hand
side of (4.5) is equal to

1

Cate (20 us (@t + (e1 + c2)s) = 27" Tus(0, 1+ (1 + e2)s))s™ ]
1 [
;n+ c2 / (2" us(@, t+ (c1 4 c2)s)
0
_ @tmflu&(o, 1+ (1 + C2)S))sm_2d,9
_%/w@u (x,t+ (c1 + ¢2)s) — Drus(0,1 4 (¢1 + ¢2)s)ds
(Cl+02)m71 0 tUs Ly 1 2 tUs\Y, 1 2

r
= (cl_|(_ﬂz2))m[u6(m’t + (Cl + CQ)S) — U§(07 1 —+ (Cl + 02)3)]80

I'(m
- (Clicsw(w(%t) —ug5(0,1)).

Therefore, we obtain (4.4) in the case of m € N and k = 0.
We show (4.4) in the case of m € Ny and k € N by induction on k. Let
k = 1. If m = 0, then by (1) of Lemma 4.1, for each 0 < & < o, there exists a
constant C' > 0 such that
us(y,c18)| < C(1+ (15 + 6)° + (18 +8) ™% + [y[***) (4.6)

for all (y,s) € H, where 0 = min{1, 1/2a}. By (3) of Lemma 4.1, we obtain

/ |u(;(y,cls)||w(11(x,t;y,025)|dV(y, s) < oo.
H

Hence, the Fubini theorem implies that
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/ us(y, er8)wh (. £y, ¢28)dV (3, 8)
H

1
[us(y, c18) (W (@ — y,t + cas) — W (—y, 1 + c29))]

o Y

C2 JRrR

C

;; / —@tu5(y7 018) (W(a) (LC - Y i+ 028> - W(a)(_yv 1+ CZS))dV(y7 S)
H

By (4.6) and (2) of Proposition 3.1, (1) of Lemma 4.1 and Lemma 2.5 imply that

oo

o 4y

1
e / [us(y, c18) (W (@ =y, t + cas) = W (=y, 1+ c25))]

L uswo) (W (@ = y,t) = W (—y,1))dy

C2 R"

= i(u(;(x,t) - U6(07 1))

Therefore, (4.5) implies that

/ ws(y, 18wl (. £y, ¢28)dV (3, 8)
H

- 0—12(u5(x7t) —us(0,1)) — ﬁ(w(mﬁ —us(0,1))

c1+ e (us(2, 1) —us(0,1).

If m > 1, then (2) of Proposition 3.1, (1) of Proposition 3.2, and (4.5) imply that

/ TP usly, 18\l (@, by, cas)s™dV (g, s)
H

1
(D] us (y, c18)w(z, t;y, c25)s™] Sody

C2 JRn
c
,cj/ D" us(y, e18)wl (2, 1y, cas)s™dV (y, 5)
2 JH

+ﬁ/ D"us(y, crs)wa (@, 5y, c28)s™ 1AV (y, 5)
C )y

___allm+l) _ T(m+1) -
= ol 4 ) (us(z,t) —us(0,1)) + (ot CZ)m(U5(x7t) u5(0,1))
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I'(m+1)
= —— t) — 0,1)).
(Cl +C2)m+1 (u6($, ) U(S( ’ ))
Therefore, (4.4) holds for all m € Ny whenever k = 1.
Let k > 1 and suppose that (4.4) holds for all m € Ny. Then by (2) of
Proposition 3.1, (4.6), (1) of Proposition 3.2, and (2) of Lemma 4.1, we have

DMus(y, c18)wk (2, t;y, cas)s™F =0

as s — oo. Therefore, the assumption of the induction implies that

/ -@trnué (y7 cls)w§+1(x, t? Y, 025)5m+kdv(y7 S)
H

1
=—— | [Z"usly,cr8)wk (@, t;y, co8)s

m+k] 0 dy
Co R

0

— L g us(y, ers)wk (z, y, ca8)s™ TRV (y, 5)
C2 H
m+k

+

C2

/ @?ug(y,Cls)w§(1‘7t;y’025)5m+k71dV(y,5)
H

cal'm+k+1
= R s, ) (0. 1) +

C(m+k+1
- <cl(+c2)m+k+)1(u6(w,t) —u5(0,1)).

