A generalization of Miyachi's theorem

By Radouan Daher, Takeshi Kawazoe and Hatem Mejjaoli

(Received June 9, 2008)

Abstract. The classical Hardy theorem on \mathbf{R} , which asserts f and the Fourier transform of f cannot both be very small, was generalized by Miyachi in terms of $L^1 + L^{\infty}$ and \log^+ -functions. In this paper we generalize Miyachi's theorem for \mathbf{R}^d and then for other generalized Fourier transforms such as the Chébli-Trimèche and the Dunkl transforms.

1. Introduction.

Classical Hardy's theorem [7] asserts the following: let a,b>0 and f a measurable function on \mathbf{R} satisfying $|f(x)| \leq Ce^{-ax^2}$ and $|\hat{f}(y)| \leq Ce^{-b\lambda^2}$. Then $f \equiv 0$ if ab > 1/4, f is a constant multiple of e^{-ax^2} if ab = 1/4, and there are infinitely many f if ab < 1/4. Considerable attention has been devoted to finding generalizations to new contexts for Hardy's theorem. Especially, M. Cowling and J. Price [5] obtained an L^p version of the theorem. As further generalizations, A. Bonami, B. Demange, P. Jaming [2] extend it in a Beurling form, and Miyachi [9] obtains an $L^1 + L^\infty$ version: Let ab = 1/4 and $f \in L^1(\mathbf{R})$ satisfy

$$e^{ax^2}f(x) \in L^1(\mathbf{R}) + L^\infty(\mathbf{R})$$

and

$$\int_{-\infty}^{+\infty} \log^{+} \frac{|\hat{f}(\lambda)e^{b\lambda^{2}}|}{C} d\lambda < \infty$$

for some C > 0. Then f is a constant multiple of e^{-ax^2} , where $L^1(\mathbf{R}) + L^{\infty}(\mathbf{R})$ is the set of functions of the form $f = f_1 + f_2$, $f_1 \in L^1(\mathbf{R})$, $f_2 \in L^{\infty}(\mathbf{R})$, and $\log^+ x = \log x$ if x > 1 and $\log^+ x = 0$ if $x \le 1$. In this paper we shall generalize Miyachi's

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 43A85; Secondary 43A62, 43A32, 44A12, 42A38.

Key Words and Phrases. Hardy's theorem, Miyachi's theorem, Radon transform, Dunkl transform, Chébli-Trimèche transform.

The second auther was supported by Grant-in-Aid for Scientific Research (C) (No. 20540188), Japan Society for the Promotion of Science.

theorem for \mathbf{R}^d and furthermore, we shall obtain an analogue in a general measure space $(X, d\omega)$ equipped with Fourier, Radon, and dual Radon transforms. As a special case of this general setting, we can deduce Miyachi's theorem for the Chébli-Trimèche, the Dunkl transforms, and the Jacobi-Dunkl transform. Especially, we can obtain alternative proofs in $[\mathbf{6}]$ for the Jacobi transform and in $[\mathbf{3}]$ for the Dunkl transform.

2. Miyachi's theorem on \mathbb{R}^d .

For $l = 1, 2, \dots$, we denote by \mathscr{F}_l the Fourier transform on \mathbf{R}^l . Miyachi's theorem is generalized on \mathbf{R}^d as follows.

THEOREM 1. Let $a_i, b_i > 0$ and $a_i b_i = 1/4$ for $1 \le i \le d$. We put $A = \operatorname{diag}(a_1, a_2, \dots, a_d)$ and $B = \operatorname{diag}(b_1, b_2, \dots, b_d)$. If a measurable function on \mathbf{R}^d satisfies

$$e^{\langle Ax, x \rangle} f(x) \in L^1(\mathbf{R}^d) + L^{\infty}(\mathbf{R}^d)$$
 (1)

and

$$\int_{\mathbf{R}^d} \log^+ \frac{|\mathscr{F}_d f(\lambda) e^{\langle B\lambda, \lambda \rangle}|}{C} d\lambda < \infty \tag{2}$$

for some C > 0, then f is a constant multiple of $e^{-\langle Ax,x \rangle}$.

