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Abstract. We compute the generalized Lefschetz number of orientation-
preserving self-homeomorphisms of a compact punctured disk, using the fact that
homotopy classes of these homeomorphisms can be identified with braids. This
result is applied to study Nielsen-Thurston canonical homeomorphisms on a
punctured disk. We determine, for a certain class of braids, the rotation number
of the corresponding canonical homeomorphisms on the outer boundary circle. As
a consequence of this result on the rotation number, it is shown that the canonical
homeomorphisms corresponding to some braids are pseudo-Anosov with associ-
ated foliations having no interior singularities.

1. Introduction.

The generalized Lefschetz number is one of the central notions in Nielsen
fixed point theory. The classical Lefschetz number L(f) is a well-known homotopy
invariant for proving the existence of a fixed point of a continuous self-map f:
X — X on a connected, finite cell complex X. It coincides with the fixed point
index of the whole set Fix(f) of fixed points, and hence the non-vanishing of this
number implies that f has a fixed point.

The generalized Lefschetz number Z(f) is a refinement of the Lefschetz
number obtained by decomposing the fixed point set Fix(f) into finitely many
equivalence classes called fixed point classes. On the fundamental group 71 (X), an
equivalence relation, called the Reidemeister equivalence, is defined using the
induced action f; of f. An equivalence class under this relation is called a
Reidemeister class. Then, a Reidemeister class is assigned to each fixed point, and
the set of fixed points to which a given Reidemeister class « is assigned is called
the fixed point class determined by a. The compactness of X implies that there
are only finitely many Reidemeister classes determining non-empty fixed point
classes. This fact enables us to define the generalized Lefschetz number Z(f) as
the formal sum of the Reidemeister classes with each class being indexed by fixed
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point index of the corresponding fixed point class. Hence, Z(f) is not an integer,
but an element of the free abelian group ZZ(f,) generated by the set Z(f,) of
Reidemeister classes. The non-vanishing of the coefficient of a Reidemeister class
o in Z(f) implies the existence of a fixed point with « assigned. Thus, by
computing the generalized Lefschetz number, we can prove the existence of a fixed
point corresponding to each term in Z(f). The generalized Lefschetz number is a
homotopy invariant, and the classical one L(f) is obtained from Z(f) by
summing up the coefficients. See e.g. [6], [14], [16] for general references of
Nielsen fixed point theory.

Practically, the generalized Lefschetz number is useful in studying fixed
points only in the case where it is computable. Unfortunately, it is very difficult to
compute it from the definition in general. The Reidemeister trace formula [21],
[24], [13] provides a method to compute it. The classical Lefschetz number L(f) is
known to satisfy the following trace formula: If f is a cellular map, L(f) is equal to
the alternating sum of the traces of the action of f on the chain groups of X.
Analogously, the generalized Lefschetz number Z(f) satisfies the Reidemeister
trace formula: Z(f) is equal to the alternating sum of the Reidemeister traces,
which are the traces of the action of a lift f on the chain groups of the universal
cover of X. Despite the existence of this formula, however, it is still difficult to
make a detailed computation, particularly in the case of fundamental group being
infinite and non-abelian. In this case, the author does not know any example of
concrete computations carried out on large classes of maps.

In this paper, we compute the generalized Lefschetz number for orientation-
preserving self-homeomorphisms f of a compact punctured disk which preserve
the outer boundary circle (Theorem1). Such homeomorphisms are of great
importance in the topological study of 2-dimensional dynamical systems, for they
include the homeomorphisms which are obtained from orientation-preserving disk
homeomorphisms by the blow-up construction at a finite, interior invariant set
(see e.g. [5, Section 1.6]). We should note that our computation is not complete in
the sense that the problem of distinguishing Reidemeister classes is left unsettled.
This means that we shall obtain an element in the group ring Zm(X) which is
mapped to the generalized Lefschetz number under the projection from Zm (X) to
Z%(fr). Thus, our result may be thought of as giving an “upper bound” of the
generalized Lefschetz number. Our computation utilizes the fact that the
homotopy class (or equivalently the isotopy class) of f can be identified with a
braid. We show that a braid is designated by a finite sequence of positive integers,
and we shall compute the generalized Lefschetz number directly from this
sequence. For surfaces with boundary, Fadell and Husseini showed in [7] that the
computation of the Reidemeister trace is reduced to that in the Fox free
differential calculus on free groups. Our result is obtained by carrying out this
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computation. In [19], the author computed the image of the generalized Lefschetz
number Z(f) under the projection from ZZ(f,) to the ring Z[t,t™!] of integer
polynomials in the variable ¢ and its inverse. The present result improves the
computation there.

It is a natural question whether our method is applicable in the general case
where f may not preserve the outer boundary circle. In this case, f is thought of as
an orientation-preserving homeomorphism on a punctured sphere, and its
homotopy class is identified with a braid on a sphere. Our method is based on
the fact that a braid on a plane is designated by a finite sequence of positive
integers. At this moment, the author does not know a similar fact on a sphere, and
cannot give an answer to the question.

On surfaces with boundary, Wagner [23] exploited an algorithm to compute
the generalized Lefschetz number for a continuous map whose action on the
fundamental group satisfies an algebraic condition. This condition is satisfied by
most of continuous maps, but not by homeomorphisms. Therefore, the Wagner’s
algorithm is not applicable to our case.

We give two applications of our result in Section 4. The Nielsen-Thurston
classification theory of isotopy classes of surface homeomorphisms provides a
representative ¢, called a canonical homeomorphism in each isotopy class of
surface homeomorphisms. Canonical homeomorphisms play an essential role in
the study of dynamics of surface homeomorphisms, because it has the “simplest”
dynamical complexity among the homeomorphisms in its isotopy class. For
instance, all the periodic points of ¢ persist under homotopy. We apply our result
on .Z(f) to study periodic points of canonical homeomorphisms on a punctured
disk: We determine, for a certain class of braids, the rotation number of the
corresponding canonical homeomorphisms on the outer boundary circle (Prop-
osition 2).

The second application concerns the problem of determining the type of the
canonical homeomorphism in a given isotopy class. There is an algorithm to solve
this problem due to Bestvina and Handel [2]. Similar algorithms for the disk case
were given in [9],[18]. Also, different algorithms were given in [1],[11]. Our
theorem provides an algebraic approach to this problem. We show that our result
on the rotation number on the outer boundary circle implies that the canonical
homeomorphisms corresponding to some families of braids are pseudo-Anosov
with associated foliations having no interior singularities (Proposition 3).

In the last section, as a by-product of an argument in the proof of
Proposition 2, we give a lower and an upper bound for the Nielsen number N(f)
for the class of braids treated in Proposition 2.

ACKNOWLEDGEMENTS. The author would like to thank the referee for



1208 T. MATSUOKA
making helpful suggestions that improved exposition of the paper.

2. Generalized Lefschetz number.

We recall the definition of the generalized Lefschetz number. Let X be a
connected finite cell complex, and f : X — X a continuous map. Let Fix(f) be the
fixed point set of f. Choose a base point xy of X, and let m denote the fundamental
group 71 (X, zp) of X.

Given a homomorphism ¢ : 7 — 7, two elements A\, Ay of 7 are said to be
Reidemeister equivalent with respect to ¥ (or ¥-conjugate) if there is a A € 7 such
that

Ao = (M)A A

An equivalence class under this equivalence relation is called a Reidemeister class.
Let Z(1) denote the set of Reidemeister classes, and ZZ (1) the free abelian group
generated by the elements of Z(v).

Choose a path 7 from zg to f(xp). This is called a base path. Let fr:7m—
denote the composition of f. : m (X, zo) — m (X, f(x¢)) with the isomorphism
b (X, f(xo)) — m (X, x0) induced by 77!. We shall consider Reidemeister
classes with respect to fr. For x € Fix(f), take a path [ from the base point xy to x.
Then, it is easy to see that the Reidemeister class represented by [r(fol)l™!] € 7
is independent of the choice of [. This class is denoted by R(x) and is called the
Reidemeister class (or a coordinate) of x. For a Reidemeister class a € Z(fx), let
Fix,(f) = {z € Fix(f) | R(xz) = a}. This set is called the fized point class of f

determined by a. We then have the decomposition

Fix(f)= |J Fixa(f).

a€X(fr)

The compactness of X implies that Fix,(f) is empty except for finitely many a.
For an isolated set S of fixed points of f, let ind(S) denote the fixed point index of
S with respect to f.

DEFINITION 1. The generalized Lefschetz number Z(f) of f is defined by

Z(f)= > ind(Fixa(f)) o € ZR(f,).
€% (fr)

The generalized Lefschetz number is a homotopy invariant in the following
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sense: Let g: X — X be a continuous map homotopic to f through a homotopy
{ht}y<t<1- As a base path for g, take the composite of 7 with the path h(z)
(0 <t < 1) so that we have f, = g,. Then, the Nielsen fixed point theory asserts
the equality .Z(f) = .Z(g).

