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Abstract. We present a Frobenius type theorem for a system of nonlinear
partial differential equations. Typical application is the normal form theory of a
singular vector field. The construction of a singular solution is closely related with
a Riemann-Hilbert factorization.

1. Introduction.

In this paper we shall study singular solutions of a system of nonlinear
singular partial differential equations with resonances. If a resonance occurs, then
we can easily see that the equations are not solvable in general even in a class of
formal power series unless a compatibility condition is assumed. Nevertheless, in
view of the applications, it is important to show the solvability without assuming
any compatibility conditions when a resonance occurs.

In order to show the solvability in such a case, we recall the Frobenius
method in the theory of ordinary differential equations. Namely, one can
construct a solution by introducing logarithmic singularities. We will extend the
idea to systems of nonlinear singular partial differential equations with nontrivial
nilpotent parts by introducing logarithmic singularities of several variables.

We will apply our method to the linearization of a singular vector field with a
resonance. In fact, we will see that a Frobenius type singular solution may yield a
finitely differentiable solution in the real domain under a certain condition on the
resonances. This gives a new interpretation of well-known Hartmann’s theorem
from the complex-analytic point of view. (cf. Remark 2 and [1]).

This paper is organized as follows. In Section 2 we state the main theorem for
a first order system and applications to the linearization problem of a singular
vector field. In Section 3 we give the proof of the main theorem. In Section 4 we
briefly state an extension to higher order systems.
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2. First order systems.

Let = (z1,x9,...,2,) € C" be the variable in C" (n > 2) and Z. be the
set of all nonnegative integers. We use the notation d,; = 9/9z;, j=1,2,...,n.
Let AcC{1,2,...,n}, A#{1,2,...,n} be given. We consider the system of
semilinear first order partial differential equations

Poug(z) = di(z) + fru(z,uv), k=1,2,... N, (2.1)

where u = (u1,...,uyn), N > 1 and Py is given by

P, = iaj,k(x)awj + Z bjw(x)0s, + cr(x). (2.2)

JEA

Here the functions aji(x), bjx(z), cx(x) and dy(z) are holomorphic in some
neighborhood of the origin such that

ajx(z) = zj(Njx + @ix(x)),  Gx(0) =0, (2.3)
bia(z) = wjrgjn+ bin(@),  biulx) = O(lzf?), (2.4)
where @;(z) and bj(z) are holomorphic in some neighborhood of the origin, and
Ajir and €;, are complex constants. The functions fi(z,u) (k=1,2,...,N) are
holomorphic in some neighborhood of the origin of (z,u) = (0,0) € C" x C" such

that fi(z,u) = O(|u|?) for k=1,...,N.
We define the indicial polynomial py(a) by

pr(a) = ZAJ’J@QJ’ +cx(0) for a=(a1,ay,...,0,) € Z7. (2.5)
=

Then we say that o € Z7, is a resonance if py(«) = 0 for some k, (1 <k < N).
We assume the following three conditions.

ASSUMPTION 1. There exists a resonance o € Z7,.

ASSUMPTION 2.  For every resonance o = (au, ..., q,) € Z'}, there exists an
£e{l,...,n}\ A such that ay # 0.

ASSUMPTION 3 (Poincaré condition). For every k, k=1,2,..., N, the
convex hull of the set {A;x;7=1,...,n} in C does not contain the origin.
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We can easily see that Assumption 3 implies that the set of all resonances is a
finite set. We define (logz)” = [T}, (log )", B=(B1,...,5) € Z'".

THEOREM 1. Assume that Assumptions 1, 2 and 3 are satisfied. Then the

system of equations (2.1) has a solution u = (uy,us,...,uy) of the form
u@) = Y uapr(logz)’, (2.6)
lal> 1,527

where the summation with respect to B8 in (2.6) is taken for [ such that
B=(Bi,....0) € Z', B; =0 if j € A. Moreover, there exist an integer J and a
constant r > 0 such that the series (2.6) is written as the power series of x and
Xopi=wz,(logz,), (p=1,2,...,J,ve{l,...,n} \ A), which converges in the
domain

{re Clz|<r, | Xypl<r, p=1,2,...,J, ve{l,...,n}\ A}

REMARK 1. We note that Tahara [13] showed the existence of a singular
solution with one singular variable for a class of Fuchsian partial differential
equations. Our singular solution contains singularities of several variables and our
equations admit nilpotent parts. In the several variable case, the construction of a
singular solution essentially depends on the Riemann-Hilbert factorization
problem of several variables. (cf. Step 3 of the proof of Theorem 1.) In fact, we
will show more precise formula, from which we can show that the singularity of
the solution is generated by a finite number of singular functions.

Our method can also be applied to the normal form theory of a singular
vector field. We consider

n a )
%(m):Zaj(x)f, aj(0)=0 (j=1,...,n), (2.7)
1 Oz;
where z = (21,29,...,2,) € C", and a;(z) are holomorphic in some neighborhood

of the origin z = 0. We set X(z) = (a1(x),az(x),...,a,(x)) and write X(x) in the
form

X(z) = zA + R(x), (2.8)

where
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R(z) = (Ri(2),...,Ra(x)), R(z)=0(z|"), (2.9)

and A is an n X n constant matrix. We want to linearize 2 (z) by the change of
the variables = y+ v(y), v = O(Jy|*). Noting that

X(x)%

the linearization condition is equivalent to X(y 4+ v)(1 + ayv)*l = yA, namely
Lv—vA=yAdpw —vA = R(y+v(y)), v=(vi,...,0). (2.10)

We study the solvability of (2.10). We assume that the matrix A is put in a
Jordan normal form for the sake of simplicity. This implies that the differ-
entiations in .#" have the forms y; 6% Or Yp_1 % for some j or k. The former term
comes from the semisimple part of A, and the latter one appears from the
nilpotent part of A. In view of this we define A C {1,2,...,n}, A #{1,2,...,n} as
the set of all integers k£ > 2 such that y;_; a%. appears in .Z. If v(y) has the form
(2.6), then it follows from the condition R(x) = O(|z|?) that in the expansion of
the right-hand side of (2.10) only the terms y*(logy)” with |a| > 2, |3] > 0 may
appear in each component. On the other hand, in the left-hand side of (2.10) the
term .%v — vA may contain 3 (logy)® for some |y| = 1, |6 > 0 in the components.
Because we are interested in the solvability of (2.10), we will look for v of the form
(2.6) such that |a| > 2 in the summation. We denote the eigenvalues of A by Aj,
j=1,...,n with multiplicity. Then we have