PROOF. For $(x_1, x') = (x_1, x_2, \dots, x_d)$ and $\lambda' = (\lambda_2, \dots, \lambda_d)$, we shall consider

$$G(x_1,\lambda')=\mathscr{F}_{d-1}(f(x_1,\cdot))(\lambda')=\int_{\mathcal{B}^{d-1}}f(x_1,x')e^{-i\langle\lambda',x'
angle}dx',$$

where $dx' = dx_2 \cdots dx_d$. Since $f \in L^1(\mathbf{R}^d)$ by (1), $G(x_1, \lambda')$ is well-defined and is in $L^1(\mathbf{R}) \otimes L^{\infty}(\mathbf{R}^{d-1})$. Moreover, since $f = e^{-(a_1x_1^2 + a_2x_2^2 + \cdots + a_dx_d^2)}(u_1 + u_2)$, where $u_1 \in L^1(\mathbf{R}^d)$ and $u_2 \in L^{\infty}(\mathbf{R}^d)$ by (1), it follows that

$$|G(x_1, \lambda')| \le e^{-a_1 x_1^2} \sum_{k=1}^2 \int_{\mathbf{R}^{d-1}} e^{-(a_2 x_2^2 + \dots + a_d x_d^2)} |u_k(x_1, x')| dx'.$$

and thus, as a function of x_1 , $e^{a_1x_1^2}G(x_1,\lambda') \in L^1(\mathbf{R}) + L^{\infty}(\mathbf{R})$. We note that $\mathscr{F}_1(G(\cdot,\lambda'))(\lambda_1) = \mathscr{F}_df(\lambda)$ and substitute it in (2). Then Fubini's theorem implies that there exists a subset E of \mathbf{R}^{d-1} with positive measure such that for

 $\lambda' = (\lambda_2, \cdots, \lambda_d) \in E,$

$$\int_{-\infty}^{+\infty} \log^{+} \frac{|\mathscr{F}_{1}(G(\cdot,\lambda'))(\lambda_{1})e^{b_{1}\lambda_{1}^{2}}|}{Ce^{-(b_{2}\lambda_{2}^{2}+\cdots+b_{d}\lambda_{d}^{2})}} d\lambda_{1} < \infty.$$

Therefore, Miyachi's theorem on \mathbf{R} yields that $G(x_1, \lambda') = C(\lambda')e^{-a_1x_1^2}$ for $\lambda' \in E$. Hence $\mathscr{F}_d f(\lambda) = \mathscr{F}_1(G(\cdot, \lambda'))(\lambda_1) = C(\lambda')e^{-b_1\lambda_1^2}$ for $\lambda' \in E$. Since $\mathscr{F}_d f(\lambda)$ has a holomorphic extension on \mathbf{C}^n (see (1)), we can prolong the precedent relation as $\mathscr{F}_d f(\lambda) = C(\lambda') e^{-b_1\lambda_1^2}$ for all $\lambda' \in \mathbf{R}^{d-1}$. Hence $G(x_1, \lambda') = C(\lambda')e^{-a_1x_1^2}$ for all $\lambda' \in \mathbf{R}^{d-1}$. Here we put $h(x) = e^{a_1x_1^2}f(x)$. Then, as a function of $x' = (x_2, \dots, x_d)$, it belongs to $L^1(\mathbf{R}^{d-1})$ (see (1)) and $\mathscr{F}_{d-1}(h(x_1, \cdot))(\lambda') = e^{a_1x_1^2}\mathscr{F}_{d-1}(f(x_1, \cdot))(\lambda') = e^{a_1x_1^2}G(x_1, \lambda') = C(\lambda')$ for $\lambda' \in \mathbf{R}^{d-1}$. Since $C(\lambda')$ is independent of x_1 , it follows that h is also independent of x_1 . We obtain that f is of the form $f(x_1, x_2, \dots, x_d) = e^{-a_1x_1^2}h(x_2, \dots, x_d)$. We can obtain the desired result by repeating this argument.