Let X be the universal covering space of X. For integers g, let C'q()N() be the
g-chain group of X. The action of 7 on X induces an action of the group ring Zr on
C,(X). Then, C,(X) becomes a finitely generated free Zm-module. If f is a cellular
map, its lift f induces the twisted-module homomorphism fﬂq : Cq(f() — C’q()z').
Then, a trace tr fﬁq is defined as an element of ZZ(f;). The Reidemeister trace
formula [21], [24], [13] asserts that

L(f) =D (=1)"tr fiy.

q=0

Note that the classical Lefschetz number is equal to the sum of the
coefficients in .Z(f), and the Nielsen number N(f) is the number of Reidemeister
classes with non-zero coefficients in .Z(f).

3. Computation on punctured disks.

We shall fix an integer n with n > 3. Let D,, be a compact n-punctured disk,
namely, it is a compact surface obtained from a closed disk D by removing the
interiors of n disjoint closed disks D(1),...,D(n) contained in the interior of D.
D, has n + 1 boundary circles. One of these is 9D called the outer boundary circle
of D,, and the others dD(1),...,0D(n) are called the inner boundary circles of
D,,. Let Homeo(D,,dD) denote the set of orientation-preserving homeomor-
phisms f : D,, — D,, which preserve the outer boundary circle 0D setwise. In this
paper, we shall compute the generalized Lefschetz number Z(f) for any f €
Homeo, (D,,,dD) up to distinguishing Reidemeister classes.

An isotopy class of such homeomorphisms can be identified with a braid: Let
Iso; (D,,0D) be the group of isotopy classes of homeomorphisms in
Homeo, (D,,,dD). Let B, denote the n-braid group. Then, we have an iso-
morphism of groups

ISO+(Dn7 aD) - Bn/Zna

where Z,, is the center of B,. This identification is defined in the following way:
Choose an isotopy { fi : D — D}, such that fy =id and that f; coincides with
f on D,. The existence of such an isotopy is guaranteed using the well-known
Alexander’s trick. Then, the subset J,o,-;(fi(D(1)U---UD(n)) x {t}) of D x
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[0,1] consists of disjoint n tubes. If we regard each tube as a string, we obtain an
n-braid. We denote this braid by 8(f), and call it the braid of f. The element of
the quotient group B,,/Z, represented by B(f) does not depend on the choice of an
isotopy { fi}. Thus we obtain a map Iso,(D,,0D) — B, /Z,. It is known that this
map becomes an isomorphism.

We can assume that the centers of the sub-disks D(1),..., D(n) lie on a line in
that order, hence so do the initial points of the braid 8(f). For: =1,...,n— 1, we
denote by o; the i-th elementary braid, in which the i-th string overcrosses the
(i + 1)-th string once and all other strings go straight from the top to the bottom.
The braid group B, admits a presentation with generators oi,...,0,_1 and
defining relations (see e.g. [3]):

0i0j= 0;0; lfll—j|2271§27]§n—1,

0i0i410; = 0;410;0;41 1 <i<n—2.

Define p € B,, by p = 05,1 -+ - 0901. Let 0 be the full-twist n-braid defined by
0 = (0102-+-0,1)". 0 is a generator of the center Z,. In particular, it commutes
with every braid. Note that p" is equal to 6, since p = A(oy - -+ 0,_1)A~!, where A
is a half-twist braid (o109 - 0,-1) - (0109)07.

For a positive integer 4, let 3(i) = o' p € B,.. Let d be a positive integer. Given
a sequence I = (iy,...,i4) of positive integers, define an n-braid (1) by

BI) = Blir) -+~ Blia) = oy'p---o'p.

The following proposition has been proved in [19]. We give here a slightly
simplified proof.

PROPOSITION 1.  Any braid is conjugate to a braid of the form 0*3(I), where
1 is an integer and I is a finite sequence of positive integers.

PROOF. By the defining relations of B,, it is easy to see that for i =1,...,
n—2,

Oip = pPOijt1-
This implies that
o = plfio_lpifl (1)

for any i. Also, we have
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(aup)" " = 0. (2)
For any 4, we have by (1), (2)

-1 2—i

ot =p' o = g o) T T =07 (0up)"

pi—1.

This and (1) imply that o;’s and o; s can be written as a product of o1, p, p~!,
and 7', and hence any braid 3 is conjugate to a braid of the form HMUJflpll
a’f*“ph, where u <0, k1,...,ks > 0and ly,...,l; € Z. We can rewrite it in the form

where all the exponents of p are equal to 1. In fact, since p~! = 9‘1(01,0)"7201 by

(2), we have p/ = p"p~!l = Gk_l((alp)"_Zal)l for any integer j, where k is an integer

and 0 <! <n with j=kn — 1. O

Note that the arguments in the proof also give a procedure how to find u, I
and v with 3 = y~10*3(I)y for a given 3 € B,.

EXAMPLE 1. Let n = 3 and consider o105 "'. Since 05! = 67!(a1p)p, we have
o105 =071 p?. p? is equal to (o1p)oy, since kn — 1 = 2 for k =1 = 1. Therefore,
o105t = 07103 poy = 071071 3(4)0y. Hence, u = —1,1 = (4), and v = 0.

REMARK 1. p and [ in this proposition are not unique. For instance, we
have by (2)

B, 1, 1,5) = oy (o) alp = 68(i+j— 1).
n—2

Also, in Bs, since (2) implies o1po; = 0p~! and hence (o1p0y)” = 6%p~2 = Op, we
have for 4,7 > 2

B(i,2,5) = oi M (o1pon) o) ' p=08(i — 1,5 — 1).

The purpose of this paper is to compute the generalized Lefschetz number
Z(f) in terms of u, I, and 7 given in Proposition 1. Let d be a positive integer, and
Z, the set {1,...,d} of integers modd. To state our main result, it is necessary to
introduce the notion of a partition of Z,.

DEFINITION 2.

(i) For integers 1 < p,q < d, define a sequence [p, g] of consecutive integers
mod d by
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pq = (-, q) ifp<gq
' (p,...,d,1,...,q) ifp>gq.

This sequence is called a block in Z;, and the number of integers
contained in it is called its length. For a block B, let B denote its
underlying set, the set of integers contained in B.

(ii) A set {By,...,Bs} of blocks in Z; is a partition of Z, if

(a) the underlying sets By,...,Bs are mutually disjoint and B;U---
UB, = Zg, and
(b) each of By, ..., By has length less than or equal to n — 1.

Note that a partition contains at most one block of type [p,q] with p > gq.

(iii) Let (d) denote the set of partitions of Z.

EXAMPLE 2. Assume n > 5. Consider the case of d = 4. In this case, any
block has length less than or equal to m — 1. Therefore, 9?(4) consists of the
following fifteen partitions:

(
{(1,2),3), @}, {(1),(2,3), @)}, {(1),2),6:4}  {(2),3),(4 1)},
{(1,2),3,4)}, {(2,3), (4,1},
{(1,2,3), @}, {1,234} {2,641} {3),41,2)},
{(1,2,3,4)}, {(2,3,4,1)}, {(3,4,1,2)}, {(4,1,2,3)}.

The fundamental group m = m (D, zo) is identified with a free group F, of
rank n. We shall define an action of B, on F,. Let e be the unit element of F,,.
Assume that xp € dD. Let &,...,&, be the standard generators of m = F,, which
are defined in the following way: We can assume that D is the disk in the plane R?
with center (0,0) and radius 2, g = (0,2), and for i =1,...,n, the sub-disk D(i)
has radius 1/2(n + 1) and center (—1+ (2/(n+ 1))4, 0). Then, the element &; is
represented by a loop which traces a straight line connecting xy to a point in
0D(1), encircles 9D(i) once in the anti-clockwise direction, and retraces the line
back to xy. An action of the braid group B, on F, is defined by putting
0i(&) = &&in&Y, &, or & according to whether j=4,j=14i+1, or j#i,i+ 1.
Thus, any braid § can be thought of as an automorphism of F,, (see [3, Corollary
1.8.3)).
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In the case of 8(f), the corresponding automorphism of F,, can be described
geometrically by using the isotopy { fi}. Let Z = Uy (fi(Dn) x {t}). Z is a solid
cylinder with n disjoint open tubes removed. Define a vertical path v in Z by
v(t) = (zo,t). For e=0,1, let i.: D, — Z be the inclusion map defined by
ic(x) = (z,¢). Given an element w € , choose a loop [ based at xy representing w.
Then, it is easy to see that the loop v (ig o [)v in Z is homotopic to i; o ' in Z for
some loop !' in D,,. Then the image [(f)(w) coincides with the element of 7
represented by .

As a base path 7, we shall take 7 given by 7(¢) = f;(x). Then, for any loop [ in
D, based at xy, the loop v !(igol)v is homotopic to ijo (r(fol)7!) in Z.
Therefore, 3(f)(w) € 7 is represented by the loop 7(f o [)7~!, and hence it is equal
to fr(w). Thus, we have shown that

fr=B(f) : By — Fy. (3)

For w € F,, we shall use the symbol w’ to denote its image under the
automorphism (.