THEOREM 2. Assume that the Poincaré condition is satisfied. Suppose
that there exists a resonance o € Z', |a| >2. Moreover, assume that for
every resonance o = (aq,0Qz,...,0n) € Z', such that |a| > 2, there exists an
£e{1,2,...,n}\ A such that oy # 0. Then (2.10) has a solution v of the form

U(:U) = Z Vap y(I(lOg y)ﬂa (21 1)

|o|>2,8€ 2"
where (log y)d = H;.l:l(log yj)‘sj, and the summation with respect to B in (2.11) is
taken for 3 such that 3 = (51,...,0,) € Z', Bj = 0 if j € A. There exist an integer
J and a constant € > 0 such that the series v(y) can be written as the power series
ofyandV,, =y,(logy, ), (p=1,2,..., ;v e {l,...,n} \ A), which converges in
the domain
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{ye Chlyl<e Vil <e p=1,2,....J, ve{l,....,n} \ A}.

REMARK 2. (a) If there is no resonance, then Theorem 2 is still valid. The
solution (2.11) coincides with the classical solution constructed by Poincaré
because no logarithmic term appears.

(b) If A is semisimple, then A =@. Hence the existence of ay # 0 for every
resonance « in Theorem 2 is trivially satisfied.

(c) If we restrict the solution v to the domain {y; > 0;5 € {1,...,n} \ A} in some
neighborhood of the origin of R", then, we obtain a smooth solution of (2.10)
which is continuous up to y; =0 (j € {1,...,n} \ A). By solving (2.10) in each
region £y; > 0 after the change of variables y; — —y; and by patching these
solutions we obtain a finitely smooth solution in a real domain. The linearizability
under a continuous (finitely smooth) transformation is known as Hartman’s
theorem. (See [1]).

EXAMPLE 1. Let n =2 and let m > 2 be an integer. Let £ be given by
L = y10y, + my20,,. (2.12)

Then the resonance « such that |a| > 2 is given by a = (a1, a2) = (m, 0).
Indeed, the resonance a = (v, ) € Zi satisfies o; + ag > 2 and

air+mas—1=0, or a+mas—m=0.

Since a; + mas — 1 # 0, by the conditions o + ay > 2 and m > 2, we obtain g +
mag = m and a1 + as > 2. It follows that (o, ag) = (m, 0). Hence, by Theorem 2
we have a singular solution of (2.10) containing logy;.

EXAMPLE 2.  We consider (2.10) for
L = y10y, + 2y20,, + 4(y30,, + y40,,) + €y30,,,

where € is a constant. The resonance relations are given by |a| > 2 and one
of the equations, ¥(a)=1, (o) =2, €(a) =4, where €(a)= o +2as+
4(as + a4). By simple computations the resonances are given by «a=
(2,0,0,0),(0,2,0,0),(2,1,0,0),(4,0,0,0). Hence a singular solution contains
singularities, either y? logy; or y3logy,. We note that both singularities generally
appear.
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3. Proof of Theorems.

We will prove Theorem 1 in eight steps.
Step 1: Let e;=(0,...,0,1,0,...,0), 1<j<mn be the j-th unit vector.
By  substituting the expansion (2.6), u= (u,...,uyn), up(z)=

Z\alzl.ﬂezi Uka,3 2*(logz)” (1 < k< N) into (2.1), we have the following recur-
rence relation for {uyq 5}

Pr(@) s+ > (@) + Dejrtbare e 15+ Y Nik(B) + Dukasie,
jeA igA

=dias— D Chatiies + Fl{uco}igcia i)

n+E=a,[n|>1

(3.1)

where dk,aﬁ =dp, (if 8=0), =0 (if 3#0). Here ¢, and d;, denote the
coeflicients of z* in the Taylor expansions of ¢x(x) and di(z) at the origin, and
Fi,({Z¢~}) is a polynomial of {Z,}. We want to determine u;, 3 from (3.1).
For a multi-integer v = (y1,...,7,) € Z'} we define the lexicographic order
v > 0 if there exists j > 1 such that v; =0,...,7-1 =0,7; > 1. Let v > 0 be an
integer. Then we line up all & € Z'} such that |a| = v, namely a' > - = a” for the
integer r = (”Zf; 1). We note that o +e; —ej_y < a for j =2,3,...,n. Similarly,
we lineup all g € ZT#A in the lexicographic order, where #A is the cardinality of
A. For every integer k, (k=1,2,...,N), we define the unknown vectors U, by

Ui ="Uk0: U1y s Upis - - )5 (3.2)
where Uy, are defined by Uy, = t(U,f)wzé, (¢=0,1,2,...) and

B .t
Uy = "(Upat gy Uk a2 8y - - - Ukar,8)-

Here we use the lexicographic order in the set of 8 such that |8 =¢ when
deﬁning Uk.,[.

In order to write (3.1) in the matrix form we denote the right-hand side of
(3.1) by gi.qp for the sake of simplicity. We note that these terms are known terms
in the recurrence relations. For every integer k, 1 < k < N, we define G, by the
same way as Uy,

Gk :t(G]@o,Gk’lm-~,Gk7u,-~-)7 (33)

where Gy = t(Gf)W‘:Z, (¢=0,1,2,...), and
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Gf = t(gk:,al,ﬁv ka2 By - 7976,!1"-,3)‘

We write (3.1) in the infinite system of equations

U =Gy, k=1,2,...,N, (3.4)
where 2 is given by
B, B, 0
0 By Bys

0 0 Bz  Biy

Ay = . (3.5)
%/1—1 %/1.—1,11,
%# %H;M+1
0 0 0

Here B; (i =1,2,...) are diagonal matrices B; = Ay ® I, with Ay given by

pr(al) *
AU . ) s (36)

pr(a)

where * denotes terms which come from the second term of the left-hand
side of (3.1). The size of the identity matrix in B; = Ay ® I is equal to
#{B=(B1,....0,) € Z;|0| =i—1,8;=0"for j¢ A}. Indeed, these matrices
appear from the first and the second term of the left-hand side of (3.1) because
the coefficients are independent of 3. The matrix B;;;; comes from the third
term of the left-hand side of (3.1). The components are given by A, (8, + 1)1 for
some v, where I is the identity matrix with the same size as Ay. If we write
the third term of the left-hand side of (3.1) in the matrix form, then the lower
diagonal part of 9B8;,,1 vanishes.

