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A generalization of Miyachi’s theorem
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Abstract. The classical Hardy theorem on R, which asserts f and the
Fourier transform of f cannot both be very small, was generalized by Miyachi in
terms of L'+ L*® and log'-functions. In this paper we generalize Miyachi’s
theorem for R? and then for other generalized Fourier transforms such as the
Chébli-Trimeche and the Dunkl transforms.

1. Introduction.

Classical Hardy’s theorem [7] asserts the following: let a,b >0 and f a
measurable function on R satisfying |f(z)| < Ce ®" and |f(y)| < Ce ™. Then
f=0if ab>1/4, f is a constant multiple of e if ab = 1/4, and there are
infinitely many f if ab < 1/4. Considerable attention has been devoted to finding
generalizations to new contexts for Hardy’s theorem. Especially, M. Cowling and
J. Price [5] obtained an L? version of the theorem. As further generalizations, A.
Bonami, B. Demange, P. Jaming [2] extend it in a Beurling form, and Miyachi [9]
obtains an L' + L* version: Let ab=1/4 and f € L'(R) satisfy

2

e f(z) € L*(R) + L™(R)

and

log*t Td)\ < oo

/+°° [F)e|
for some C' > 0. Then f is a constant multiple of e=*", where L'(R) + L*(R) is
the set of functions of the form f = f; + fo, fi € LY(R), fo € L*(R), and log" x =
logz if z > 1 and log™ 2 = 0 if z < 1. In this paper we shall generalize Miyachi’s
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theorem for R? and furthermore, we shall obtain an analogue in a general measure
space (X, dw) equipped with Fourier, Radon, and dual Radon transforms. As a
special case of this general setting, we can deduce Miyachi’s theorem for the
Chébli-Trimeche, the Dunkl transforms, and the Jacobi-Dunkl transform.
Especially, we can obtain alternative proofs in [6] for the Jacobi transform and
in [3] for the Dunkl transform.

2.  Miyachi’s theorem on R‘.

For [ =1,2,---, we denote by .%; the Fourier transform on R'. Miyachi’s
theorem is generalized on R as follows.

THEOREM 1. Let a;,b; >0 and ab;=1/4 for 1<i<d. We put
A = diag(ay,as,---,aq) and B = diag(by,bs, - -,byg). If a measurable function on
R? satisfies

e f(2) e LY(RY) + L=(RY) (1)
and

/ log*t | Faf(N)eP|
Rd

5 d\ < o0 (2)

for some C > 0, then f is a constant multiple of e~ A%,

PROOF. For (x1,2') = (21,29, -, 2q) and N = (Mg, -+, Ag), we shall con-
sider

Gl X) = Zar (fan NN = [ flara)e e,
R
where dz’ = dxy - - - dxg. Since f € L'(R?) by (1), G(x1, /\’) is well-defined and is in
LY(R) ® L®(R*™). Moreover, since f= e (moitomttard)(y, 4 yy)  where
u; € L'(RY) and uy € L®(R?) by (1), it follows that

|G (21, N)| < e ““AIZ/“ (@4 tagry) DNug (21, 2")|dx’.

and thus, as a function of z;, e®*G(x1, ) € L'(R) + L*(R). We note that
F1(G(, X)) (A1) = Zaf(N) and substitute it in (2). Then Fubini’s theorem implies
that there exists a subset E of R ! with positive measure such that for
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A,:(sz"'a)‘d)€l§7

+00 F G~,X A b1 A2
/ 10g+| (G N))(An)e 1|d)\1<oo.

- Cle— (02254 +0aX])
Therefore, Miyachi’s theorem on R yields that G(z1, X') = C(X)e @7 for X € E.
Hence Z.f(\) = Z1(G(-,X))(A\) = C(N)e ™M for X € E. Since .Z4f()\) has a
holomorphic extension on C" (see (1)), we can prolong the precedent relation as
Faf(A) = C(N) e for all N € R Hence G(z1,N) = C(N)e ™% for all X €
R™!. Here we put h(z) = e“l‘”%f(sc). Then, as a function of z' = (z9,- -, x4), it
belongs to L'(R¥™) (see (1)) and Zq_i(h(x,-))(N) = e Z 41 (f(21,-))(N) =
e Gz, N) = C(X) for N € R™!. Since C(X) is independent of z1, it follows
that h is also independent of ;. We obtain that f is of the form
flay, e, xq) = e‘almfh(x2,~--,xd). We can obtain the desired result by
repeating this argument. O