T(m+k+1)
C2 (Cl + 02)m+k:

(us(z,t) —ugs(0,1))

Therefore, we obtain (4.4) in case m, k € Ng with m + k > 0.
Next, we show the equality (4.3). Let v,x € Ry \ Ny with v + k > 0. Then,
by (2.4) and (2.5), we have

/ Trus(y, s\t (. £y, 8)s" 1 dV (g, s)
H

_ 1 X =1 ]
_/HF([V—I 71/)/0 T1 '@t U5(y,S+T1)dT1

1

- 00 [k]—r—1 ]'K]( . v+r—1
X T. w N (x,ty, s + T2)dTas dv(y, s).
L([k] — &) /0 ?

By (4.4), the Fubini theorem implies that
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/ Trus(y, s\ (2, s 8)s* 1AV (g, 5)
H

_ 1 1 OOT]'V]fufl OOT[anfl
_F([VW—V)F(W—H)/O ! /0 ?

) / 2 sy, (1 + 7))l (@, y, (1 + 7)8)s I H11aV (y, 5)dradry
H

= (us(z,t) —us(0,1))

L([v] + [&]) i [ R1=r—1
. F([VW - V)F([H—‘ —K) /0 1 /O (r1 +j2 T 2)[VW+D@] dradTy.

Furthermore, it is easy to show that

L'([v] + [x]) °°TM7V71 e rfrlmeml (v + k)
LA o

T([v] = )T ([#] — r) R AN = o

Therefore, we obtain (4.3) in case v,k € Ry \ N. The remaining cases can be
proved similarly. This completes the proof. O

Now, we give the reproducing formula with fractional orders on the parabolic
Bloch space. Theorem 1 is an immediate consequence of Theorem 4.3.

THEOREM 4.3. Let0 < a <1. Andlet v > 0 and x > 0 be real numbers.

Then, the reproducing formula

u(et) = u0.1) = Gt [ Huly, o ti,)s NV (gs) (A7)
H

holds for all u € B, and (z,t) € H, where Cy; is the constant defined in Theorem
A.

PROOF. Let u € %, and (x,t) € H. For 0 < ¢ < 1, Proposition 4.2 implies
that

ws(a,8) — us(0,1) = Cpa / D usly, s\t (@, by, 8)s 1AV (y, 5).
H

First, we show (4.7) in the case of ¥ = 0. Let ¢ = min{1,1/2a} and 0 < ¢ <
min{s,c}. By (1) of Lemma 4.1, there exists a constant C' > 0 (independent of
9) such that
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lus(y, )| S C(L+ (s +6)7+ (s +6) 7%+ [y[**) < C(1 45"+ 57 + [y[**).

Therefore (3) of Lemma 4.1 implies that

c / s (g, )| - [ (s s, 9)| L4V (3, 5)
H

1 5 —e 2ae) k—1
SC’/ (Lfs"+s +|yL Js dV(y,s) < co.
W (s g e

Thus, the Lebesgue dominated convergence theorem implies the equality (4.7) with
v=_0.

Next, we show (4.7) in the case of v > 0. By (1) of Proposition 3.2, there
exists a constant C' > 0 (independent of ¢) such that

'\ us(y, 5)| < Cllul| 2,

for all (y,s) € H. Therefore by (4) of Proposition 3.1, the Lebesgue dominated
convergence theorem implies the equality (4.7) with v > 0. This completes the
proof. O

In the rest of this section, we give the estimate of the normal derivative norm
with fractional orders on the parabolic Bloch space. Let 0 < oo <1 and k > 0 be
a real number. For f € L*, the integral operator PY is defined by

ﬁa'ff(m,t):/Hf(y,s)w’;(a:,t;y,s)s“_ldV(y,s) (4.8)

for all (z,t) € H. In the following proposition, we show that }30’? is a bounded
linear operator from L onto %,,.