Because the set of all resonances is a finite set, by Assumption 3, the set of all
lengths |a| of resonances « is given by ¢;, (1 < j < r) for some integer r > 1. We
may assume 1 < ¢ < --- < ¢, without loss of generality. First we will determine
Uk, in the case where 1 < |a| < ¢; — 1. Because py(«v) # 0 for all || < 41, Ap with
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|a| = v is invertible for every v < ¢1, and hence 9, is invertible by the definition.
We put Up; =0 (j>1), k=1,...,N. Then we can solve (3.4) recurrently for
la| < £1. Hence we can determine {0} 4</,1-

Step 2: The case where |a| = ¢;. By the definition the resonance occurs for some
k = kq. If the resonance does not occur for the k-th equation, then the argument is
similar to Step 1. Hence we consider the case k = ky. Because there appears no
logarithmic terms for |a| < ¢, we have G} ; =0 for j > 1 and the quantities Gy
(1 <k < N) are already determined. For every resonance o = (ay,...,q,), we
take an integer ¢ = ¢(«) such that oy # 0 by Assumption 2.

In order to solve (3.4), we will solve the Riemann-Hilbert factorization
problem. The first step is to transform the infinite system (3.4) to a finite one by
imposing additional conditions on uy.,3. Namely we will look for the solution Uy
with compact support in the sense that there exists s such that U ; =0 for j > s
and k=1,...,N.

Let k, 1 <k < N be arbitrarily given. We line up all resonances of py
satisfying |a| = ¢, in the form

al=at == ad (3.7)

where s is the number of resonances with |a| = 4;.
We impose the additional conditions for uy, s

Upap =0 if a<a™ 8>, i=1,2,...,5+1, (3.8)

where we understand that u g =0 if |5] > s+ 1, namely U;,; =0 for j > s+ 1.
We will show that (3.8) is compatible with (3.4) with G, = 0, namely

%j+lUkn,j + %j+1,j+2Uk,j+1 =0. (39)
In order to see this, let us first consider (3.8) with ¢ =1
Ukap =0 if a<a’, | >1. (3.10)

We want to show that for every j, j =1,2,..., the set of equations in the system
(3.9) corresponding to a < o is trivially satisfied. Indeed, if we write (3.9) in the
recurrence relation, then we obtain the left-hand side of (3.1). Because
a® = a > a+ej—ej_1, the left-hand side of (3.1) vanishes by the condition
(3.10). Next we consider the a’-component of (3.9) with j = 1. By the condition
(3.8) with ¢ = 2 the a’-component of Uy vanishes, and hence the corresponding
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component of By 3Uj 2 also vanishes. Although the o’-component of U ; may not
vanish, the resonance condition pi(a®) =0 and the above argument for the
nilpotent part show that the a’-component of B,Uy; also vanishes. Hence the
condition (3.10) is compatible with (3.9) with j > 1. We make the same argument
for the cases 2 < ¢ < s. In order to verify that (3.8) with ¢ = s is compatible with
(3.9) we consider

Bsi1Uks + Bsi1,542Urs11 = 0. (3.11)

We note that Uy s =0 by (3.8) with ¢ = s+ 1. The condition (3.8) with ¢ =s
and the above argument for the nilpotent part show that the a-component of the
left-hand side of (3.11) vanishes for a! = a. The equation corresponding to a! in
(3.11) is clearly satisfied by the resonance condition pi(a') =0 and the above
argument for the nilpotent part.

Then the system of equations (3.4) with the additional conditions (3.8) is
equivalent to the following system of equations together with (3.8).

WU =G, k=12,... N, (3.12)
where 2, is given by
B, B 0
0 By Bog
0 0 Bs %3“’4
A, = . . . (3.13)
. . O
Bor1 Byrie4

0 %s+2
The vectors U, and G}, are given by
Uy, ="(Uko, U1y, Upsi1), Gp="(Gro,Gris--,Grsi1), k=1,...,N. (3.14)

Here we note that Uy 11 = 0 by (3.8). The introduction of Uy 41 is necessary in
the following argument.

First we note that we may assume that the off-diagonal components of the
matrix Ay in (3.6) can be made arbitrarily small. Indeed, this is possible if we
introduce a weight in the unknown variable U,j = (Ura,8)q |o|=y With respect to the
order =. More precisely, let D. = diag(1,¢,€%,...) be the diagonal matrix for a
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nonzero small constant . We set Vkﬂ = D;lU,f and HY = D;lG‘g, and we consider
the equations for V,f and Hf instead of U,f and Gf Then we can easily see that the
off-diagonal elements can be made arbitrarily small if € is sufficiently small. In the
following we assume the property without loss of generality.

We will show that the matrix 2}, is nonsingular. In order to show this we use
the so-called Frobenius’ deformation. Let a be a resonance and let £ = £(a) be
given by Assumption 2. We exchange the column in 9%; which corresponds to «
with the one in 9B, 5 corresponding to Uk, B+¢(0) - In view of the relation (3.1), the
coefficient of ujq gye,,, 18 given by Ayq)r(Bea) + 1), which does not vanish by the
Poincaré condition. Then there appear new matrix components as a (2, 1)-element
of A}, which comes from the nilpotent part of 4y in By. We denote this new
element by Ry ;. Then, the matrices B; and B are deformed to the ones %1 and
B, 2, respectively. By the definition, we can easily see that B, is nonsingular.

Next we exchange the column in By which corresponds to a resonance a with
the one in B, 3 in such a way that the diagonal component of B, corresponding to
a resonance « is replaced by a certain nonzero term )\/ £(Bea) +1). Then we can
deform B, to By. We note that the invertibility of ‘BQ does not follow from the
above transformation because there appears a new component in the off-diagonal
components.