3. Generalization of Miyachi's theorem.

Let $(X, d\omega, \sigma)$ be a topological space with a positive measure $d\omega$ and a distance function $\sigma: X \to \mathbb{R}_+$. In what follows we assume the existence of an integral operator \mathscr{R}^* that satisfies the following properties: \mathscr{R}^* is of the form

$$\mathscr{R}^* f(y) = \int_X f(x) d\nu_y(x), \ f \in C_c(X), \tag{3}$$

- (A1) ν_y is a positive measure with the support in $\{x \in X | ||y|| \le \sigma(x)\}$,
- (A2) \mathscr{R}^* is bounded from $L^1(X, d\omega)$ to $L^1(\mathbf{R}^d)$,
- (A3) \mathscr{R}^* gives an isomorphism between $\mathscr{S}(X)$ and $\mathscr{S}(\mathbf{R}^d)$, where $\mathscr{S}(X)$ is a suitable Schwartz class on X and $\mathscr{S}(\mathbf{R}^d)$ is the Schwartz class on \mathbf{R}^d .

We here define the dual operator $\mathscr{R}: \mathscr{S}'(\mathbf{R}^d) \to \mathscr{S}'(X)$ of \mathscr{R}^* by

$$\int_{\mathbf{R}^d} \mathscr{R}^* f(y) g(y) dy = \int_X f(x) \mathscr{R} g(x) d\omega(x). \tag{4}$$

We furthermore assume that

(A4) \mathcal{R} is of the form

$$\mathscr{R}f(x) = \int_{\mathbf{R}^d} f(y) d\mu_x(y), \ f \in C(\mathbf{R}^d), \tag{5}$$

where μ_x is a positive measure on \mathbf{R}^d with support in $\{y \in \mathbf{R}^d | \|y\| \le \sigma(x)\}$.

Then we see that $\mathcal{R}(1)(x) \leq C_0$ for all $x \in X$ because of (4) and (A2). We denote the Euclidean Fourier transform on \mathbb{R}^d by \mathcal{F}_d and put

$$\mathscr{F}_X = \mathscr{F}_d \circ \mathscr{R}^*.$$

We call \mathscr{F}_X a generalized Fourier transform on X, which is an isomorphism between $\mathscr{S}(X)$ and $\mathscr{S}(\mathbf{R}^d)$ (see (A3)). We define Gaussian type functions $h_a(x)$ and $h_{-a}^*(x)$, $x \in X$, $a \in \mathbf{R}_+$, as follows:

$$h_a(x) = (\mathscr{R}^*)^{-1} (e^{-a\|\cdot\|^2})(x)$$
 and $h_{-a}^*(x) = \mathscr{R}(e^{a\|\cdot\|^2})(x)$.

Since $e^{-a\|\cdot\|^2} \in \mathscr{S}(\mathbf{R}^d)$, $h_a(x)$ is well-defined (see (A3)), positive on X and $\mathscr{F}_X h_a(y) = C e^{-\|y\|^2/4a}$. Since $h_{-a}^*(x) \leq e^{a\sigma(x)^2} \mathscr{R}(1)(x) \leq C_0 e^{a\sigma(x)^2}$, $h_{-a}^*(x)$ is well-defined and positive on X. Especially, $(h_{-a}^*)^{-1}(x)$ is positive on X.

Theorem 2. Let a>0 and ab=1/4. If a measurable function f on X satisfies $f=f_1+f_2$ such that

$$h_{-a}^*(x)f_1(x) \in L^1(X, d\omega) \text{ and } h_a^{-1}(x)f_2(x) \in L^\infty(X, d\omega)$$
 (6)

and

$$\int_{\mathbf{R}^d} \log^+ \frac{|\mathscr{F}_X f(\lambda) e^{b||\lambda||^2}}{C} d\lambda < \infty$$

for some C > 0, then f is a constant multiple of h_a .