In our computation, we shall not use the standard generators, but use the
generators ay, ..., a, for F, defined by a; = & ---&;. Then, the action of o; on F, is
written in a slightly simpler way as

1 . .
o; ) Gi+1Q; Qi1 if j =1,
a; if j#1,

where we put ag = e. Note that ag = ay,, for any braid §3, since a/' = a, for any i.
Let ZF, be the group ring of F), over Z. For § € B,,, the automorphism [ of
F,, induces the ring automorphism of ZF,, which will be denoted by the same
letter 8. For n € ZF, and 8 € B,, let n° € ZF, denote the image of n under 3.
Let I = (41,...,1iq) be a sequence of positive integers. We shall introduce a
map W : P(d) — ZF, which is necessary to state the main result. First, for
integers j > 0, define ¢; € F), and g; € ZF), by

{ a‘%ﬁ if j is even,

Cj = .

czlaérl)/2 if jis odd,
g = (=1)""¢;.

For 1 <1<d, let B(I) =B(i,--.,iq) € By. Note that 8,(I) = S(I). Suppose a
block B=[p,q] in Z, is given. Denote its length by |B|. Define the braids
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B =All), (B)= {&;(I)ﬂ(l)_l if p>q

and define Wj(B) € ZF, as follows:

o w(B . .

(g0 + -+ g,2)"Pat? i Bl <n—1,4,>2,

Wi(B)=1<{ 0 if [Bl<n—1,4,=1,
gt Pa®) if |Bj=n—1.

n—1

Then, the map W;: &(d) — ZF, is defined as follows: Let # € Z(d). Let By =
[p1, 1], --., Bs = [ps, ¢s] be the blocks in . We can assume that 1 < p; < ps <
-+ < ps < d by rearranging the blocks if necessary. Then, define Wi(%) by

Wi(B) = Wi(By) - Wi(B,).

Let ®3: ZF,, — ZZ%(0) denote the surjective homomorphism induced by the
projection F,, = m — Z(8). By the definition of the Reidemeister equivalence, we
have

®s(w) = Bs(w’) for any w € F,. (4)
More generally, we have
Ds(w'w) = ds(w’n’)  for any w,w’ € F,,. (5)

Recall that B(f) can be written as v 10#3(I)y for some p € Z,v € B, and
some sequence I of positive integers. Our main result is the following:

THEOREM 1. Suppose f: D, — D, is an orientation-preserving homeo-
morphism which preserves the outer boundary circle setwise. We choose an isotopy
{fi} : D — D such that fy = id and f; coincides with f on D,,. As a base path for f,
take the path T defined by 7(t) = fi(xo). Suppose B(f) = v 10"B(I)y, where p is an
integer, v € B, and I is a sequence of positive integers with length d. Then

2(f) =~y ( 3 WA@)”’) e ZR(B(F)).

BeP(d)
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EXAMPLE 3. (a) Let B(f) = (i), where ¢ > 2. In this case, u =0, y=e,
I = (i), and d = 1. The partition {(1)} is the only element of #(d) = £(1), and
a((1)) = w((1)) = B(i). Therefore, by the above theorem and (4), we have

L(f) = =Py (Wi ({(1)}) = =Py (g0 + - + gi-2) Py
=—®s)(g2+ -+ gi)
= By (ca) = Dpgiy(c3) + -+ + (= 1) Py (c2)-

(b) Let B(f) = B(i1,12), where i1,is > 2. In this case, u = 0, v = e, I = (i1,42),
and d=2. Z(d)= 2(2) consists of the three partitions %; = {(1),(2)},
$y ={(1,2)}, and A3 = {(2,1)}. Therefore, we have Z(f) = —Pg5(Wi(£1) +
Wi(Bs) + Wi(%s)), where

Wi(By) = D g,
= =
-2
(S} wnza
Wi(%Bs) = §=0
g‘zma“;(i’) if n =3,
-2
<Z gf“”)a;; if n >4,
Wi (%3) = =0
gi(i2)a2 if n=3.

As a consequence of our theorem, we can give an upper bound for the Nielsen
number N(f). For n € ZF,, let v(n) denote the number of elements of F,, with
non-zero coefficient in 7. Then, for a block B = [p, ¢|, we have

iy—1 if |Bl<n—1,

v(Wi(B)) {1 if |B] =n — 1.

For a partition & = {By, ..., B}, let vi(#) = v(Wi(By)) - - - v(W;(Bs)). Then, we
have

COROLLARY 1. Under the same hypothesis of Theoreml, we have
N(f) < X gera vi(B).

PROOF. It follows from Theorem 1 that
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N =w(Z(f) <v| Y, W@ | < Y v(Wi(8)).

Bep(d) Bep(d)
Since v(Wi(#)) < TI_, v(Wi(B,)) = vi(£#), this gives the proof. O

EXAMPLE 4. Consider the braids treated in Example 3.

(a) Let B(f) = B(i), i > 2. Then, the partition {(1)} is the only element of
Z(1), and hence 3 4c 5 vi(#) = v(;)({(1)}) = i — 1. Therefore, by Corollary 1,
we have N(f) < i — 1. In fact, the equality N(f) =4 — 1 holds for this braid. This
is proved by using the ring homomorphism .7 : ZF, — Z[t,t"!] defined by
T(&)=tfor j=1,...,n. Then, J induces the homomorphism 7 : ZZ(5(f)) —
Z[t,t7'], and the Reidemeister classes ®g;)(c2), ..., P (c;) in ZL(f) are sent to
mutually different elements ¢2,...,# by .7. Hence they are different elements in
Z(6(1)) and we obtain N(f) =14 — 1.

(b) Let B(f) = B(i1,i2), where 41,4 > 2. Consider first the case of n > 4. Let
B, Bo, B3 be the partitions as in Example 3(b). Then, vi(%;) = (i1 — 1)(2 —
1),41 — 1,49 — 1 for j=1,2,3 respectively, and so we have Zu@eﬁ‘(d) vi(B) =
(i1 —1)(dg — 1) + (91 — 1) + (ia — 1) = 4143 — 1. Hence, it follows from Corollary 1
that N(f) <iyia — 1. Consider next the case of n = 3. Then, Corollary 1 implies
N(f) < (ir = 1)(ig — 1) + 2. If i1, iy > 3, the sharper estimate N(f) < (i, — 1)%@'2 —
1) — 2 holds, because the images of Wi (%) = —gfl(l)gg(”) and W;(%;) = —g‘fl =g,
under ®g 5 cancel by the images of two terms in W;(%1). For a class of braids
including this example, we shall give a sharper estimation than Corollary 1 in
Section 8.

REMARK 2. The image of —Z(f) under .7 coincides with the trace of the
reduced Burau matrix Bur(3(f)) of the braid B(f) (cf. [12]). This trace was
computed in [19] using the same expression of braids as in Proposition 1. Given a
square matrix A of size v with entries in a commutative ring R, let PM(A; k) be
the sum of principal minors of A of order kif 1 < k < v and zero otherwise. Then,
we have the equality

trA? = 3 (=)™ PM(A; |By) - PM(4; |Bl))
BeP(d)

for any positive integer d, where £ = {B,..., B;}. Applying this to the case of
A = Bur(f(i)), we have for I = (i,...,i) € N? that

trBur(8(1)) = tr Bur(8(i))" = > (1) P(i;|By]) -~ P(i; | By)),
PBeP(d)
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where P(i; k) denotes PM(Bur(3(i)); k) for any k. Theorem 1 in [19] generalizes
this equality to an arbitrary sequence I € N? as follows:

trBur(8(1)) = > (1" P(i,;|Bi]) - Pliy:|Bi]),
BeP(d)

where p, is the initial element of B, for 1 < r < s. Our main result, Theorem 1
above, gives a refinement of this equality.

REMARK 3. In our setting, Reidemeister classes can be visualized by the
method of Jiang [15] using the mapping torus. For t € [0,1], let [t] denote the
corresponding point in the circle S' = R/Z. Define a subspace T of D x S* by
T = Uyt (fe(Dn) x {[t]}), which is homeomorphic to the mapping torus of f.
Then the set of Reidemeister classes is in one-to-one correspondence with the set
of free homotopy classes of loops in T'. The Reidemeister class R(x) of z € Fix(f)
corresponds to the free homotopy class of the loop (f¢(z), [t]) (0 < ¢ < 1) under this
identification.

4. Nielsen-Thurston classification of surface homeomorphisms.

We shall apply the theorem in the previous section to study periodic points of
Nielsen-Thurston canonical homeomorphisms on a punctured disk, and also to the
classification problem of homeomorphisms into isotopy classes. We recall briefly
the Nielsen-Thurston classification theory of surface homeomorphisms ([8],[22]).
Let M be a compact surface. A homeomorphism ¢ : M — M is said to be of finite
order if some of its iterates is equal to the identity map. The map ¢ is said to be
pseudo-Anosov, if the following conditions are satisfied:

(i) There exists a pair of transverse foliations on M, carrying measures
which are uniformly expanded and contracted by ¢ respectively.

(ii) These foliations have finitely many singularities which coincide in the
interior Int M and alternate on the boundary 0M. Any singularity is
p-pronged for some integer p > 3 if it is in the interior of M, and it is 3-
pronged if it is in dM. (We consider segments of the boundary to be
prongs.)