We continue these deformations until we exchange those columns in By,
corresponding to resonances with the ones in 9B, 2. Then we obtain a new
matrix B, 1. Therefore the new matrix 2} is given by

B, By, e B2
Ryy By Bog E By oo
0 Rz B3 By, By oo
A = . . . (3.15)
0 Reis  Boy Byirso
0 Roio i1 B 1o

We also define U,Q’ = t(Um, (7;(,71, cee Uk,s+l) and é’k’ by the same permutation in the
components as the one for the columns of 2.

We consider the equation Rs+2"s+1v~v]{;7$ + %S+ZU]€7S+1 = 0. We note that the
a-th column of R;H s+1 does not vanish only if « is a resonance. Because the a-th
component of U, s is the a-th component of Ujs =0, it follows that a-th
component of Uk s vanish for any resonance a. Hence we have R,o 9+1Uk s =0. We
define Uk7s+1 = 0. Next we define Uk and G;T by deleting the last components. We
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also define 2, by deleting the (s + 2)-th row and the (s 4 2)-th column of 2. Then
the equation AU, = G), can be written in

AU, =G, (3.16)

We shall solve (3.16). We write il; =T+ R, where R denotes the lower
triangular part of él}c and T := él;c — R. Because the components of R consist of
the elements in the upper triangular part of Ay, it follows that the norm of R can
be made arbitrarily small. Therefore if we can show that det %j #0 for j=
1,2,...,s+ 1, then T is invertible and T+ R = ‘512 is invertible.

Step 3: We will show that det %, #0 for j=1,2,...,s+ 1. By the definition
we can easily see that det B; # 0. Hence we will show that det %j+1 # 0 for j > 0.
For this purpose we use the so-called Riemann-Hilbert factorization of %j+1~
For the sake of simplicity we assume that the rows of %_H,l are assigned by the
order ! < 8% < .-+ < (34. Then we have

Ay
Ap By
%]'+1 . ] s (317)

* Aﬁq—l
A

where the upper triangular matrix Ag is obtained by replacing the columns of 4
corresponding to a resonance a with the one in A\yq)(Bya) + 1)1. Because Ay .
does not vanish by the Poincaré condition, it follows that det Az # 0.

The matrix P, is the (8,7)-component of By, || = |y| = j. The (8,7)-
component appears if there exists a nonzero element which comes from uy, o g+, in
(3.1) in the column of B}, jio corresponding to upq~4e (@; resonance), where
¢ ={(a) is the integer given by Assumption 2. This implies that 5+ e; = v + ey.
By definition, Ps, is given by

Pjy= > cIE,, (3.18)

«,resonance

where cg” is a certain constant and FE, is the projection matrix to the a-th
component, namely, the diagonal matrix with the a-th component equal to 1 and
the rest being zero.

We will show that %j+1 can be factorized in the following form
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Ay
Bj1Q =D = ; (3.19)

Ap
where the matrix @ is the product of the matrices of the form
1

—AT Py,

Q1 = (3.20)

for some A, and Ps,, and where the lower triangular elements of ®;.; are
identical with the corresponding elements of %j+1' Especially, we have
det %j+1 # 0. We note that the invariance of the lower triangular part is crucial
in the argument of Step 6, where we show a certain finiteness of the singularity of
the solution.

First we show that, if either v/ = v < Bor 8 < v/ 2 « holds, then P3. and P, g
do not contain the same projection E, for any resonance «. Indeed, assume
that 3 <+ 2 v and that P, 3 and Pg s contain cg‘ﬂEa and cg"/Ea, respectively.
If neither ¢/’ nor ¢ vanishes, then it follows that there exist j > ¢ = (a)
such that

B+e=7+e, (3.21)
and v < £ such that
Y +er=B+e. (3.22)

The condition j > ¢ follows from 38—y =-e; —e; <0, and the condition v < ¢
follows from 8 < +/. By adding these equalities, we obtain

Y +2e=7v+e+e, v<l<j. (3.23)
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Hence we have v/ —y =e, + ¢; — 2¢; > 0, because v < £ < j. This contradicts to
the assumption 7/ = 7. The other cases will be proved similarly. Hence either cg"ﬂ
or ¢?7 vanishes. This proves the assertion.

We will erase the off-diagonal elements of the first row of ‘B]—H, Py, (v = ")
for some 3'. We multiply the first column of 8B, by — A Py, (v = (') from the
right, and we add it to the y-th column. Then the g-th component of the y-th
column of the transformed matrix is given by

‘Pﬂqﬂ = Pﬂﬁ — Pﬂ_ﬂl AEIIPgl_’A/. (324)

We will show that if v = 3, then Ps, = Ps,. Indeed, we will show that
PﬂﬁlA[;llPﬂlﬂ =0. We write Ag = B+ N, where B is the diagonal part of Ay
and N = An — B is an upper triangular nilpotent matrix. We note that B is
invertible. We have

Azl =(I-B'N+(B'N* = (B'N)’ +.-)B", (3.25)

where the summation is a finite sum. By what we have proved in the above, we
obtain P B_nglﬁ = 0 because B! is a diagonal matrix, and Py g and Py ., do
not contain the same projection E,. We will show that Pg g B_lNB_nglﬁ =0. By
the definition, the column of the matrix N for a resonant a vanishes. It follows
that the a-th column of the matrix B-!NB~! for a resonant a also vanishes.
In view of the definition of Py ., we see that the matrix B~'NB Py . vanishes
except for those columns corresponding to the resonances. For a resonance «,
the column is identical with the one of B"INB™! except for a constant factor.
Hence P; 5 B*NB Py, = 0. Similarly, we can show that

Py (B 'N)’B P, =0 forv=12,...

because the a-th column of (B! N)”B~! for a resonance a vanishes. Therefore we
obtain Pg g Aglngl,/ = 0. We note that the lower triangular part of %J’H is
invariant under the above transformation. For the sake of simplicity we denote
the transformed matrix with the same letter %j+1.

We will erase the components in the second row in the upper triangular part
of %j+1. For this purpose we multiply the second column of %]Jrl by —A‘gzlpgzﬁ
(v = %) from the right and add it to the 7-th column. Then the (83, v)-component
of the transformed matrix ‘:BJ-H is given by
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Psy = Py pAgl Py,
=Ps, — Pﬂﬂ'Ag]lPﬁlﬁ/ — Pﬂ_ﬂzA[}} (]Dﬁ’z",y - P{p_@ AEIIP‘S',W) (3.26)

For the sake of simplicity we write the left-hand side of (3.26) by the same
letter Pj.,.