PROOF. We show that $\mathcal{R}^*(f)$ satisfies

$$e^{a||y||^2} \mathcal{R}^* f(y) \in L^1(\mathbf{R}^d) + L^{\infty}(\mathbf{R}^d).$$

Actually, by (6) $f(x) = f_1(x) + f_2(x) = (h_{-a}^*)^{-1}(x)v_1(x) + h_a(x)v_2(x)$, where $v_1 \in L^1(X, d\omega)$ and $v_2 \in L^\infty(X, d\omega)$. Then

$$\begin{aligned} \|e^{a\|y\|^{2}} \mathscr{R}^{*} f_{1}\|_{L^{1}(\mathbf{R}^{d})} &= \int_{\mathbf{R}^{d}} e^{a\|y\|^{2}} |\mathscr{R}^{*}((h_{-a}^{*})^{-1}v_{1})(y)| dy \\ &\leq \int_{\mathbf{R}^{d}} e^{a\|y\|^{2}} \mathscr{R}^{*}((h_{-a}^{*})^{-1}|v_{1}|)(y) dy \\ &= \int_{X} \mathscr{R}(e^{a\|\cdot\|^{2}})(x)(h_{-a}^{*})^{-1}(x)|v_{1}(x)| d\omega(x) \text{ (see (4))} \\ &= \int_{Y} |v_{1}(x)| d\omega(x) \end{aligned}$$

and

$$e^{a\|y\|^2}|\mathscr{R}^*f_2(y)| \le \|v_2\|_{\infty} e^{a\|y\|^2} \mathscr{R}^*h_a(y) = \|v_2\|_{\infty}.$$

Hence $e^{a||y||^2} \mathscr{R}^* f(y)$ belongs to $L^1(\mathbf{R}^d) + L^{\infty}(\mathbf{R}^d)$. Since $\mathscr{F}_X f = \mathscr{F}_d(\mathscr{R}^* f)$, it follows from Miyachi's theorem on \mathbf{R}^d (see Theorem 1) that $\mathscr{R}^* f(y) = Ce^{-a||y||^2}$. Hence we obtain that $f = Ch_a$.

REMARK 3. If there exists a function $\gamma(x)$ on X such that

$$h_a(x)h_{-a}^*(x) \le \gamma(x),$$

then the condition (6) in Theorem 2 can be replaced by

$$h_a^{-1}(x)f(x) \in L^1(X, \gamma d\omega) + L^{\infty}(X, d\omega). \tag{7}$$

4. Examples.

4.1. Chébli-Trimèche hypergroups.

We refer to [1], [10] and [12] for general notations and basic facts on Chébli-Trimèche hypergroups. Let $\alpha > -1/2$ and $A(x) = x^{2\alpha+1}B(x)$ be a Chébli-Trimèche function on \mathbf{R}_+ . Then $(X,d\omega,\sigma) = (\mathbf{R}_+,A(x)dx,|\cdot|)$ and the Chébli-Trimèche transform \mathscr{F}_X gives an isometry between $L^2(X,d\omega)$ and $L^2(\mathbf{R},d\mu)$ where $d\mu(\lambda) = |C(\lambda)|^{-2}d\lambda$ and supported on even functions on \mathbf{R} . We recall that $\mathscr{F}_X = \mathscr{F} \circ \mathscr{R}^*$ where \mathscr{R}^* is the Weyl type integral transform

$$\mathscr{R}^* f(y) = \int_y^\infty f(x) K(x, y) A(x) dx, \quad y \ge 0$$

and \mathcal{R} is the Riemann-Liouville type integral transform

$$\mathscr{R}f(x) = \int_0^x f(y)K(x,y)dy, \quad x \ge 0.$$

The multiplicative functions on the hypergroup coincide with spherical functions $\phi_{\lambda}(x)$, $\lambda \in \mathbb{C}$. Let $\mathscr{S}_{e}(\mathbf{R})$ denote the space of even rapidly decreasing functions on \mathbf{R} and $\mathscr{S}(X) = \phi_{0}(x)\mathscr{S}_{e}(\mathbf{R})$, where ϕ_{0} is the spherical function with $\lambda = 0$. Then \mathscr{R}^{*} satisfies the assumptions (A1) - (A4) in Section 3 (see [12]), where $d\nu_{y}(x) = K(x,y)\chi_{[y,\infty)}(x)A(x)dx$, $y \geq 0$, and $d\mu_{x}(y) = K(x,y)\chi_{[0,x]}(y)dy$, $x \geq 0$. Hence, by introducing the Gaussian type functions h_{a} and h_{-a}^{*} , Theorem 2 holds for the Chébli-Trimèche transform \mathscr{F}_{X} . We shall obtain $\gamma(x)$ in Remark 3. We recall from [12] that

$$h_a(x) \le C \frac{1}{\sqrt{B(x)}} e^{-ax^2}.$$

On the other hand, since $e^{ax^2} = e^{a(x-\rho/2a)^2 + \rho x - \rho^2/4a}$,

$$h_{-a}^*(x) \le Ce^{a(x-\rho/2a)^2} \mathcal{R}(e^{\rho y})(x) \le Ce^{a(x-\rho/2a)^2} \phi_{i\rho}(x) \le Ce^{ax^2-\rho x}.$$