3. Generalization of Miyachi’s theorem.

Let (X,dw,o0) be a topological space with a positive measure dw and a
distance function o: X — R.. In what follows we assume the existence of an
integral operator #Z* that satisfies the following properties: Z* is of the form

() = /X f(@)dvy(x), f € CuX), (3)

Al) v, is a positive measure with the support in {z € X| ||y|| < o(z)},
(A2) " is bounded from L'(X,dw) to L'(RY),

(A3) %" gives an isomorphism between .#(X) and .7 (R?), where .7(X) is a
suitable Schwartz class on X and .#(R?) is the Schwartz class on R’

We here define the dual operator Z : .'(R?) — .#'(X) of Z* by

 f(y)g(y)dy = /X £ (2) R () duo(). (4)

RY

We furthermore assume that

(A4)  Zis of the form

#f@)= [ 1), 7 eCr), (5)
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where pu, is a positive measure on R? with support in {y €
RY| ly|l < o()}.

Then we see that Z(1)(z) < Cy for all z € X because of (4) and (A2). We denote
the Euclidean Fourier transform on R? by .%#,; and put

y}(:ydoﬁ*.

We call .%x a generalized Fourier transform on X, which is an isomorphism
between .7 (X) and .(R?) (see (A3)). We define Gaussian type functions h, ()
and h* (z), z € X,a € Ry, as follows:

ha) = (@) e M) (@) and B2 () = BT (@),
Since el e y(Rd), ha(z) is well-defined (see (A3)), positive on X and
F xha(y) = Celvl/4a - Since R (z) < e“”("”y{%’(l)(x) < Cye@)’, h* (z) is well-
defined and positive on X. Especially, (h*,)”'(z) is positive on X.

THEOREM 2. Let a >0 and ab=1/4. If a measurable function f on X
satisfies f = fi + fo such that

r* (z)fi(z) € LY X, dw) and h, ' () fo(z) € L™(X, dw) (6)

and

d\ < 00

/ gt [Zx )]
R(l g C

for some C > 0, then f is a constant multiple of h,.

PROOF. We show that Z*(f) satisfies
eIV g () € LY(R") + L (RY).

Actually, by (6) f(x) = fi(z) + fo(z) = (h%,) " (€)v1(2) + ha(2)va(x), where v; €
LY(X,dw) and vy € L>(X, dw). Then
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||e“”””2<%’*f1||L1(Rd) = /Rd eaHyHZ|%*((hia)’lv1)(y)|dy
< [ et ) by
- /X%’<e“”"'z><x><hia>*<z>\m(xﬂdw(x) (see(4))
- / o1 ()] deo(z)
X
and
1% fo(y)] < N[vall o™ 2 ha(y) = [[03].

Hence e“”yuzﬂ*f(y) belongs to L'(R%) + L*(R?). Since Fxf=.F % f), it
follows from Miyachi’s theorem on R? (see Theorem 1) that %" f(y) = Ce =l
Hence we obtain that f = Ch,. O

REMARK 3. If there exists a function y(x) on X such that
ha(z)h”,(x) < (),
then the condition (6) in Theorem 2 can be replaced by

hol(2) f(z) € LNX, ydw) + L®(X, dw). (7)

a

4. Examples.

4.1. Chébli-Trimeche hypergroups.

We refer to [1], [10] and [12] for general notations and basic facts on Chébli-
Triméche hypergroups. Let o > —1/2 and A(z) = 2?**'B(z) be a Chébli-
Trimeche function on Ry;. Then (X,dw,0) = (R, A(z)dz,|-|) and the Chébli-
Triméche transform Zy gives an isometry between L?(X,dw) and L?(R,du)
where du()\) = |C()\)| 2d\ and supported on even functions on R. We recall that
Fx =F oR where # is the Weyl type integral transform

@1 - [ " f@)K () Alx)dz, y>0

and & is the Riemann-Liouville type integral transform
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x
Zf(x)= [ [fy)K(zydy, x>0
0