In general, when we erase the components in the p-th (u <s) row in the
upper triangular part of %J’Ha the rest components are given by

o
Poy=Piat > Y (—1)" Py Agh -+ Agl Py . (3.27)

k=1 1<y <--<yp<p

Because the argument is similar to the case 4 = 2 and p = 3 we omit the proof.
We will show that if v 2 3, then Ps, = Pj,. For this purpose we will show
that

PsguAgy -+ Agi Py, = 0. (3.28)
In view of the argument in (3.24) it is sufficient to show that
Psgn - Pgu 5, = 0. (3_29)

Therefore we will show that Pggu, - - -, Pg 4 do not contain the same projection £,
for any resonance . Suppose that such an « exists. Let £ = ¢(«) be an integer
given by Assumption 2. Then we have

’Y+€Z:ﬁyl+€jlaﬂ1ﬂ +6E:ﬁ’/2 +6]‘2,"',ﬁyk+€ézﬁ+ejk7 (330)

for some integers ji, j2, - - - , j%. By the condition 3 < --- < 8% < v = 3 we obtain
v—pB" =ej, —e, > 0. It follows that we have j; </¢. Similarly, we have
< jo,...,£ <jp. By adding both sides of (3.30) we obtain ~+ ke, =
8+ 22:1 ej,- Thus we have 02 3 —~v = ke, — ngl ej, < 0. This is a contra-
diction. Therefore the lower triangular part of 9B;,; is invariant under the
deformation. For the sake of simplicity we write the deformed matrix with the
same letter %j+1.

Step 4: We consider the case where |a|=v, ¢ <v </{;. By Assumption 2,
we have /1 > 1. We first consider the case v = #; + 1. Let the integer k, 1 < k< N
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be given and fixed. By the construction of the formal solution in Step 2 the
term 2 (log z)” in the approximate solution uy, = 2 lal<t, Wha,p 2 (log 2)” in Step 2
satisfies |o| = ¢, > 1 if 3 #0. By substituting the formal power series u into
fr(z,u) we have

=" grs(z)(logz)" ZZg;W )(logz)". (3.31)

>0 v=0 |’y‘_z/

The vanishing order of g;,(x),|y| = v tends to infinity when v — oo. It follows
that the length |3 of z*(logz)’ which appears from fi(z,u) is bounded if
|a| < ¢4 + 1. We choose an integer s such that Gy, ; vanishes for j > s and Gy # 0.
Because there is no resonance, it follows that B; is invertible for all 7 > 1. We
define U, ; = 0 for j > s. Then we want to solve the system of equations

B11Ukj + Bji1,j02Ukjr1 = Gryy j=0,1,...,s. (3.32)

Indeed, we solve (3.32) for j = s and we determine Uy, ;. Then we solve (3.32) for
j=s—1 and so on. Hence we can determine uy, g for |a| = ¢; + 1.

We consider the case |a| > /1 + 2. We substitute the modified formal power

series u = 3, <4, 11 Ua,s 2% (log 2)” into fi.(x,u), and we make the same argument
as in the above. Then we can inductively determine the approximate solution
u= Zla\dz Uq g % (log I)ﬂ.
Step 5: We consider the case |a| > . We continue to use the same notation as in
Steps 2 and 3. Let k, 1 < k < N be arbitrarily given and fixed. Because the case
|| > 43 is the same as the case || = ¢ and the nonresonant case, we may consider
the case £» < |a| < £3. The case fy < |a| < {3 is similar to the case 41 < |a| < fy,
and we can determine the coefficients w3 of the formal solution. Hence we
consider the case |a| = fs.

We take the smallest integer 7 such that Gj; vanishes for j > 7 and we
consider the infinite system of equations

Bir1Up; + Bt 42Uk 41 = Gry, 7>0. (3.33)
We will deform the equation (3.33) to a finite system of equations similar to
(3.12) by the argument in Step 2. For this purpose we impose the following

conditions

Upop =0 if a<a™ " |8 >it+Ti=1,2,...,s+1, (3.34)
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where s is the number of resonances with |a| = 5. It follows that we may consider
the following modified system of equations

W UL =G, k=1,2,...,N, (3.35)
where 20} is given by
B Bio
0 By B3
0 %‘r %T,T+1
Ql;g,q— = 0 0 %TJrl sB‘rJrl,TJr?

%T+2 %T+2,T+3

%5+T+1 %S+T+1,S+T+2

sBer‘rJrQ
(3.36)

The vectors Uy (k=1,2,...,N) are given by
Upr = "(Uko, Uty Uksirnn), k=1,...,N, (3.37)

and G, . are defined similarly.

In order to solve (3.35) we study the invertibility of 2. in (3.36). We make
Frobenius’ deformation. Namely, we exchange those columns in B; which
corresponds to the resonance a with the ones in B;. Then there appear new
matrix components as a (2, 1)-element which comes from the nilpotent part of A,
in By. We denote this new element Ry;. Similarly, the matrix B8; and B,
becomes ‘:Bl and ‘:81_2, respectively. Next we exchange those columns in B,
corresponding to the resonance o with the ones in 8,3. We continue to make
these deformations until we exchange those columns in B,,,,1 with the ones in
Bsirilstrr2. Then we make similar arguments as in (3.13), (3.15) and (3.16).
Therefore the new matrix Ql;,/_j is given by
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3/

ko —

%1 %172 ... 0

Ry B, %2,3
0 RT,T*l %T %T,T+1
0 RT+1,T %T+1 %7—0—177—0-2
0 0 Reor11 DL B o3
0 Rs+ns+'r—1 %s-&-r %s+‘r,s+7'+1
O RS+T+1,s+T %5—0—74—1

(3.38)
We define

[jl/c,r = t(Ukio, ﬁk,h ceey [jk,s+-r)

by the same permutations and deletions in the components as those for jl;n Then
the equation (3.35) can be written in él;w T =G .. '

We write QN[;” = T + R, where R denotes the lower triangular part of QNl;” and
T:= él;w — R. Because the components of R consist of the elements in the upper
triangular part of Ag, it follows that the norm of R can be made arbitrarily small.
Because we have

det%j#o forj=1,2,....,s+7+1,

by exactly the same argument as in Step 3, it follows that T and T+ R = ‘5127 are
invertible.
Step 6: By the above arguments, we can determine the solution

w(@) = > urasr’(logz)’, k=1,2,... N. (3.39)

1<[a]<6,,8

We shall show the finiteness property of the singularity. Namely, upq 5 (k=
1,2,...,N) satisfy
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Upa,8 = 0, if a; =0, ﬂ]‘ >0,3j5€ {1,...,7’1}\14. (3.40)

Clearly (3.40) holds for |a| < ¢; because there appears no logarithmic term. We
now study the case |a| = 4.