@ is said to be reducible if there exists a finite collection of disjoint annuli in M
such that ¢ maps their union A to itself, and that each connected component N of
M — A, called a component of ¢, has negative Euler characteristic and for any
iterate ¢ mapping N to itself, its restriction to N is either of finite order or
pseudo-Anosov. The Nielsen-Thurston classification theory states that every
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homeomorphism f : M — M is isotopic to a homeomorphism ¢ : M — M which is
of finite order, pseudo-Anosov, or reducible. The homeomorphism ¢ is called a
canonical homeomorphism in the isotopy class of f. In the case where ¢ is
irreducible, i.e., of finite order or pseudo-Anosov, the surface M is called the
component of .

One of the common features of canonical homeomorphisms ¢ is that they
have periodic points on every boundary circle C. In fact, in the case where C is
contained in a pseudo-Anosov component, the singularities of associated
foliations on it are periodic points. Also, in the case where C' is contained in a
finite-order component N, all the points in IV are periodic. Since the restriction of
© to C'is an orientation-preserving homeomorphism of a circle, the periodic points
in C have the same least period. We shall consider the problem of determining the
period of periodic points and the rotation number on C'in the case where M = D,
and C' = 0D. The reason why we choose the outer boundary circle as the subject is
that this is the easiest case to deal with by using the generalized Lefschetz
number. The result we shall obtain will be applied to classify homeomorphisms up
to isotopy.

Let ¢ be an orientation-preserving canonical homeomorphism on D,
preserving 0D setwise. We denote by m(p) the least period of periodic points
on 0D. Let N, be the component of ¢ containing dD. Choose an isotopy ¢ :
D — D such that ¢y =id and that ¢, coincides with ¢ on D,. Assume the base
point zy is in dD. Define a base path 7 for ¢ by 7(t) = ¢:(xg). Note that 7 is
contained in dD. For every positive integer m, define a base path 7, for ¢™ by
Tm =T(poT) - (¢p" 1 or). Choose a periodic point = on dD. Since xy and = are
contained in @D, we can choose a path [ connecting these points contained in 0D.
Then, the loop Tm(w)(gp"”(*o) ol)l7! is contained in dD and hence it represents an
clement a%¥) € F, for some integer v(¢). Note that v(¢) does not depend on the
choice of the periodic point z and the path [. It depends, however, on the choice of
an isotopy ¢, but is uniquely determined modulo m(y). The number v(p)/m(p)
modulo Z is equal to the rotation number of ¢ on 9D.

The following lemma shows that, in the case where m(p) and v(yp) are
relatively prime, the problem of determining these numbers is reduced to the
computation of the generalized Lefschetz number.

LEMMA 1. Let m and v be integers with m > 0. Assume that they are
relatively prime, and that the coefficient of ®gm(ay) € Z(B(™)) in L(P™) is
non-zero. Then, m = m(p) and v = v(p).

m

PROOF.  Since the coefficient of ®g,m(ay) in £ (™) is non-zero, ¢ has a

fixed point 2 with Reidemeister class ®g(,m(ay,). Then, we can take a path [ from

n
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the base point g to x so that 7,,(¢™ o [)I~! represents a?. We shall show that z is
p™-related to 0D, namely there exists a path connecting a point in 9D with x
which is homotopic to its image under ¢ via a homotopy of paths such that each
path in the homotopy connects a point in D with 2. Choose a loop A contained in
0D based at =z which represents al. Let n= T,,;l)\ and for 0 <u <1, let
Nu(t) = n(ut + 1 — w) and I, = n,l. Then, {l,} gives a homotopy of paths such that
1,(0) € dD,1,(1) = x, and I and I; = 7,,' Al are homotopic to [ and ¢™ o [ fixing end
points respectively. Thus, we have shown that [ is a desired path to prove x being
p™M-related to dD. (This is proved in a different way by Guaschi [10, Proposition
14(b)].) Then, it follows from Jiang and Guo [17, Lemma 3.4] that « € 9D if o[y
is pseudo-Anosov, and there exists a path in Fix(¢™) N N, connecting x to 9D if
g0|N¢ is of finite order. Hence, m = gm(yp) for some positive integer q. Moreover,
since ay, is fixed under ¢, = B(yp), we have v = qu(y). Since m and v are relatively

prime, ¢ must be one. Thus the proof is completed. ([

Let LCM denote the least common multiple for positive integers. Using this
lemma, Theorem 1 can be applied to obtain

PROPOSITION 2.  Suppose the braid B(y) is conjugate to O“G3(I), where

I=(i1,...,1q) is a sequence of positive integers. Assume either that n >4 and
Uyeve,iqg > 2, or that n =3 and iq,...,iq > 3. Then
LCM{d,n — 2} LCM{d,n — 2}
m(p)=—————, vip)=mlep+t——F.

d ’ n—2

This proposition will be proved in Section 7 using some lemmas on the
computation of the generalized Lefschetz number given in Section 6. When
n = 3, this result cannot be extended to the case of ¢1,...,i; > 2. For instance,
B(2) € Bs is conjugate to p?, and so ¢ is of finite-order and m(y¢) = 3. This is not
equal to LCM{d,n —2}/d = 1.

This proposition has a consequence on the classification problem of canonical
homeomorphisms on a punctured disk. Boyland [4] proved that if n is prime and
B(p) is cyclic, that is, the permutation on the punctures induced by 5(¢p) is cyclic,
then ¢ is irreducible. He also proved that if ¢ is irreducible, 3(¢) is cyclic, and the
exponent sum of B(y) is not divisible by n — 1, then ¢ is pseudo-Anosov. In
particular, if n is prime, 3(I) is cyclic, and 4; + - - - + 44 is not divisible by n — 1,
then ¢ is pseudo-Anosov. Matsuoka [19] has proved that, under the assumption of
Proposition 2, the canonical homeomorphism ¢ with braid §(I) contains a pseudo-
Anosov component, except only for the case where n>4,1=(2,...,2) and
n=3,I=(3,...,3). This result was proved by using the computation of the
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reduction .7 (Z(f)) mentioned in Remark 2. Our main theorem on the compu-
tation of the unreduced number Z(f) can be applied to improve this result. In
fact, as a consequence of Proposition 2, we have the following proposition.

PROPOSITION 3.  Assumen > 5. Let I be a sequence of integersiy, ... ,iqg > 2
which are all odd or all even. Assume that n — 2 and d are relatively prime. Then,
the canonical homeomorphism ¢ with braid B(I) is pseudo-Anosov. Moreover, the
foliations associated to @ have no interior singularities.

PROOF. Since n—2 and d are assumed to be relatively prime, we have
m(p) =n — 2 and v(¢) = d by Proposition 2. This implies that the periodic points
on 0D have period n — 2 and rotation number d/(n — 2). Let u be the permutation
on the inner boundary circles of D,, induced by ¢. Assume SD|N»9 were of finite-
order. Then, <p|N¢ is topologically conjugate to the rigid rotation on the unit disk
by angle 27d/(n — 2) restricted to the exterior of an appropriate set of punctures.
Hence, there exist n — 2 boundary circles C1,...,C,—s of N, cyclically permuted
by . If none of C1, ..., C,_s is a boundary circle of D,, each of them surrounds at
least two boundary circles of D,. Therefore, there must exist at least 2(n — 2)
boundary circles of D,,. Since n > 5, this number exceeds n, which is impossible.
Therefore, some of Ci,...,C,_9 is a boundary circle of D,, and so are all of
Ci,...,C,_9, since they are cyclically permuted by ¢. Therefore, p has a cycle
with length n — 2. We shall show that this contradicts to an assumption of the
proposition. In the case where iy, . ..,i; are all even, p is equal to the permutation
induced by p?, and hence it is the d-th power of a cyclic permutation on n circles.
Hence, n — 2 must divide n, which is a contradiction since n > 5. Also, in the case
where 41, ...,7; are all odd, p fixes one of the inner boundary circles and on the
other n — 1 inner boundary circles, u is the permutation induced by (Ulp)d7 which
is the d-th power of a cyclic permutation. Thus, n — 2 must divide n — 1, which is
a contradiction. Therefore, | N, is not of finite order, and hence it must be pseudo-
Anosov.

Let ¢ be the number of inner boundary circles of N,. Choose one of the
foliations on N,, and let . denote the set of its singularities. Denote by p(z) the
number of prongs at a singularity z. Then we have the following Euler-Poincaré
formula (see e.g. [8], p.75):

> 2=p() =2x(N,) =2(1 - ¢). (6)

ze S

Since the singularities on 0D are periodic points with least period n — 2, there
exist at least n — 2 singularities on dD. Also, each inner boundary circle of N,
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contains at least one singularity. Hence #(.# N ON,) > n — 2 + c. Therefore, since
2 — p(z) = —1 for every singularity on N, and n > ¢, we have by (6)

Yo 2-p@)=)2-p@)- DY 2-p)

zeNint N, res z€ SNON,

=2(1-¢)— (—4(XNON,)) >n—c>0.