PROPOSITION 4.4. Let 0 < a <1 and k > 0 be a real number. Then the
following statements hold.

(1) For each (8,k) € (IN§ x No) \ {(0,0)},

0D P [ (w.t) = / Fly, )07 WD (@ =y, + 5)s" AV (y, )
H

for all f € L™ and (x,t) € H.
(2) Pr is a bounded linear operator from L™ onto AB,.
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PROOF.
(1) Let f € L* and (z,t) € H. By (4) of Proposition 3.1, we obtain

/ £ )| by, )]s™dV (3, 5) < oo
H

Also by (2) of Proposition 2.3 and the condition W(®) € C*(H), differentiating
through the integral, (3) of Proposition 2.3 implies that

DB BE f (1) = / F(y, $) (00 DEwt (w11, ) 5" dV (3, 5)
H
- / Fly, )02 TETFW @ (2 — £ 4 5)s*1dV (3, 5).
H

(2) First, we show that 15"”” is a bounded lincar operator from L™ to %,.
Let f € L*°. By the definition of w¥, we have ]B(ff((), 1) = 0. Also by (2) of
Proposition 2.3 and (1) of Proposition 4.4, for each (8,k) € (IN§* x Np) \ {(0,0)},
we obtain

|08 F Pr f ()| < Ct= 50 || ]| e

Therefore we have ||P% f||lz. < C||f||ze. We show that P# f is L(®)-harmonic on
H. By (4) of Proposition 3.1, for any 0 < t; < ta < 00, there exists a constant
C > 0 such that

to
/ / / 1 9)l [ b, 8)] 551V (g, 8)(1 + )2 drdl
t1 n JH

ta
< Ol fllze / / (1 +log(1 + |z|) + | log t|)(1 + |=|) "~ 2*dxdt
t R™

e <] rn= 1
<C’/ 1+log(1+r))dr<00.

1 + ’I’ n+2a

Therefore P” f holds the integrability condition (2.3) for all f € L*°. Hence P” f
is L(®) -harmonic on H. Thus, we obtain P“ is a bounded linear operator from
L to @a.

Next, we show that Igo’f is onto. In fact, for each u € @a, (1) of Proposi-
tion 3.2 implies that tZ;u € L°°. Furthermore by Theorem 4.3, we have u =
Cro1 P5(tPyu). This completes the proof. O
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Now, we give the estimates of the normal derivative norm of parabolic Bloch
functions.

THEOREM 4.5. Let0 < a <1. And let v > 0 be a real number. Then there
exists a constant C' > 0 such that

C g, < ([ Zul| o < Cllulls,

for allu € zé?;a.

PROOF. Let v > 0 be a real number and u € %,. By (1) of Proposition
3.2, there exists a constant C' > 0 such that

||t”@;’u||Lx < Cllul ez, -

On the other hand, Theorem 4.3 implies that u = C,41 PL(t*27u). Hence by
Proposition 4.4, there exists a constant C' > 0 such that

|ull s, = C||PA(t" 7} )]

. < Olt" P u] .

This completes the proof. O

5. Dual and pre-dual spaces of parabolic Bergman spaces.

In this section, we give the proofs of Theorems 2 and 3, that is, we show dual
and pre-dual spaces of bl ()\) are isomorphic to %, and %, respectively. For
u € bl ()\) and v € B, we define

(u,v)y = CAH/Hu(w,t)@tv(m,t)t’\+1dV(x,t). (5.1)

Then, we clearly have
[(u, Al < Cllullr oy 0]l 2, - (5.2)

Now, we show that the dual space of bl ()) is isomorphic to %,.

THEOREM 5.1. Let 0 < a <1 and A > —1. Then (bL(A\))* = B, under the
pairing

(I)v(u) = <uvv>>\7 u € bé(/\)v
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where ®, is a linear functional on bl(\) induced by v € B Moreover, there
exists a constant C' > 0 such that

CHvllz, < 1] < Cllvla.

forallv e %’7&.