The multiplicative functions on the hypergroup coincide with spherical functions
or(x), A € C. Let .7 (R) denote the space of even rapidly decreasing functions on
R and . (X) = ¢o(x).7¢(R), where ¢y is the spherical function with A = 0. Then
Z* satisfies the assumptions (Al) - (A4) in Section 3 (see [12]), where
dI/y(:L') = K(:L',y)X[y’oo)(l’)A(:E)dit, y >0, and du,(y) = K(zay)X[Ow] (y)dy, = >0.
Hence, by introducing the Gaussian type functions h, and h* ,, Theorem 2 holds
for the Chébli-Trimeche transform .% x. We shall obtain v(z) in Remark 3. We
recall from [12] that

ho(z) < C e .

On the other hand, since et = e(z=r/20)"+pr—p*/4a
h* (l’) < Cea(zfp/Za)z,%(epy)(l') S Cea(xfp/zay(bw(x) < Ceazzfpz.

—a

Hence

and

e P dw(x) = Cx* ™/ B(z)e " dx

B(x)
In particular, if X is the Bessel-Kingman hypergroup, then A(x) = 2?**! and
ydw = Czdz. If X is the Jacobi hypergroup, then A(z) = ¢(sinhz)**™
(cosh ), o> B> —1/2, and ydw = C(tanhz)*"/?2°*1/2dz. Hence the con-
dition (7) in Remark 3 is nothing but the one used in [6, Theorem 3.1].

4.2. Dunkl analysis.

We refer to [8] and [11] for general notations and basic facts in Dunkl
transform. Let (X,dw, o) = (R%,wi(x)dz, || - ||) where k is a multiplicity function
on the root system. Then the Dunkl transform % x gives an isometry between
L*(X,dw) and L*(R?, Crdw). We recall that .Z x = .F, 0 %*. Here Z* and its dual
operator & are given as
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w10 = [ S (@)

where v, is a positive measure on R? with the support in {x € R?| ||z|| > ||y||} and
Af(x) = /R S (),

where 1, is a positive measure of probability on R? with the support in {y e
RY |lyll < ||lz||} (see [11]). Let #(R?) denote the Schwartz space on R?. Then %"
satisfies the assumptions (A1) - (A4) in Section 3 (see [11]). Moreover, we note
that h(z) = e=allzl” and

he (x) < e (1) (z) = eI,

Hence hq(z)h* () <1 and y(x) =1 in (7). Hence we can obtain the correspond-
ing Theorem 2 for the Dunkl transform.

4.3. Jacobi-Dunkl analysis.

We refer to [4] for general notations and basic facts in Jacobi-Dunkl
transform. Let a« > (3> —-1/2 and a# —1/2. We put p=a+8+1>0 and
Aq p(z) = 2% (sinh |z])** ™ (cosh 2)*™. Then (X,dw,0) = (R, Ay p(x)dz,|-]) and
the Jacobi-Dunkl transform .Zx gives an isometry between L*(X,dw) and
L*(R,dp). Here du is of the form

A

W TR Al )

5 1R\ p o (A)dA,

where 1g\_,, is the characteristic function of R\]—p,p[ and c(\) is a
meromorphic function on C. We recall that Fx =.% o Z" where %" the
Jacobi-Dunkl dual intertwining operator defined by

A fy) = K(z,y)f(x)Aap(z)dz

|=[>]y]
and & is the Jacobi-Dunkl intertwining operator defined by

||

Rf(z) = 7‘Z|K(x,y)f(y)dy if = € R\{0},

f(0) if z=0.
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Let .(R) denote the Schwartz space on R and .#(X) = (coshz) *.#(R). Then
X" satisfies the assumptions (Al) - (A4) in Section 3, where dy,(z)=
K(2, y)X[y00) () Aap(x)dz and  dp,(y) = K(2,y)X[0 e (¥) Aas(z)dz. Hence, by
introducing the Gaussian type functions h, and h*,, Theorem 2 holds for the
Jacobi-Dunkl transform .Zx. As in Jacobi hypergroup case, the condition (7) in
Remark 3 is given by ydw = C(tanh |z|)*"2|z|* 2 dz.
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