This implies that there are no interior singularities on N, since 2 — p(x) < 0 for
any € & NInt N, and also that 0 > n — c. Hence ¢ = n, and so N, = D,, and ¢
is pseudo-Anosov. O

The above proposition cannot be extended to the case of n =3,4. For
instance, ((2) € B3 is conjugate to p*, which corresponds to a finite-order
homeomorphism. Also, 3(2) € By is conjugate to po3os, which corresponds to a
reducible homeomorphism having only finite-order components.

5. Proof of Theorem 1.

For surfaces with boundary, Fadell and Husseini showed in [7] that the
computation of the generalized Lefschetz number is reduced to that in the Fox
free differential calculus on free groups. The Fox partial derivative operator
0/0a;: ZF, — ZF,, j=1,...,n, is defined by the following rules (see [3],[20]):

. 0 8771 6772
— =21 B ZF,,
(1) aa] (nl + 772) aaj + aaj ) 7717 772 6
0 ow ow
(H) 87017 (wle) = aall + w ?‘;; wy, We € El,a

a .
(iif) a—z =6, 1<ij<n,
]

where 6; ; = 1 or 0 according to whether i = j or 7 # j.

) de
(IV) a—aJ = O

These rules imply that for v,w € F,,

ow
- -y = (1= -1y 9V - 7
9, (vwo™) = (1 —vwv™) o, +v D, (7)
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Given a braid g € By, let J(3) be the Jacobian matrix (8@?/8(13-). As an
application of the Reidemeister trace formula, Fadell and Husseini proved that
ZL(f) = g5 (1 —tr J(B(f))) ([7, Theorem 2.3]). For a matrix A with entries in
ZF,, let A? denote the matrix obtained from A by replacing each entry with its
image under . Then, we have by (5)

Ds(tr A'A) = dy(tr APA") (8

~—

for any matrices A, A’. Using the chain rule for the Fox calculus, we have J(86') =
J(ﬁ)“qJ(ﬁ’) for any braids 3, 3. Let 3 € B,,. Since a” = a,,, the last row of J(f) is
(0---01). Let J(3) denote the reduced matrix obtained from J(3) by deleting the
last column and the last row. Then, tr J(3) = tr J(3) — 1 and hence we have

ZL(f) = =P (tr J(B(1)))- 9)

We shall show that .Z(f) is determined essentially by 5(I). Note that

) —

J(B3) = J(B)" I(B). (10)

0 _

P =

Note also that since a anaiagl for any i, we have j(@) = a,l,_1, where I, _; is
the identity matrix. Therefore, we have that

J(0"B) = J(6")T(8) = allJ(B). (11)
We have by (10) that
J(VB(f)) = J(0"B(I)y) = J(0"B(1))" I (7)-

Also, we have J(v)J(y!)” = J(yy~!)” = I,,_1. Therefore, using (8), we have

Therefore, we have by (9) and (11) that

Z(f) = =®up(ap tr J(B))), (12)
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LEMMA 2.
i) Two elements wy,wy of F, are Reidemeister equivalent with respect to
() ; q P
B(I) if and only if atw],alw) € F, are Reidemeister equivalent with
respect to B(f).
(ii) Suppose ni,m2 € ZF,. Then, Pgip(m)= Paqy(n2) if and only if
D5y () = () (alymy)-

PROOF.
(i) Suppose wi,ws € F, are Reidemeister equivalent with respect to G(I).
Then, there exists an element w € F,, such that wy = w1, Then, since

V() gt — (VDY gt — (e DT bt — g, BDY
w ( >a‘n - (UJ ) ay = (a’nwan ) a, = a,w ’

we have
atwy = alw’ D] (w™)? = ()" (aw]) (w)

which shows that a”w] and aw, are Reidemeister equivalent with respect to 3(f).
Conversely, suppose a’w] and aw, are Reidemeister equivalent with respect
to B(f). Then, there exists an element u € F, such that a/w) = v’Datw]u. Let
v=1u"".Then,since v’V = /gt = a0
Therefore, wy = vﬁ(”wlv’l,
equivalent with respect to 5([).
(ii) This follows easily from (i). O

gl Hapd = alPUY (v~ 1)
,we have alw, = alv”’Ww] (v,

which shows that w; and ws are Reidemeister

By (12) and Lemma 2(ii), it is enough for the proof of Theorem 1 to show that
D) (tr J(B(I))) = Py Z Wi (2)
Bep(d)

To prove this equality, we shall compute the matrix J(G(I)). First consider the
case where I has length one. For positive integers m, let

"o if m o= 1.

Then, we have
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LEMMA 3. For positive integers m, let

Fm —d9m _(Fmag_l + gm_1) 0 ... 0
—as 0 1 0
- 0 0 1
A=
0 0
1
—0Qp—1 0 0 0o ... 0

Then, J(B(m)) = An™.
PROOF. Foralll <i<n-—1, we have

m—1 1 _m—1
a,? asa; a, > if ¢ =1, mis odd,
1 m _m

‘ a3 aay ’ if i =1, m is even,

a; f2<i<n-—1.

Also, a = a;;1a7!. These imply that

m—1 m—1

(aza;') T azay'(aza;’)™ T if i =1, mis odd,

Bm) __ m m
a; = (agal’l)rgagal’l(agafl) 2 if i =1, m is even, (13)

aivra;’ if2<i<n-—1.

We first compute 8a’f(m)/8a‘7‘ forj=1,...,n— 1. Let v = (asa;)"™?, where [m/2]

denotes the largest integer which does not exceed m/2. Since (aza;!)" = (ag(m))') =

—g‘gﬁm for any positive r, we have

[m/2] [m/2] -
= > (aza;") =" gy if j =1,
9 r=1 r=1
N (14)
8@' N =N —1\T av — m P
P X e =g @) it =,
0 otherwise.
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It follows from the definition of go, that

(/2] I, if m is odd,
(1-a) > = {

r=1

(15)

I if mois even.

Suppose m is odd. Let w = aga;'. Then vwv™! = a“f(m by (13). We shall

compute the right-hand side of the equality (7). We have by (14), (15)

5 ram if j=1,
. Ov
(1 —vwv™) da, ~ | ~(Cwax)™ it j=3,
' 0 otherwise,
and, since v = (cz[27"/2])ﬂ(m>7 we have
S —vw = —a‘f(m)v = —gffm) if j =2,
—_— = B(m ep .
v da; v= —gnf_l) if =13,
0 otherwise.

Suppose m is even. Let w' = asa;'. Then vw/v~! = /™ by (13). By (14),
(15), we have

B(m) if 5
if j=1,
) o (91} B m+1 s S} J
( —vw v )aiaj— _(Fm+1a;1) m) _ —(Tma2’1+gm—1) m lf]:?)v
0 otherwise.
o B(m) _ 3(m) .
ow' —ow' = —ay My = — mrl if j=1
VG | 0=l -2
0 otherwise.

These computations and the equality (7) imply that 8a"13("7L) /0a; is equal to the
(1,4) entry of the matrix A{,’S’"’) in either case of m odd or even.
The i-th row for i > 2 is obtained from the following;:

B(m)
i

— ifj=1
B 8ai+1a1_1 B a 17 ’

0 otherwise.
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This completes the proof. (I

Now consider the general case of I having an arbitrary length. Fix a sequence
I = (iy,...,iq) of positive integers. We shall give formulas for entries of the matrix
J(B(I)) in Lemma 5 below. To state these formulas, we need four families of
elements of ZF,,. The first one is afl defined for integers ¢, . For integers 1 <[ < d,
denote ((I) simply by 8, and let 8411 = e. Then, O‘fz € ZF, is defined for integers

q,1 by

al:{agl ifl1<g<n-1,1<1<d,

0 otherwise.

The second family is W,i € ZF, defined for positive integers k,l. To define
these elements, we need to generalize the notion of a partition given in Definition 2
to the non-cyclic setting.

DEFINITION 3. Suppose k,l are positive integers with k < [.

(i) For integers p,q with k < p < ¢q <, define a sequence [p, q] of positive
integers by [p,q] = (p,...,q). This sequence is called a blockin {k, ..., 1},
and the number of integers contained in it is called its length. For a block
B, let B denote its underlying set.

(ii) A set {Bi,...,Bs} of blocks in {k,...,l} is a partition of {k,... 1} if
By,...,B, are mutually disjoint, ByU---UB;={k,...,l}, and
By, ..., Bs have length less than or equal to n — 1.

(iii) Let Z(k,l) denote the set of partitions of {k,...,l}.

For a subset & of Z(d) or of Z(k,l), where 1 <k<I[<d, let W;(&)=
> ey Wi(B). Then, W} € ZF, is defined for positive integers k, [ by

Wi(2(k,1) if k<1<d,
Wi=11 ifk=Il+1landl<d

0 otherwise.

We prepare the next lemma, which will be used to prove Lemma 5. For 1 <1 < d,
1 <A <n—1,let £,(I) be the set of partitions of {1,...,[} such that the block
with initial element 1 has length A, and let & ,(d) be the set of partitions of Zy
which contain a block with initial element [ and length A.