PROOF. We define a map ¢ = 1y : Bo — (bL(A\))* by ¢(v) = ®,. Then by
(5.2), ¢ is bounded, that is, |®,|| < C||v| 4, for some C' > 0.

We show that ¢ is injective. Let ®, = ¢(v) = 0. We show v = 0. In fact,
by (2) of Proposition 3.1, for each (z,t) € H, w)i*(z,t;-,-) € bL()\). Therefore
Theorem 4.3 implies that

v(z,t) = C)\+2/ Zly, s)wat (@, by, 8)sM AV (y, 5) = Au(wp ™ (2,85, ) = 0.
H

Thus ¢ is injective.

We show that for ® € (bL()))*, there exists v € %, such that 1(v) = ® and
v, < C|®]| for some C > 0. Let ® € (bL(\))*. Since (L'(\))* = L, by
the Hahn-Banach extension theorem and the Riesz representation theorem, there
exists f € L such that

B(u) = /H w(a, ) f (2, AV (2, 1)

for all u € bL(X\) with ||®|| = || f]|z. Let v = PM1f, where PM1 is the operator
defined in (4.8). Then by (2) of Proposition 4.4, v € %, and there exists a
constant C' > 0 such that ||v]|z, < C| fllLe = C||®||. We claim ¢(v) = ®. By (1)
of Proposition 4.4, we obtain

GRS (w.0) = [ fu )7 WO = gt + )PV (19)
H
Therefore, the Fubini theorem and Theorem A imply that
D, (u) = C>\+2/ u(x, t) Dyv(x, )t* T 1dV (z,t)
H

= Cryo / w(z, 1) (2o PAT f(a, )MV (2, 1)
H
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=CA+2/Hu(:v7t)/Hf(y, )W (1 =y, t+ ) dV (y, )tV (x, 1)
= [ Cuia [ w0 B Wy s 0PV .0 ()5 0V (3,9
= [ w909V (05) = 2w

for all u € bl ()\). Thus we obtain ¢(v) = ®. This completes the proof. O

In the rest of this section, we show that the pre-dual space of b ()) is iso-
morphic to %, 0. The following lemma is useful to the proof of Theorem 5.3. Let

Co(H) be the set of all continuous functions on H which vanish continuously at
OH U {o0}.

LEMMA 5.2. Let0 < a <1 and x > 0 be a real number. Then,
By = {u € BuitPou € Co(H)} = {Prf; f € Co(H)}.

PROOF. The first equality is established in Lemma 9.2 of [4]. Therefore
we only show the second equality. Let f € Co(H). Then we show that u € B,
and tZyu € Co(H) where u = P%f. Indeed, by (2) of Proposition 4.4, we have
U = Igo’ff € éa. For any € > 0, there is a compact set K in H such that
|f(z,t)] <eforall (x,t) € H\ K. By (1) of Proposition 4.4, we have

t‘@tﬁ,ff(x, t)] = t‘ / Fly,$)2r W (z — g, t + 5)s"1dV (y, 5)
H
< ts/ |2 W D (@ —y,t + 5)[s"LdV (y, 5)
H\K
+t/ |fy, )27 W (@ —y,t+5)[s" 1V (y,5).  (5.3)
K

The first term of the right-hand side of (5.3) is less than Ce by (2) of Proposition
2.3. Also, since K is compact, (1) of Proposition 2.3 implies that the second
term of the right-hand side of (5.3) tends to 0 as (z,t) — 0H U {oo}. Therefore
we obtain tZyu € Co(H). On the other hand, we can easily prove the converse
inclusion by Theorem 4.3. This completes the proof. O

Finally, we show that the pre-dual space of bl ()) is isomorphic to gz(x,O-
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THEOREM 5.3. Let 0 < a <1 and A > —1. Then, bl()\) & (Bao)* under
the pairing

U, (v) = (u,v)y, vE éa,m

where W, is a linear functional on %7(1’0 induced by u € bl (\). Moreover, there
exists a constant C > 0 such that