Hence

$$h_a(x)h_{-a}^*(x) \le C \frac{1}{\sqrt{B(x)}} e^{-\rho x}$$

and

$$C\frac{1}{\sqrt{B(x)}}e^{-\rho x}d\omega(x) = Cx^{2\alpha+1}\sqrt{B(x)}e^{-\rho x}dx$$

In particular, if X is the Bessel-Kingman hypergroup, then $A(x) = x^{2\alpha+1}$ and $\gamma d\omega = Cx^{2\alpha+1} dx$. If X is the Jacobi hypergroup, then $A(x) = c(\sinh x)^{2\alpha+1} \cdot (\cosh x)^{2\beta+1}$, $\alpha \geq \beta \geq -1/2$, and $\gamma d\omega = C(\tanh x)^{\alpha+1/2} x^{\alpha+1/2} dx$. Hence the condition (7) in Remark 3 is nothing but the one used in [6, Theorem 3.1].

4.2. Dunkl analysis.

We refer to [8] and [11] for general notations and basic facts in Dunkl transform. Let $(X, d\omega, \sigma) = (\mathbf{R}^d, \omega_k(x)dx, \|\cdot\|)$ where k is a multiplicity function on the root system. Then the Dunkl transform \mathscr{F}_X gives an isometry between $L^2(X, d\omega)$ and $L^2(\mathbf{R}^d, C_k d\omega)$. We recall that $\mathscr{F}_X = \mathscr{F}_d \circ \mathscr{R}^*$. Here \mathscr{R}^* and its dual operator \mathscr{R} are given as

$$\mathscr{R}^*f(y) = \int_{\mathbf{R}^d} f(x) d\nu_y(x),$$

where ν_y is a positive measure on \mathbf{R}^d with the support in $\{x \in \mathbf{R}^d | ||x|| \ge ||y||\}$ and

$$\mathscr{R}f(x)=\int_{\mathbf{R}^d}f(y)d\mu_x(y),$$

where μ_x is a positive measure of probability on \mathbf{R}^d with the support in $\{y \in \mathbf{R}^d | \|y\| \le \|x\|\}$ (see [11]). Let $\mathscr{S}(\mathbf{R}^d)$ denote the Schwartz space on \mathbf{R}^d . Then \mathscr{R}^* satisfies the assumptions (A1) - (A4) in Section 3 (see [11]). Moreover, we note that $h_a(x) = e^{-a\|x\|^2}$ and

$$h_{-a}^*(x) \le e^{a\|x\|^2} \mathcal{R}(1)(x) = e^{a\|x\|^2}.$$

Hence $h_a(x)h_{-a}^*(x) \leq 1$ and $\gamma(x) = 1$ in (7). Hence we can obtain the corresponding Theorem 2 for the Dunkl transform.

4.3. Jacobi-Dunkl analysis.

We refer to [4] for general notations and basic facts in Jacobi-Dunkl transform. Let $\alpha \geq \beta \geq -1/2$ and $\alpha \neq -1/2$. We put $\rho = \alpha + \beta + 1 > 0$ and $A_{\alpha,\beta}(x) = 2^{2\rho} (\sinh |x|)^{2\alpha+1} (\cosh x)^{2\beta+1}$. Then $(X,d\omega,\sigma) = (\mathbf{R},A_{\alpha,\beta}(x)dx,|\cdot|)$ and the Jacobi-Dunkl transform \mathscr{F}_X gives an isometry between $L^2(X,d\omega)$ and $L^2(\mathbf{R},d\mu)$. Here $d\mu$ is of the form