LEMMA 4.
o Blm) . pm) g e
(i) gm = —g,_jaza;" for any positive integer m.
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(ii) For1 <1< d, we have

153 3
S (gredts + 03t ) Wh,, = Wi(Z1,1 (D).

u>0

(iii) For positive integers | with d+ 3 —n <1< d, the elements

§ 1+u -1 [ 1+u -1 [
(ad+2—l+uW2+u-¢7j +ad+3—l+uW2+u 7‘,5—1)

u>0

and Wi(Z,-1(d)) have the same g1 -image.

PROOF. (i) Consider the case of m odd. Since aza;! = a)™, we have

1)(7n—1)/2 (&g(m))(m—l)/Q _ (aémfl)/Q)ﬂ(m) _ C;G(m) 3(m)

(asa; m—1 = ~Im-1-

Therefore, we have by (13), afw) = —gg(ml)agagl(c‘3<ml>)_l and hence

1— m—

B(m) _

g (mfl)/Q)ﬁ(m) — °m gl(m) p(m) 1

(a1ay —1 = T 9p-1030y -

In the case of m even, we have by (13) the desired equality from the following:

3 -
g} = (aray" ey

= [cfrfm) as al—l ( C,?ﬂ(m))—l} C,i(m) (a51) B(m)

)ﬁ(m)

_ B(m -1 —1\—1
_Cm(, )a2al (a3a’1 )
— B(m)
*Cm

-1 _ _  B(m) -1
203" = —G,, '0203 .

(ii) Let £; be the left-hand side of the equality (ii). Let
Vv _ {f] 2+qu V/ _ (fl 2+uwl
(u) gl1 a2+u 34+u? (u) gz1710[3+u 34u”
Then, we have

S =) (V(u) + V'(u)).
u>0
There are three cases:

(a) 24+u>lor24u>n—1,
(b) 24+u<land 2+u<n-—1,
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(¢) 24+u<land 24+u=mn—1.

Consider Case (a). If 2+ >, then 3+ u > [+ 1 and so W}, = 0. Also, if
24+u>n—1, then a3™ = a3t =0. Therefore, we have V(u)=V'(u)=0.
Consider Case (b). For any i >2, 1 <l <d, and any positive integer u with
I+u<d+1andi+1+u<n-—1, we have by the equality a‘f(m)

any m that

= OJH_]G,II for

1)@ 1\B(itsesitru—1)Brra _ ( 1 )ﬁHu_ (16)

(aiy1a; = (ais1a; )7 = (Qit14+ub; 1y

We have by (i) of this lemma and (16) that

o 1)\ B(i1 —1y/
g = ()" = —(¢) " azayt)?

_ B Boyu(, Brruy—1
- 7gi1—1a3+u (a’2+u) .

This implies that V(u) 4+ V’'(u) = 0. Consider Case (c¢). Since 3 +u = n, we have

agjrz =0 and hence V'(u) = 0. Also, since n — 1 = 2+ u < I < d and hence agm _

a1

"1, we have

V(w) = gy W, = Wi([Ln = )W, = Wi(P1,a (D).
If | > n —1, putting these computations together, we have X; = Wi (£ ,-1(0)),
and so (ii) holds. Suppose I < n — 1. Then, ¥; = 0 since Case (c¢) does not occur,
and we have Wj(2,,1(1)) = 0 since &1,-1(l) is empty. Therefore, the equality
(ii) is proved.

(iii) Let I be a positive integer with d+3 —n <[ < d. Note that d+ 2 —1 <
n — 1. Let

_ 1+u -1 0 / _ 1+u -1 06
Vi(u) = Ao e Wornis Vi (u) = Qa1 Worubi, 1

and let

S = S (Vilw) + V().

u>0

There are three cases:

(a) 24u>lord+2—-1l+u>n-—1,
(b) 24+u<landd+2—-Il+u<n-—1,
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(¢) 24+u<landd+2—-I+u=n—1.

Consider Case (a). If 2+ u > [, then Wi;! = 0. Also, ifd+2 -4+ u>n—1,

then ajty =iy . = 0. Therefore, we have Vi(u) = V/(u) = 0. In Case (b),

we have by (i) of this lemma and (16) that

3 i)\ G 3 B1413 i’
gflz _ (g/g(tt))[m _ gilz (as a; )ll+ 151

— ) 314w Bl 1\3t
= —¢511(a3+dfla2+d71)ﬂ161 = _gi,l— (afz]fé l+u(a’fil++2[ l+u) )ﬂl .

Therefore, noting that 8, = B(I), we have by (5),

-1
D) (Vi) = @y (Wi hgi (a5 00" )
- 3I+u 1
= Py (Wi gl (aly1)" ) = —Puy (Vi (w).

Therefore, @37 (Vi(u) +V/(u)) =0. In Case (c), clearly V/(u)=0. Since

oty = af”f and the length of the block [l,14wu] is (d—I+1)+14+u=

n — 1, we have

1+u ﬁl+!bﬂ1
© 1) (Vi) = Py (@) Wi kgl = @y (Whihgla,
= P (Wo Wil 1+ UD)
= O3 (Wi(ZP1-1(d))).

If d<n-—1, Case (c) does not occur since d+2—1+u=n—1 implies 2+
u=(n—1)—d+1> I Therefore, (iii) is proved by summing up these computa-
tions. (]

The last two families of elements of ZF,, necessary to state Lemma 5 are
S;, G defined for integers [ as follows:

g Thay' + g, 1)" if1<1<d,
l =
0 otherwise,
g if1<i<d,
Gi=1 -1 ifl=d+1,

0 otherwise.
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Let r;;(I) be the (i, j)-entry of the matrix J(3(I)).

LEMMA 5.
d+2—j d+1—j o
Wi Sais = W T Gl if i =1,
rii(l) = 1 d+2—j d+1—j e
) >_aily (Wm "Sas-j + Wal, ]Gd+2—j) +6ij-a if 122
u>0

PROOF. We prove this lemma by induction on d. The case of d = 1 follows
easily from Lemma 3. Assume that the lemma holds for d — 1, and we shall prove
it for d. Let I = (41, ...,14) be a sequence of positive integers. Let I' = (i, ...,44).
Then, r; j(I') is obtained from the right-hand side of this lemma by replacing a}:ffj

and 0; j_q with 047211‘1‘ and 6; j_(q—1) respectively, and by adding one to the subscript

of each of W’s. Note that by (10) and Lemma 3

JB(D) = J(B()" I (B')) = AL T(BU)). (17)
Consider the case of i = 1. Let

M(l) = T2WE + (Ta; ) >~ a3 W, + Wi (21,01 (1)

u>0

for 1 >1 and M(l)=0 for [ <0. Then, we have by (17), Lemma3, and
Lemma4(ii) that r ;(I) is equal to

Ff?llm,j(fl) - 91?117“24(1/) — (Tyay' + giy—1)"rs (1)
= 7F‘,‘Z' (W2d+27jsd+3fj + W2d+17de+2,j)

B 2+uyysd+2—j . 24uyy d+1—7 .
- 9 li :(a2+uW3+u Sarg—j+ o5 Wil " Garoj ) + 625-(a-1)

u>0
—(Tiay' +gi-1)™ lZ (agigwgﬁ*jsm,j + agiﬁW;ffi*jGij) + 53,3'—((1—1)]
u>0
= —(M(d+2—j)Sat3-j + 6ja+251) — (M(d+ 1 — j)Gara—j + 6ji+1G1)-

Therefore, since 6]'1d+2S1 = j.,d+25d+3fj and 5j7d+1G1 = j,d+1Gd+2fja we have

ri () = =(M(d+2 = j) + 6ja+2)Sass—j — (M(d+ 1 = j) + 6ja11)Gata—j-
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Since M(l) = Wj(gzl A(0) =W if 1>1 and W =1, this is equal to
-W; 2= de+3 = I/V1 e JGd+2 j» which is the right-hand side of the equality of
the lemma in the case of i = 1.
Consider the case of i > 2. We have

rig(D) = —aj'ry j(I') + risa 4(I')
= @1 (W(21+2 TS5 j+W§+17jG«1+2 i)
+ (WSS + WiL 7 Gapamy) + 611 jo(a-1)-

u>0

It is easy to show that this is equal to the right-hand side of the equality in the
lemma in the case of 7 > 2. O

We shall complete the proof of Theorem 1. Note that Sy.; = Sg.2 = 0. Let

E :2 : 1+uyyrd+2— j -1 ﬁd+31
j+uW2+u ld+3 ja2 )

7=3 u>0
E:E: 1+uyg d+2—5 Pa+s—;j
J+UW2+U ig13—5—1°
Jj=3 u>0
§ :E : 1+uyg d+1—j /Bd+2j
j+uW2+u z,Hf; ’
7=2 u>0

where v = 9 = min{n — 1,d + 1},v3 = min{n — 1,d}. Then, by Lemma 5,
tr(J(B(1))) = Wi+ Ly + Ly + L3.

Let dy=d+3—v; =max{d+4—n,2},dy=d+2—v; =max{d+3—n,2}. In
Ly, we can change 5 to Uy = min{n,d + 1}, since a};z = 0. Then, d+ 3 — Uy = ds.