We will show that every component of the solution U, of the equation (3. 16)
satisfies (3.40). We write QIk T + R, where T is an upper triangular part of Qlk,
and R := 2}, — T. We note that every component of R can be made arbitrarily
small. Then we have

W'=(T+R) '=I-T'R+ (TR’ - (TT'R’ +--)T7L.  (3.41)
In order to show that 2} ' G/, satisfies (3.40) it is sufficient to show that 7-! and R

preserve (3.40).
By the definition of T" we have

B O Cls1
0 B, Oy
T = S (3.42)
0 %:1 Cs 51
0 B

Cij=> > (—1)"B;'B,12 B3, (3.43)
m=1ij=i(1)<i(2)<--<i(m)<j

"%i(m—Z)ﬂ'(m—l)%y % i(m—1), m)%i_(yln,)v

where the summation Ei:i<1)<i(2)<u_<i<m)<]- is taken over all combinations.

First we shall show that if every component of F satisfies the condition
(3.40), then every component of % 'F satisfies (3.40). Let j=1 and set U =
(Uka,3) = % LF. Then we have the followmg recurrence relation

() Up a8 + Z(a,, + 1)ey kUk ate,—e, 1,5 = & known quantity, (3.44)
veA
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where we replace py(a) with Ayqa)x(Bea) + 1) when pi(a) vanishes. Let 8 be given
and fixed. Let 7 be such that ﬂj >0, j€{l,...,n}\ A. Let o' be the smallest
index with respect to the order < satisfying |a| = ¢; and

a;=0. (3.45)

For every v € A, the j-th component of the index a' +e, —e,_; vanishes and
a' = a' +e, —e,_1. Hence, by the minimality of a!, there appears no term in
the second term of the left-hand side of (3.44) satlsfymg (3.45). Because the
right-hand side terms in (3.44) satisfy (3.40) and §; > 0, o; = 0, it follows that
the right-hand side vanishes. Hence uy, 41 g vanishes.

Let o’ be the smallest a = ! satisfying (3.45). Because o = o® + e, — e, 1,
and o? +e, — e, satisfies (3.45) for every v € A, there appears only the term
U o1 g in the second term of the left-hand side of (3.44). Because uy, 41 3 vanishes by
the above argument, it follows that the second term of the left-hand side of (3.44)
vanishes. Because the right-hand side of (3.44) also vanishes by the assumption, it
follows that wy, .2 g vanishes. By induction on those o’s satisfying (3.45), we see
that w5 satisfies (3.40). This proves that B, ' F satisfy (3.40).

We consider %JHF for j=1,2,.... By (3.19) we have

B F=QD; L F. (3.46)

We set H = CDJHF and we write the equation ©;1H = I in the recurrence
relation. We recall that the diagonal component of ®;1; is given by As. By the
definition the difference between the matrices AU and Ag is that the term py(«) for
the resonance « is replaced by Aya)(Bia) +1) and the elements in the a-th
column corresponding to the term Uk,~/+el,fe,/71.ﬂ7 v+ e, —e,_1 = a are deleted from
Ay. We can easily see that the same argument as for the case %_1F still works. It
follows that if every component of G' satisfies (3.40), then Aj 1G’ satisfies (3.40).

We recall that the lower triangular part of ;. is 1dentlca1 with that of %]H
Because the off-diagonal element Pjs, in ®B;;; is a sum of projections, it preserves
(3.40). It follows that every component of Pj.F satisfies (3.40) if F satisfies
(3.40). Therefore we see that every component of H = COJHF satisfies (3.40).

We next consider QH. Because @ is the product of terms of the form @y, one
can think @Q; instead of ). We have shown that A‘ngﬁF satisfies (3.40) if F
satisfies (3.40). This proves that Q1 H satisfies (3.40). Hence QH satisfies (3.40).

The matrix %,,H preserves (3.40) because %w is given by replacing the
columns in B, , corresponding to the resonance with a zero vector. Therefore, by
(3.43) the matrix C; ; preserves the condition (3.40). It follows that 7! preserves
the condition (3.40).



256 M. YOSHINO and A. SHIRAI

Next we shall show that R preserves (3.40). Let the components of & satisfy
(3.40). By the definition, the column of R consists of that of A correponding to
some resonance «. In order to show that every component of R.Z satisfies (3.40)
we suppose that a satisfies o; =0, §; >0 for some j¢ A. Then the a-th
component of R can be written in ), ¢, frate,—e, 3 for some c,. Because
the j-th component of « + e, — e,_1 vanishes by the conditions j¢ A and v € A, it
follows that fiate,—e, 3 =0. Hence the a-th component of R% vanishes. This
proves that every component of R satisfies (3.40). Therefore, by (3.41) the
matrix QNl'kfl preserves (3.40). This completes the proof.

We consider the case ¢; < v < /¥y, |a] =v. Let us assume that we have
constructed the formal solution

up(x) = Z Uq g2 (log x)ﬂ,
1<|a|<v,peZ",

such that u, g’s satisfy (3.40). We will construct the solution of the form

w(z) = uo(z) + Z ua,sgm“(logx)ﬂ.
la|=v,peZ;

If we substitute w into fi(x,u) we have the expression (3.31). Because fi(z,u) =
O(|ul*) and |a] > 1, it follows that the term z*(logz)”, || = v appears only from
fr(x, uo). Because every u, g in uy satisfies (3.40), it follows that the coefficient g, g
of 2*(log z)” of the expansion of (3.31) satisfies (3.40) with Uq,3 = ga3. Lherefore,
every component g, 3 of Gy ; in the right-hand side of (3.32) satisfies (3.40) with
Uka,3 = Jrag- Because the recurrence relation (3.32) has the same form as to the
case |a| =/, we can inductively show that every component of Uy ; satisfies
(3.40).