CHullprony < W]l < Cllullzr(n)-

PROOF. We define a map m = m : bL,(A) — (Zan)* by m(u) = ¥,. Then
by (5.2), m is bounded, that is, | ¥, < C|luz1)-

We show that 7 is injective. Let ¥,, = 7(u) = 0. We show u = 0. By Theorem
A and (3) of Proposition 3.1, we obtain

U(CE, t) = C)\+2/ U(y’ s)@g\+2W(a) ((E - Y, t+ S)S/\+1dV(y7 8)
H

= C)\+2/ u(y, s)Z(wat(z, t;y,8)) s M dV (y, 5)
H
= Wu(w2+1(m,t; ) =0

for all (x,t) € H. Thus 7 is injective.

We show that for each ¥ € (337&’0)*, there exists u € b, (\) such that ¥ = 7(u)
and |lulpiny < C||¥| for some C' > 0. Let ¥ ¢ (9?04’0)*. And let A be a
functional on Co(H) with A(f) = Cxs2¥(P2T1f). Then by (2) of Proposition
4.4 and Lemma 5.2, A is a bounded linear functional on Cy(H ). Therefore by the
Riesz representation theorem, there exists a bounded signed measure y on H such

that
A(f) = /H £ tydpu(z, )

for all f € Co(H) and ||u]| = ||A]] < C||¥|| for some C' > 0. We define a function
u on H such that

u(e,t) = [ FW o~ gt 4 5)sduy.s).
H

Then by (2) of Proposition 2.3 and the Fubini theorem, we have
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lallisy < [ [ 122 W @ = b+ ) sl 0. 5)6dV .
:/ / |.@?+2W(a)(x—y,t+s)’tAdV(z,t)sd|u|(y,s)
<c [ s sdpl(w.s) = Clul.

Therefore we obtain ||ul|z1(x) < C||¥|. Furthermore, since 2, 72W (@) (z —y, t+s)
is L(®)-harmonic with respect to (z,t) by (4) of Proposition 2.3, u is also L(®)-
harmonic on H, that is, u € bL(\). We claim ¥ = 7(u). Let v € %70“0. Then by
Theorem 4.3, we have v = C/\+2ﬁo/>+1(8@5v). Therefore by the definition of A, we
obtain

U(v) = C,\+2\If(ﬁc’y\+1(895v)) = A(sPsv) = /H Dsv(y, 8)sdp(y, s). (5.4)

Also since v = Cy,o P21 (tZ,v) by Theorem 4.3, (1) of Proposition 4.4 implies
that the right-hand side of (5.4) is equal to

Chi2 /H /H Dv(x, ) DIT2PW D (y — 2, 5 + OPTLAV (2, ) sdp(y, s).
Therefore by (2) of Proposition 2.3, the Fubini theorem implies that
W) = Crus [ [ W 0 =yt + sy, ) G, 0 (0,1
~ Cyi /H (e, ) Do, )TV (2, ) = W ().

Thus we obtain ¥ = 7(u). This completes the proof. O

6. Bilinear forms on bl (A) X Za.

In this section, we generalize the integral pairing (-, )5 of (5.1). Let 0 < aa < 1
and A > —1. For real numbers v and &, a bilinear form ©5" on b} (\) x %, is
defined by

0% (1, 0) = Copiass / Dl ) Do, )NV (x, 1),
H ~
u€b(\), v€ By (6.1)
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Here we remark that (u,v)y = ©%"(u,v). In the following theorem, we show that
the integral pairing (-, ), can be generalized.

THEOREM 6.1. LetO<a<land A>—1. Ifv > —(A+1) and k > 0, then
Oy (u,v) = (u,v)y, u€by(N), ve By

PROOF. Let u € bL(A\) and v € Z,. Then by Theorem 4.3 and (1) of
Proposition 4.4, we have

@tmv(fl% £) = C)\J,-Q.@[K] PM(sDw)(,t)

= O /H Doy, )2/ TTIWE (@ —y £+ 5)5 AV (y, 5).
Furthermore, (2) of Proposition 2.3 and (2.6) imply that
/OOO rlrl—r—1 /H |Zyv(y, s)| ’@J”H)‘HW(“)(QT —y,t+T+ s)|s’\+1dV(y, s)dr
< Cllo)a, /OOOTW—K—l(t o) Wdr = ctx.