$$d\mu(\lambda) = \frac{|\lambda|}{8\pi\sqrt{\lambda^2 - \rho^2}|c(\sqrt{\lambda^2 - \rho^2})|^2} 1_{\mathbf{R}\setminus]-\rho,\rho[}(\lambda)d\lambda,$$

where $1_{\mathbf{R}\setminus]-\rho,\rho[}$ is the characteristic function of $\mathbf{R}\setminus]-\rho,\rho[$ and $c(\lambda)$ is a meromorphic function on \mathbf{C} . We recall that $\mathscr{F}_X=\mathscr{F}\circ\mathscr{R}^*$ where \mathscr{R}^* the Jacobi-Dunkl dual intertwining operator defined by

$$\mathscr{R}^* f(y) = \int_{|x| \ge |y|} K(x, y) f(x) A_{\alpha, \beta}(x) dx$$

and \mathcal{R} is the Jacobi-Dunkl intertwining operator defined by

$$\mathscr{R}f(x) = \begin{cases} \int_{-|x|}^{|x|} K(x, y) f(y) dy & \text{if } x \in \mathbf{R} \setminus \{0\}, \\ f(0) & \text{if } x = 0. \end{cases}$$

Let $\mathscr{S}(\mathbf{R})$ denote the Schwartz space on \mathbf{R} and $\mathscr{S}(X) = (\cosh x)^{-2\rho} \mathscr{S}(\mathbf{R})$. Then \mathscr{R}^* satisfies the assumptions (A1) - (A4) in Section 3, where $d\nu_y(x) = K(x,y)\chi_{[|y|,\infty)}(x)A_{\alpha,\beta}(x)dx$ and $d\mu_x(y) = K(x,y)\chi_{[0,|x|]}(x)A_{\alpha,\beta}(x)dx$. Hence, by introducing the Gaussian type functions h_a and h_{-a}^* , Theorem 2 holds for the Jacobi-Dunkl transform \mathscr{F}_X . As in Jacobi hypergroup case, the condition (7) in Remark 3 is given by $\gamma d\omega = C(\tanh |x|)^{\alpha+\frac{1}{2}}|x|^{\alpha+\frac{1}{2}}dx$.

References

- W. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, Walter de Gruyter, Berlin, New-York, 1995.
- [2] A. Bonami, B. Demange and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana, 19 (2003), 23–55.
- [3] F. Chouchene, R. Daher, T. Kawazoe and H. Mejjaoli, Miyachi's theorem for the Dunkl transform, preprint, 2007.
- [4] F. Chouchene, M. Mili and K. Trimèche, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R, J. Anal. Appl. (Singap.), 1 (2003), 387–412.
- [5] M. Cowling and J. F. Price, Generalizations of Heisenberg's inequality. Lecture Notes in Math., 992, Springer Verlag, 1983, pp. 443–449.
- [6] R. Daher and T. Kawazoe, Generalized Hardy's theorem for Jacobi transform, Hiroshima Math. J., 36 (2006), 331–337.
- [7] G.H. Hardy, A theorem concerning Fourier transforms, J. London. Math. Soc., 8 (1933), 227– 231.
- [8] M. F. E. de Jeu, The Dunkl transform, Invent. Math., 113 (1993), 147–162.
- [9] A. Miyachi, A generalization of theorem of Hardy, Harmonic Analysis Seminar held at Izunagaoka, Shizuoka-Ken, Japan 1997, pp. 44–51.
- [10] K. Trimèche, Generalized wavelets and hypergroups, Gordon and Breach Science, 1997.
- [11] K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transforms Spec. Funct., 12 (2001), 349–374.
- [12] K. Trimèche, Cowling-Price and Hardy theorems on Chébli-Trimèche hypergroups, Glob. J. Pure Appl. Math., 1 (2005), 286–305.

Radouan Daher

Department of Mathematics Faculty of Sciences and Informatics University Hassan II B.P. 5366 Maarif, Casablanca Morocco

Takeshi KAWAZOE

Department of Mathematics Keio University at Fujisawa Endo, Fujisawa Kanagawa 252-8520 Japan

Hatem Mejjaoli

Department of Mathematics Faculty of Sciences of Tunis Campus, 1060 Tunis Tunisia