We next consider the case |a| > f5. The nonresonant case || # ¢; is the
same as to the case {; < v < {3, || = v. On the other hand, the case |a| = ¢ is
similar to the case |a| = ¢;. In fact we solve Ql;w Ji.» = Gj., where 2} _is given by
(3.38). We note that the right-hand side term G, . satisfies (3.40) by the argument
in the above. Then the argument is almost identical with the case la| = 4.
Therefore we have proved (3.40).

Step 7: We introduce the new variables Y = (Yuj),,,]- by the relation
Y, =xz;(logz;)", (v=1,...,v5,j¢ A),

where v; is the highest power of logz; in vy in (3.39). Then we see that v, can be
expressed as a polynomial of x and Y. For the sake of simplicity, we denote the
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polynomial with the same letter vy(z,Y). We note that if we take the integer v;
sufficiently large, then the variable Y can be taken independent of k, 1 < k< N.

We put ug(x) = wi(z,Y) + vg(z,Y). By substituting u; into the equation
(2.1), we see that wy = wg(x,Y") satisfies the following equation

Py = di(z) — Poop(2,Y) + fr(z,w+v), k=1,2,...,N, (3.47)

where w = (wy,...,wy) and v= (vy,...,vn). We rewrite the left-hand side of
(3.47) with the new variables x and Y, and we shall determine wy, as a convergent
power series of x and Y with degree greater than ¢, + 1.

First we look for the expression of P, with respect to the variables x and Y.
Because the second term in the right-hand side of (2.2) does not contain the
differentiations with respect to the variable z; (j ¢ A), we have

Py(2°Y?) = Pu(z®)YP + %) (\js + dj_,k(x))xj(?%(Yﬁ)
JgA

0 0
= Pp(z*)Y’ 4 2° Z Nk + @jx(x (ZYMaY +4Y,- 1 gy, )(Yﬁ),

JEA

where Yy ; = ;. We define the operator P,y and Py by

Pk() —Z)\jk(bja +Z€]k.’bj 18%-"-0]@( )

=1 JeA

5 (3.48)
+ZZ}\J]€Y2]8Y +ZZ)\]k£Y2 ljay ’
JEA (=1 jEA (=2 i
Pey=>_ Aaaj 0 (3.49)
k1~—]¢A j,k jay .

Then the equation (3.47) is written in the following:

(Pk,(] +Pk11 —i—]s;c)wk = bk(.’E,Y) —|—Fk(x,Y,w), k=1,2,...,N, (350)

where P, is the operator which maps polynomials of (z,Y) with homogeneous
degree r to the one with homogeneous degree greater than or equal to r + 1. The
functions bg(x,Y) and Fi(z,Y,w) are given by

bi(z,Y) = di(x) — Prog(,Y) + fu(z,v),  Fi(z,Y,w) = fi(z,w+v) — fi(z,v),
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where we substitute x and Y into v.

Step 8: We want to construct the solution wy, of (3.50) in the following form

v B
wi(z,Y) = g Wi, BL Y.
[+ B[=4,+1

Indeed, by the construction of vy, in the preceeding section we have that di(z) —
Pwi(z) + fi(z,v) consists of powers z%(logz)” such that |a| >, +1. If we
substitute Y into di(x) — Pyug(x) + fi(x,v), then we see that di(z) — Pyog(x) +
fe(z,v) can be written in the power series of 27Y? with |y| + |B| = |a| > £, + 1.
Hence bi(x,Y") consists of powers of x and Y with degree greater than or equal to
£, 4+ 1. On the other hand we can easily see that if we expand Fj(z,Y,w) in the
Taylor series of w, then every coefficient of the linear term of w vanishes when
z=0,Y=0.

We note that the operator Po+ F,; maps a homogenous polynomial to
the one with the same degree. On the other hand, P, maps polynomials of
homogeneous degree 7 to the ones with homogeneous degree greater than or equal
to r 4+ 1. Hence, in order to show that the formal power series solution exists it is
sufficient to show the invertibility of FPyo+ P.; on the set of homogeneous
polynomials of z and Y. Here we regard x and Y as independent variables.
We note that P preserves homogeneous polynomials of the form U, , =
Z"\/‘:VJB‘:# w%BaﬂYB. On the other hand, the operator Py raises the degree of x
one and decreases the degree of Y by one. Hence if we show the invertibility of
P, then we can recursively construct the solution U = Zuw:lrﬂ U, of the
equation (Pyo + Py1)U = F for a given F. Indeed, we determine Uy, 11 first. Then
we determine U y,. This is possible by the property of P,y and P ;. And we can
determine U, , recursively.

In order to show the invertibility of Py, it is sufficient to wverify the
nonresonance condition. The nonresonance condition for Py is given by

l/j

Niwvj + ce(0) + Z Z AixBej # 0, (3.51)
—1 jEA (=1

J
N +IB = 6+1 v= (1. 7m), B=(B)

The condition (3.51) can be written in the form

D N+ e(0) + > Ak (%‘ + z: BM) # 0.
(=1

JEA JjEA
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This condition is clearly satisfied, because |y|+[B| = |v[+ >, 04 Bej = £ +1
and there is no resonance such that > ¢, + 1. Therefore we can construct a formal
power series solution wi(x,Y). The convergence of wy(x,Y") is well known because
Py + P, satisfies a Poincaré condition. This ends the proof.

PROOF OF THEOREM 2. Because the proof of Theorem 2 is similar to that of
Theorem 1, we give the sketch of the proof. We note that if A is semisimple, then
(2.10) has the same form as (2.1). Hence we can make the same argument as in the
proof of Theorem 1 in order to solve (2.10). If A is not semisimple, then we first
consider the case where there is only one Jordan block for the sake of simplicity.
The general case can be treated by applying the argument to each Jordan block.