Putting Il =d+3 — jin Ly and Ls, and putting l = d+ 2 — j in L3, we have

d
Ly = Z Z O‘H;HUWLL(F Cfl) )

I=d; u>0

1+u 1 1+u 1 Il
Ly+ Ly = E : E :(ad+3—l+uW2+ugu 1+ Qyio_ l+uW2+ug7;)

I=dy u>0

Let
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n—2 d
U Ziad), Q2= U Prn-1(d)

I=d; A=d+2-1 I=dy

Since @y (e, Wi L(T,a; 1)) is equal to

(bB(I)(WQlELWI([la 1L +ul) = Qo (Wi(Prar2-114(d)))

1+

ifd+2—1+u<n-—2,and equal to zero otherwise since o, = 0 for m > n, we

have

d n—2

Py (L) = Z Z P47 (Wi(Z1A(d))) = @y (Wi(Q1))

I=dy A=d+2—1

Lemma 4(iii) implies that

d
Oy (Lo + Ls) = > @iy (Wi(P1n-1(d))) = By (Wi(Q2))-
l:(lz

Since W{ = Wi(2(1,d)) and 2(d) = 2(1,d) UQ; U Qa, these equalities prove
that @4 (tr(J(B(1))) is equal to @y (W (P(d))). Thus the proof of the theorem
is completed by (12) and Lemma 2(11)

/\/—\

6. Reduction of the formula.

This section makes preparations for the proof of Proposition 2. We shall show
that, under the assumption of Proposition 2, the element ;. 5, Wi(%) of ZF,
in the formula of Theorem 1 can be reduced so that Reidemeister equivalent
elements of F;, have the same coefficient. Hence, no cancellation occurs when the
reduced one is projected on ZZ(6(f)), which enables us to apply Lemma 1 to the
problem.

Consider first the case where n > 4 and iq,...,i5 > 2. Let ,@’(d) be the set of
partitions & = {Bi,...,Bs} of Z; such that (|Bj|,|Bj:1|) # (1,n —2) for any
1 < j<s, where Bs,1 = By. For partitions & € &' (d), we shall define elements
Wi(2) of ZF, which satisfy that the sums > ,c 5y Wi(2) and 3 pe 5 (q) Wi ()

have the same image under the projection ®g) Suppose B =[p,q| is a block. If
|B] <n—1, let Sp(I) denote the set of 1ntegers J with 0 < J <4, —2, and let

Ag(J) = ci(m ‘Eﬁlﬁl € F, for any J € Sp(I). If |B| = n — 1, let Sp(I) denote the set
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of (j,7)) € Z? such that 2 < j < i,, 0 < j/ <iy — 2, (§,5) # (i,0), and let A\p(J) =

c?(B>c;/(B)a:(_ﬁ> € F, for J = (j,5) € Sp(I), where o/(B) € B, is defined by

ﬂ[H’l lfpgd—l,
e if p=d.

o/ (B) :{
For a partition Z = {By,..., Bs}, let
Sx(I) = Sp,(I) x --- x Sp.(I).

For an element 7 = (Ji,...,J;) of Sg(I), define Ag( #) € F,, by Az( 7?) =
A, (J1) - Ap,(Js). For a block B = [p,q], define W}(B) € ZF, by

WiB) = 37 gl i 1Bl <n -1,
JeSp(I)
o W Pa B =n-1.
(j,7)€SR(I)

Wi(B) =

Then, W}(%) € ZF, is defined for Z € Z'(d) by Wi(B) = W}(By)---W;j(Bs),
where B ={By,...,Bs} with 1 <p; <. - <p; < d.

For w € F,,, define an integer e(w) as the exponent sum of w with respect to
the standard generators &j,...,&,. Note that e(w) can be defined also by
T (w) = t°") where .7 is the ring homomorphism introduced in Example 4.

LEMMA 6. Let n>4. Assume B(f) =~7'0"3(1)y, where p€ Z,~v € B,,
I=(i1,...,4q) withiy,...,iq > 2. Then, we have

(i)

L) =Py | at D WD) .
BeF (d)

(i) For # € ' (d), we have

Wi#) = Y ()T ).

JE€Sx(I)
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(iii) For any PBe P(d) and any 7€ Syx(I), the coefficient of
Dy (alidg( 7)) in L(f) is non-zero.

PROOF.

(i) For a partition 2, let K (%) be the set of integers k € Z; such that either
[k, k+n —2] is a block in %, or both (k) and [k+ 1,k + n — 2] are blocks in £,
where integers are taken modulo d. Let ¢ (d) be the set of subsets K of Z; such
that, if K is written as K = {ky,...,k:}, where 1 <k < --- < k < d, then k.1 —
k- >n—1 for any 1 <r <t, where we put ki1 = k1 +d. We assume that the
empty set is contained in ' (d). Note that a subset K of Z, is contained in ¢ (d) if
and only if there is a partition & with K(#) = K. For K € J# (d), let &k be the
set of partitions Z with K(%) = K.

Assume d >n—1. Let K ={ky,...,k} € #(d), where k; <--- <k For
1<r<t, let B(r) = [k, kr +n—2] and let X, = W;(B(r)) € ZF,. Also, define
Y, € ZF, by

v {WI((d))WI([Ln—ﬂ)ﬁll if 7=tk = d,
C U Wie)Wi([kr + 1,k + 1 —2])  otherwise.

For 1< k1 <d with k <+ 1, define Z(k,1) € ZF, by Z(k,1) = W;(2(k,1)) if
k<l and Z(kl)=e if k=141. For r with 1 <r<t, let Z,=Z(k.+n—1,
kyor —1). If ketn—2<d, let Zo=Z(1k —1) and Z = Z(k, +n— 1,d). If
ke+n—2>dlet Zy=Z(ky+n—1—d, kg —1) and Z; = e. Let

t—1
N =[x+ Y02, Ak = ZoN(Xi +Y3) 2.

r=1

In the case of k; < d, it is easy to see that ), 5, Wi(%) = Ak. In the case of
ki =d, we have }_ 4, Wi(#) = ZoA Xi + Wi([1,n — 2]) ZoAxWi((d)). By (5),
this has the same image as Ax under the projection ®4;). Therefore, in either
case, we have

o1y (X e Wi(B)) = Py (M) (18)

Note that W;(B) = Wj(B) for any block B in B € &x with B disjoint from
B(1)U---U B(t). Also, letting o, = a(B(r)), . = o/ (B(r)) and w, = w(B(r)), we

have
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XT+Y;:gZ n— 1+F (ka+1a21)a’a%

n—1
_ LY U-)r
- § : g] gj n—1

(4,5") €SBy (1)

= Wi (B(r)).

Hence, we have the equality

A=Y WiR).

BeP NP (d)

This and (18) imply that }° 4.5, Wi(£) and 3 4c 5, 5 (a) Wi () have the same
image under ®gy. Furthermore, since the disjoint unions Uge )Pk and
Ukex(a)(Px N P (d)) coincide with &(d) and &' (d) respectively, we have

Nowi@= > > wu®, > Y Wi@B= > Wi(B

BeP(d) Kex (d) BePy Kex'(d) Be Pxn P (d) BeP (d)

Therefore, > c pq) Wi(#) and 3 ,c 5y Wi(%) have the same image under
@41y, and (i) follows from Theorem 1.
In the case of d < n — 1, it is trivial that &' (d) = 2(d) and W}(B) = W[ (B)
for any partition %. Hence, the formula (i) is identical with that in Theorem 1.
(ii) Let B be a block. Then, by the definition of Ag(J), we see that W} (B) is
written in the form Wi (B) = >~ cq, 1) €(J)Ap(J), where €(J) are integers. We have

e(J) = (_1)‘B|+6(/\B(']>>. (19)

In fact, if [B| < n — 1, we have e(J) = (—1)”"" and this is equal to (—1)‘BHB()‘”('])>
since e(Ap(J)) = J +|B| + 1. Also, if |[B| =n — 1, ¢(J) = (—I)Hj, and this is equal
to (—=1)/PFAsU) since e(Ag(J)) =+ +n—1=j+j +|B|. Let Z={B,,...,
B} € Z'(d) and _# = {Jy,...,Js} € Su(I). Then, since |B;|+ -+ + |By| = d and
e(Ap,(J1)) + - +e(Ap,(Js)) = e(Azn(_#)), the coefficient of A\z(_#) in W}(A) is
equal to €(Jy)---€(Js), which is equal to (—1)d+e(A'%</)) by (19). Thus, (ii) is
proved.

(iii) Let I'(I) be the set of pairs (%, #) with 8 € &' (d), 7 € Sz(I). We say
two elements (8, 7), (#', 7') € T(I) are equivalent if Agz(_#) is Reidemeister
equivalent to A (_#') with respect to 3(I). This defines an equivalence relation on
I'(I). Denote by [(#, _#)| the equivalence class represented by (%, #). Let
n(A, 7) be the coefficient of ®gp(alidz( #)7) in —Z(f). Then, by (i), (ii) of this
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lemma and Lemma 2(i), n(%, #) is equal to the sum of the coefficient of A (_#")
in Wj(#') taken over the elements (%', #') of [(#, #)]. Since this coefficient is
equal to (—1)*T D) by (ii), we have

B, g)= > (-1t (20)
(#, 7")el(B, 7))

For any (£, 7') € (%, #)], we have e(Ayz(_ 7)) = e(Az(_#)), since Ay ( 7') is
Reidemeister equivalent to Az(_#) and the exponent sum of an element of F, is
preserved under the actlon of B, on F,. Therefore, (20) implies that n(%, #) is
equal to (—1)" (g1, 7)), which is clearly non-zero. O

Consider next the case where n = 3 and iy,...,73 > 3. Let Zd(I) denote the
set of J = (j1,...,Ja) € Z% which satisfy 2 < j; < i; for any 1 < < d, and let S(I)
be the set of J = (ju,...,j4) € Z4(I) with (ji, jis1) # (i1, 2) for any 1 < [ < d, where
Jar1 = 1. For J=(j1,...,734) € Z% let |J| =41+ -+ ja, c(J) —cjl cf; and
W) =gt g, where B = Bi(1).