Therefore by the Fubini theorem and (3) of Proposition 2.3, we obtain

Dfv(x,t) = @;(r'ﬂ*“)@tmv(:c,t)

O /°° o
I([k] = 5) Jo

* / Doy, )2/ TIIWE (@ =yt + 7+ 5) AV (y, 5)dr
H
=Chi2 /H D(y, s)@tf(m7”)@t('i]+>‘+1W(a)(:E —y,t+8)s* TV (y, s)
= C)\+2 / .@t'U(lh S)-@f+>\+1w(a) (JC -y, t+ S)S/\+1dv(y7 S)'
H

Hence we have
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00" (u,0) = Copmirst / DV, ) D, NV (3, 1)
H
= u+n+>\+1c)\+2/ Z{ u(w,t)
H

* / Deo(y, $)F W (@ =yt 4 5)M AV (g, )8 NV (a, 1),
H

By (1) of Proposition 3.2, (2) of Proposition 2.3, and (3) of Proposition 2.7, there
exists a constant C' > 0 such that

[ 17tute0] [ 120

X }_@f“‘“W(O‘) (x—y,t+s) |s’\+1dV(y, stV TRV (2, 1)

< Cllvllgea/ | ¢ u(a, )]tV (2,8) < Cllolla, llull oy < oo
H

Therefore the Fubini theorem and Theorem A imply that

Oy (u,v) = CA+2/ (Cu+n+A+1/ Dy (e, )7
H H
x W (y —z, s + )" AV (, t)) Do(y, s)sM AV (y, s)
= CA+2/ u(y, s)Zwv(y, s)s T HdV (y, 8) = (u,v)x.
H

This completes the proof. O

By Theorem 6.1, we give a generalization of the integral pairing (-,-)x. By
(2) of Proposition 2.7, the relation of the duality (b2 (X))* 2 b%()) is given by the
pairing (6.1) with v = k = 0. However, we do not know whether our generalization
(6.1) holds in case x = 0. In Theorem 6.5 below, we show the generalization of the
integral pairing (6.1) holds for k = 0 on a dense subspace of b, (\). We introduce
a function space .# (1), which will be a dense subspace of b? (A). For a real number
7, let

Z(n) = {u € b (1 +t+ |z**) 2= u(z, t) is bounded on H}.

PROPOSITION 6.2. Let0<a<1l,1<p<ooand\>—1. Ifn> (A+1)/p,
then #(n) is dense in bP(N).
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PRrROOF. First, we show that () C bE()\). Let uw € #(n). Then, u is
L{®)_harmonic on H. Moreover by Lemma 2.4, there exists a constant C' > 0 such
that

tk
DA

Thus we have u € b2 (\).
Next, we show that .#(n) is dense in b2 (\). Let w € bE(\). Taking an
exhaustion {K;} of H, we define a function u; such that

uj(z,t) == C, /H u-xr; (Y, 8)ZPW ) (z —y, t + 5)s" 1AV (y, 5),

where X, is the characteristic function of K;. Then by (1) of Proposition 2.7, we
obtain

s = wsll ooy = [P = a6 oy < Cllw =X, oy = 0, (G = ).

Finally, we show u; € (). By (1) of Proposition 2.6 and (1) of Proposition
2.3, there exists a constant C' > 0 such that

’ / u Xk, (Y, ) ZPW D (z —y, t + 5)s" 1AV (y, 5)
H

< / fuly, $)||ZIW (2 — g, 1 + )|s"dV (g, 5)

J

(M) 491
< C/ —dV (y, s).
> KJ. (t+$+|x7y|2a)%+7] (yﬂ )

Since K; is compact, we obtain

s~ (Fa A L H+n—1 C
——dV (y,s) < —
[ T E Y 9 S G ppE

This completes the proof. O

In order to prove Theorem 6.5, we need the following proposition. We remark
that the proof of Proposition 6.3 is similar to that of Proposition 5.8 of [4]. Thus
we omit the proof.
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PROPOSITION 6.3. Let 0 < a <1 and A > —1. Then for every u € bl ()\)
andt >0,

/ i u(z,t)dx = 0.