By the method of indeterminate coefficients, we can see that there appears
—Upq,p in the left-hand side of (3.1) except for the terms appearing from .Z.
This implies that in the right-hand side of (3.4), Gy, is replaced by Gy + Uy_1,
where Uy = 0. Hence, in a nonresonant case we can inductively determine
Uy, Us,...,U, by the arguments of Steps 2 and 4. On the other hand, in a resonant
case, U; can be determined by the same argument as in Theorem 1 because
Uy =0. As to the terms Uy, k> 2, we use the argument of Step 5 and we
determine Uy, k > 2 recursively, because the right-hand side term G} may not
vanish in general. As to the finiteness property (3.40) we can prove it inductively
in view of the argument in Step 6 of the proof of Theorem 1. As to the
convergence of formal solutions, the proof is similar to that of corresponding Steps
7 and 8 of Theorem 1. This ends the proof of Theorem 2.

4. Higher order systems.

We will briefly mention the extension of Theorem 1 to higher order
equations. We consider the following system of partial differential equations of
order m (m > 1) for u = (uy,...,uy) (N > 1)

ak(x7 {xﬂagu}‘a‘:‘mgm) = O, k= 1, e 7ZV, (41)

where a = (ai,...,o,) € 2" and [=(p1,...,5,) € Z'! are multi-indices,
ol =ai + -+ ay, |8 =61+ -+ Br. We assume that ay(z,Z), Z = (Zyp,) is
holomorphic in z and Z in some neighborhood of the origin z =0,Z = 0. For
simplicity we assume

an(0,0)=0, k=1,...,N.

We now assume that a; is a nilpotent type operator. Namely, for any o =
(o1,...,a,) € Z" and B € Z" in ai(z, {z°9%u}) we have that
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B—a=0, |a|=|08<m, and a; =01if j¢ A, a # 0, (4.2)

where A C {1,2,...,n}, A#{1,2,...,n} is a given set.
Let P = (Pj);4—. . n be the linearized matrix operator of (4.1) at Z =0

da,;
" |a—|;|<m(aza,37k> (QL', )LU T ( )

where k=1,..., N. We assume the following condition for P:

ASSUMPTION 4. The operator P is a lower triangular matrix. Namely
Pj=0if j <k

REMARK 3. We can assume that P is an upper triangular matrix instead of
Assumption 4. Indeed, in the case where P is a lower triangular matrix, we
replace the unknown function (uj,us,...,uy) by a new unknown function
(v1,v2,...,05) := (UN, Up—1,...,u1). Then the operator P is changed by an upper
triangular matrix.

Let P, be defined by Py := Pyj. We define the indicial polynomial py(¢),
CZ (Cl,...,gn) Ofpk by

day, I'(C+e)
- 0,0)—>"" k=1 N, 4.4
po ,‘Z;n (azt,,a,k)< TCre-a) 4
wheree = (1,1,...,1) € Z', T'(¢) = [[j_, T'(¢;) (T'(¢;) is the Gamma function). We
say that o € Z"} is a resonance if py(a) = 0 for some k,1 <k < N.
Corresponding to Assumptions 2 and 3 of Theorem 1 we assume

ASSUMPTION 5.  For every resonance o = (aq,...,q,) € Z', there exists
¢e{l,...,n}\ Asuch that ay # 0 and

Opr

5, (@70 (4.5)

Let pi(¢) be the m-th homogeneous part of p(¢).

ASSUMPTION 6. There exist constants C' > 0 and K > 0 independent of k
and ¢ € Z'!, |[¢| > 1 such that
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Pr(Q)] = CI¢I™ (4.6)

for all k and ¢ € Z7, I<| > K.
Then we have

THEOREM 3. Assume that there exists a resonance. Suppose that the above
conditions are satisfied. Then the equation (4.1) has a solution u(z) of the form

n

u@)= 3 wesa®(loga)’, (loga)’ = [[(logz,)”, (4.7)

|a|>1;8€ 27, J=1

where the summation with respect to (8 in (4.7) is taken for [ such that
B=(Bi,....0.) € Z', B; =0 if j € A. There existe > 0 and an integer J > 1 such
that the series (4.7) is expressed as the power series of v and X, , := z,(logz,)",
p=1,....J,ve{l,....,n}\ A), which converges in the domain

{re Ch x| <e, |Xupl<e, p=1,....J, ve{l,...,n}\ A}.

EXAMPLE 3. Let x = (z1,72), and define M(u) = Uy, Upys, — u> , , Where

T1x9)
Ug gy = Bflu and so on. Let ug(x1,22) be holomorphic at the origin. Let k be a
real number and let g(z) be a holomorphic function near the origin. Then we

consider the solvability of the equation

M(up +w) + kz1za(uo +w),, ., = fo(z) + g(@), (4.8)

where fy(z) = kzi29(10),,,
4(k — 3)x%x3. If we define

L+ M(ug). If we set ug(x) = z3x3, then we have fy(z) =

P =2310) + 2150 + (k — 8)21220,,0s,, (4.9)
then the equation (4.8) can be written in the following form

Pw + M(w) = g(z). (4.10)

If we set g(x) = 2%h(x), w(z) = z%v(z) (Jo| > 5), then we can easily see that (4.10)
can be written in the form (4.1). We denote the characteristic variable
corresponding to x;0,, by ;. Then the characteristic polynomial p(n), n = a +§
corresponding to the transformed equation is given by
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p(n) = 2m(m — 1) + 2m2(n2 — 1) + (k — 8)mune. (4.11)

The Poincaré condition reads; 2 + (k — 8)tit, # 0 for all (t1,%) € R%, [t| = 1. We
can easily see that this is equivalent to k > 4.
On the other hand, the nonresonance condition is given by

2m(m = 1)+ 2m(me — 1) +(k=8)mn2 #0, meZ,me Z,. (412)

Because we consider the perturbative problem to fy;, we may assume that the
Taylor expansion of g at the origin vanishes up to fourth order. Hence we may
assume 71 + 12 > 5 in (4.12). We can easily see that the resonance occurs in the
cases, (1) (m,m2) = (3,2),(2,3) if k=16/3, (2) (m,m2) = (2,4),(4,2) if k=9/2,
(3) (n1,me) = (3,3) if k = 16/3, (4) (1,m) = (3,4), (4,3) if k = 5.

We can easily see that A=0 and the condition (4.5) is clearly
satisfied. Therefore the equation (4.10) has a singular solution when there is a
resonance.
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