LEMMA 7. Let n=3. Assume B(f) =~ '0"B(I)y, where u€ Z,v € Bs,

I={(i1,...,1q) withiy,...,iq > 3. Then, we have
D) 2() =)™ ST ()P0 (akie(I)).
JeS(I)

(ii) For any J € S(I), the coefficient of ® s (atic(J)?) in L(f) is non-zero.

PrOOF. (i) For a partition %, let K(#) be the set of | € Z; with
(I, +1) € B. For J € ZYI), let L(J) be the set of | € Z; with (j;, j111) = (i1, 2).
Also, let &) be the set of B € P(d) with K(#) C L(J). For | € Z,;, we have
Wi((l)) = Z] 9 g] and Wi((l,1+1)) = f’agl“ = g;’gg‘“ where we put §j41 = eif
| = d. Therefore, for any partition %, we have Wi (%) = (—1)*K%) Z ~(J),

J:BeP;
and hence

SN i@ =Y > D)FIN)= D ),

PBeP(d) BeP(d) J:BeP; JeZ(I)

where ¢(J) = Zﬂeyj(—l)tm%. If J € Z%(I)— S(I), then ¢(J) is equal to some

mutiple of the sum of (—=1)** over the subsets A of L(.J). Since L(.J) is not empty,
this sum is equal to zero. If Je€ S(I), &, consists of a single partition
{(1),...,(d)}, and hence e(J)=1. Therefore, Theorem1 and the equality
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~(J) = (=1)"e(J) imply the equality (i).
(ii) can be proved similarly as Lemma 6(iii). O

7. Proof of Proposition 2.

We first show that it is enough for the proof to consider the case of u =0,
namely the case where 3(¢) is conjugate to S(I). The reason is given as follows:
Note that the period m(y) does not depend on the choice of an isotopy {¢:}, but
the braid 8(¢) and the integer v(¢) depend on it. To clarify the dependence on an
isotopy, denote them by B(¢, {¢:}) and v(p; {¢+}) respectively. Let R, : D — D be
the rotation of the disk with angle 2nt. Then, if we denote by {¢}} the composition
of the isotopies {¢;} and {R_,}, then 8(¢p,{¥.}) is equal to 07 "5(p, {¢+}), and
hence it is conjugate to 3(I). Therefore, if the proposition is proved in the case of
=0, then v(p, {p;}) = LOM{d,n — 2}/(n — 2), and hence v(p, {¢1}) = m(p)p +
vip,{¢i}) = m(e)p+LCM{d,n —2}/(n —2). Thus, we can assume [(p)=
v 1B(I)y for some v € B,.

Let d = LCM{d,n — 2}, m = d/d, and v = d/(n — 2). We shall prove that the
coefficient of ®(,m(al) in £ (™) is non-zero. Then, since m and v are relatively
prime, the assertion of the proposition follows from Lemma 1. Let p be an integer
with 1 <p<d—n+3andlet g=p+n— 3. Then, we have

dra) = al (@) = af (@) = a7 (21)

where we put By = (1.

Assume that n >4 and 4y,...,iq > 2. Define integers i1,...,i; by i = iy,
where [I] is the integer with 1 < [I] < d and [l] =l modulo d. Let I = (i1,...,13). By
Lemma 6(iii), it is enough for the proof to show that ® g, (al) = ®zm)(Az( 2)")
for some # € #(d) and some _# € Sz(I). We see by Lemma 2 that this equality is
equivalent to

Py1(a;) = Pan(Az(S))- (22)

Forl1<r<wvletp,=(r—1)(n—-2)+1,¢ = r(n—2)and B, = [p,, ¢|. Note that
all of these blocks have length n — 2, and {By, ..., B,} is a partition of Z;. Let

{(pr)a [,p7'+1) qr]} if ipr =2.

Then %, is a partition of {p,,...,q -}, and if we put =%, U---UAB,, we have
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# € P(d). Let Sy, (I) be Sp (I) 1f zp >3, and be Sy, (1) X Spp, 41,4 (1) if i, = 2.

Forr=1,...,v,let (, = a/f a,” ;. We shall show that there exists an element
J. of Sy (I) Wlth Az, (J;) = (. In the case of i, >3, let J,=1. Then,
Az (Jr) =g, (1) = c‘f 5 1= In the case of i, =2, let J, = (0,0). Then,
Az, (Jr) = A (0) A, .0)(0) = @y @, ,. Since

(a;"an)™ = [(a?»afl)(a?afl)_l(a3af1)_l aza; = azay

and hence
(ay ' a2) = (@ a2)"™@)" " = (a30; )" = (@510, 15) ™,

we have

& s

By,
a2 772—(0,1(1 0’2) 77220’](

a/ CLQ) 7) 2 - C’f‘

Therefore, A\g, (J.) = (.
Let ¢ =(Ji,...,J,). Then, 7 € Sy(I) and, since Ay (J;) = (., we have
Az( F) = (- . Applying (21) to each pair p,,q,, we have

H aﬂp ﬂq +1

v, —1

Since p; = 1,¢- 4+ 1 = p,11,q, + 1 = d + 1, this is equal to al a’ay". Therefore, by
(5), Az(_#) is Reidemeister equivalent to (a7")? (a a?) = a” with respect to B(I).
Therefore, (22) is proved.

Assume that n = 3 and 4y,...,i; > 3. In this case, d = d = v and m = 1. Using
Lemma 7(ii) and Lemma?2, we see that it is enough for the proof to show that
‘I’ﬂ( )( ) (I)/g( )( (J)) for some J € S(I) Let J = (3,,3) S S(I) Then, by
(21),

o
c(J) = 63‘ . 03 = Hal’ T = af‘agal .

Therefore, ®y1)(c(J)) = @y (a)" aa;’) = @y (af). Since d =wv, the proof is
completed.
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8. Bounds for the Nielsen number.

As a byproduct of Lemma 6 and Lemma 7, we can obtain the following upper
and lower bounds for the Nielsen number N(f).

THEOREM 2.  Assume that B3(f) is conjugate to 6"G(I).

(1) If n >4 and iy,...,iq > 2, then

S o#Su(D) = (2n—-2) < N(f) < > 4S4().

PP (d) PeF (d)
(ii) If n=3 and iy,...,iq > 3, then §S(I) —4 < N(f) < £S(I).

PrOOF. We prove (i). Let ¥ :I'(I) — Z(B(f)) be the map defined by
V((B, 7)) =Py (alirzg( F)"). Let I'(I) be the set of (A, #)eT(I) with
(B, 7)] > 1. Let Z'(B(f)) be the set of Reidemeister classes o with Fix,(f)
having index less than —1. We shall show that %#'(3(f)) coincides with the image
of I"(I) under ¥. As we have shown in the proof of Lemma6 (iii), the coefficient
n(AB, 7) of W((B, F)) in ZL(f) is equal to (=1) eIy, 7)]. On the
other hand, n(%, #) is equal to ind(Fixy(, »))(f)) by its definition. Hence, we
have

ind(Fixy (s, ) (f)) = (-1 D41, 7). (23)

This implies that ¥((%, #)) € #Z'(5(f)) if and only if (=1) eI = 1 and
8[(#, #)] > 1. The former condition (—1)H+e#7) — _1 is redundant, since the
index of any fixed point class of f is less than two (Jiang and Guo [17]). Thus we
have proved the equality Z'(8(f)) = ¥(I'(I)).

I"(I) is a disjoint union of equivalence classes [(#1, 7). .,[(Bm, 7,,)]:
where m = ¥ (I"(I)). We have the following inequality due to [17] (see the proof
of Theorem 4.1 there):

(ind(Fix,(f)) + 1) > 2x(D,) =2 — 2n.
acZ (B(f))

This inequality and (23) imply that 2 — 2n < 3", (—4[(%;, Z,)] +1) = —I"(I) +
m, and hence we have f¥(I"(I)) =m > 4I"(I) + 2 — 2n. Therefore, since ¥ is
injective on I'(I) — I"(I), we have by Lemma 6(iii) that

N(f) = $9(I(1D)) = 4(T(1) = T'(1)) + £ (I'(1)) = 4T(1) +2 — 2n.
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Also, it is obvious that N(f) < §I'(1). Since §I'(1) = 3_ 4 5 () £52(I), we have the
bounds in (i).
(ii) can be proved similarly. O
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