In order to prove Theorem 6.5, we also prepare the following lemma.

LEMMA 6.4. Let0 < a <1, A>-1,np>X+1,andv > —(A+1). If
u € S(n), then

/ |27 u(z, t)|(1 4 log(1 + |z[) + |log t|)t* T dV (z,t) < oc. (6.2)
H

ProoF. Let u € S(n). First, we show the case v < 0. By the definition of
S(n) and (2.6), there exists a constant C' > 0 such that

| DY u(e, )] < O+t + [a]>*) 217",

Therefore by (4.1) and (3) of Lemma 4.1, we obtain (6.2) in the case of v < 0.

Next, we show the case v > 0. Since u € S(n) C bl (\) by Proposition 6.2,
differentiating through the integral, Theorem A and the Fubini theorem imply
that

D u(z,t) = C,\+2/ u(y, s)@t"+’\+2W(a)(x —y,t+ s)s’\+1dV(y, s).
H

Hence by the Fubini theorem and the definition of S(7), there exists a constant
C > 0 such that

/ | D2 u(r, )] (1 + log(1 + []) + | log €] dV (z, 1)
H

SC/ / lu(y, 8)|| 27 ATPPW ) (2 — y,t + 5)|
HJH

x sV (y, )(1 + log(1 + |z|) + |log t|)t* T AdV (x, 1)
S/\+1

<c / .

=) T B

x (1 +log(1 + |z|) + |log t|)t"TaV (x, t)dV (y, s). (6.3)

/ |@£/+A+2W(a)(l, _ y,t+s)|
H
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Here by (4.1), we can choose € > 0 small enough, and
1+1log(1+ |z]) + |logt| < C(1 4+ 75 +t° + |2|?*)

for some C > 0. Therefore, (1) of Proposition 2.3 and Lemma 2.4 imply that

/ |20 PP W ) (2 — gy, t + 5)| (1 + log(1 + |z]) + [log t])t* T dV (2, )
H

<C/ (1+t75+t5+|x|2aa)tu+)\
- H (t + s+ ‘J; — y|2a)%+v+)\+2

tu+)\ tVJr/\fa tu+)\+5
<c / V()
e O

dV (z,t)

|1.|2045t/\
[, e g )

2cee4 A
t
SC<51+51€+31+E+/ ‘IE|
H

(ETFSrETEE == t)>. (6.4)

Furthermore, we consider

2ae A
/ i v (z,1)
m (

E4 sty B

/oo/ |x‘2ast)\ dv( t)
- n J/‘y
0 Jial<aly| (t+ s+ |z —y|2e)a A2

o0 |£L"2a6t)\
+/ / - dv(z,t).
0 Jiaps2p E+ s+ |z —y|2e)za TAT2 ’

If |z| > 2|y|, then we have |x — y| > |z| — |y| > |z|/2. Hence Lemma 2.4 implies
that

‘x|2astk
f e Sy @

- C/oo/ |y|2o¢5t)\ dv( t)
n x’
T Jo Jigi<opy) (E 4 s+ |z — y[2e)za TAT2

C/OO/ ‘$|2a€t>‘ ( )
+ m dV(x,t).
0 Jiasany (E+ s+ [z]2) 2 TAT2
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9 1 |2ast)\
ly[***s™ / / dV(x,t))
( \z\>2\y\ t+ s + |.’I/'|2a)20< +A+2

[e%) t)\
e [ —)
0 Japsay (E+ s+ |z]2e)za TAT2=E

< C«(|y|2a5571 4 871+5)

IN

for some C' > 0. Thus by (6.4), there exists a constant C' > 0 such that

/ ’@t”Jr)‘JrzW(o‘)(x —y,t+ s)|(1 +log(1+ |z|) + \logt\)t’\dV(x,t)
H
< 08_1(1 R |y‘2aa)_

Therefore by (6.3) and (3) of Lemma 4.1, we have

Y u(z, )|(1 +log(1 + |z|) + |10gt|)t”+)‘dV(o:,t)

—€ 2ae
<C/ (1+s7°+ s + |y[**)
(14 s 4 [y[2) 3+

dV(y,s) < oo

Thus we obtain (6.2) in the case of v > 0. This completes the proof. O
Now, we show ©5°(-,-) = (-,-)x on S(1) X B

THEOREM 6.5. Let0<a <1, A>—-1,andn>A+1. Ifv>—-(A+1),
then

0% (u,v) = (u,v)x, weSm), ve B,
PrOOF. Letw e éa. Then by Theorem 4.3, we have
v(x,t) = CAH/HQtv(y,s)wé“(m,t;y,s)s’\HdV(y,s).
Therefore we obtain

0% (u,0) = Cpprsn / D ule, o(w, AV (2, 1)
H
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= u+/\+1CA+2/ @tyu(%t)/ Zvo(y, s)
H H
x wAt(z, t;y, s)sM AV (y, s) VAV (2, ).
Here by (3.6) and (4) of Proposition 3.1, there exists a constant C' > 0 such that
/ |Zevly, s)||wdt (2, t:y, 5) |7 dV (y, 5) < C(1 + log(1 + ) + |log ).
H
Hence Lemma 6.4 and the Fubini theorem imply that
0% (w,0) = CuanniCoiz | [ Fula, 1 (o tiy.s)
HJH
x t" AV (2, 1) Zyo(y, s)s* TV (y, s).

By (3) of Proposition 2.6 and (3) of Proposition 2.7, we have Z/u € bl (v + \).
Therefore Proposition 6.3 implies that

/H DV u(x, ) D)W () (—y, 1 + s)t" AV (2, t) = 0.
Thus by Theorem A, we obtain
Cuirt1 /H D u(z, )wr T (@, try, )tV AV (2, 1)
= Chyrtl /H DY u(z, t)@t)‘HW(a) (y —z,5 + )t dV (x,t) = u(y, s).
Therefore we have
@K’O(u,v) = Chy2 /Hu(y,S)Qtv(y,s)s/\JrldV(y,s) = (u, v)x.

This completes the proof. O

Finally, we discuss isomorphisms on parabolic Bergman spaces. We recall the
definition of the map 7 from bl (\) to (%a,0)* in the proof of Theorem 5.3. For
A> =1, m=my:bL(\) = (Bayo)* is defined by m(u) = ¥,,, where

U, (v) = (u,v)y, vE g’Za,o. (6.5)
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Hence, bl (A1) = bl ()\2) under the Banach space isomorphism
7r;21 oy, bi()\l) — bi()\g).

We study the isomorphism 77;21 0T, -

THEOREM 6.6. Let 0 < a < 1. And let Ay, Ay > —1. Then, 7, ! oy, (u) =
2> for all u € bL(\).

PROOF. Let u € bl ()\1). Then we have 7y, (u) € (3??&)0)*. Therefore there
exists a function U € bl (\2) such that 7y, (U) = 7y, (u). It follows that

(U v)x, = (u,0), (6.6)

for all v € @aﬂ By Theorem 6.1 with v = Ay — A1, we obtain

(u,v)n, = @iff)‘l’l(u,v) = <@t>‘2_>‘1u,v> (6.7)

A2

for all v € 3?&’0. Hence by (6.6) and (6.7), we have
(U - @?2—/\1%”%\2 =0

for all v € @a’o. Since U — 2> *u € bl (\2) by (3) of Proposition 2.6 and (3) of
Proposition 2.7, we obtain U — 9;‘27)‘111 =0 on H. This completes the proof. [J
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