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Abstract. We show that there exist on 4CP?, the connected sum of four complex
projective planes, self-dual metrics with the following properties: (i) the sign of the
scalar curvature is positive, (ii) the identity component of the isometry group is U(1), (iii)
the metrics are not conformally isometric to the self-dual metrics constructed by LeBrun
[LB1]. These are the first examples of self-dual metrics with non semi-free U(1)-
isometries on simply connected manifolds. Our proof is based on the twistor theory:
we use an equivariant orbifold version of the construction of Donaldson and Friedman
[DF]. We also give a rough description of the structure of the algebraic reduction of the
corresponding twistor spaces.

1. Introduction.

Let S? x S! be the Riemannian product of the standard spheres, which is a confor-
mally flat 4-manifold. We denote by R, and R, the reflections with respect to points
peS?and g e S' respectively. Let ¢, :== R, - (—1) and ¢, := R, - (—1) denote the com-
position of the reflections with the anti-podal maps (—1), whose fixed points are {+ p}
and {+gq} respectively. Then it is easy to see that 7:= (¢, ¢,) is an orientation
preserving isometric involution on S°? x S! and that the fixed points set consists of
four points (p,q),(—=p,q),(p,—q) and (—p,—q). Let My:=S3 x S'/{t> denote the
conformally flat Riemannian orbifold with four orbifold points obtained as a quotient of
S3 x S'. It is readily seen that M, is simply connected and b, = 0.

On the other hand, let Mgy be the (compactified) Eguchi-Hanson space, which has
a unique orbifold point whose isotropy group is Z,. Mgy is also simply connected and
by =1.

Let My #7,4Mgy be the (smooth) 4-manifold obtained by connecting M, with
four copies of Mgy at the orbifold points. My #z, 4Mgy is diffeomorphic to 4CP?,
the connected sum of four complex projective planes. Then the results of LeBrun—
Singer ([LS, Theorem A]) and Pontecorvo ([Pont, Proposition 2.4]) imply that 4CP>
admits a self-dual metric. In brief, 4CP? has a self-dual metric originated from so
called a Kummer type construction ([LS]).

In this paper, we shall investigate this example, which seems to be basic one, in detail
and show that among the self-dual metrics on 4CP? obtained in this way, there exists a
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family of self-dual metrics of positive scalar curvature with U(1)-symmetry which are
not LeBrun’s metrics ((LB1]). More precisely, we show the following:

THEOREM 1.1. There exists a self-dual metric g on 4CP?> with the following
properties: (1) the scalar curvature of g is positive type, (i) the identity component of
the group of orientation preserving conformal transformations of g is U(1), (iii) ¢ is not
conformally isometric to the self-dual metrics of LeBrun ([LB1]).

The proof of the theorem is based on an equivariant version of a result of LeBrun-—
Singer ([LS]). We firstly construct a normal crossing 3-fold Z' = Z{U4Z},,, where Z;
and Zy,, are the resolution of the twistor space of M, and Mgy respectively. Then we
will see that there is a U(1)-action on Z’ which is induced by those on M, and Mgy.
Further we will observe that there exists a U(1)-invariant Cartier divisor S’ on Z’ and
show that the pair (Z’,S’) can be smoothed preserving the U(1)-action to give a twistor
space Z of 4CP>. Then the self-dual metric on 4CP? corresponding to Z is the
required one.

We also study an algebraic structure of the above twistor space Z. We recall
that there exists a natural square root, which we will denote by —(1/2)Kz, of the
anticanonical bundle of Z. Let |—(1/2)K,| denote the associated complete linear
system on Z. Then we have

PROPOSITION 1.2.  Let Z be the twistor space of 4CP* as above. Then |—(1/2)K|
is two-dimensional and has no base locus, and the morphism ¢ : Z — CP? induced by
|—(1/2)Kz| is an elliptic fibration. (That is, a general fiber of ¢ is an elliptic curve.)
Further, the algebraic dimension of Z is two.

Let us explain another motivation of this paper. Recently, Campana and Kreussler
[CK]) has obtained the following result: Let Z be a twistor space over 4CP* and S
be a real smooth element of |—(1/2)K,|. Assume that |—Kjs| contains a smooth curve
C and let N¢/s be the normal bundle of Cin §. It is easy to see that the degree of
N¢js is zero. Let a(Z) be the algebraic dimension of Z. Then they showed that
(1<) a(Z) <2 and the equality holds if and only if N¢/s is of finite order in Pic’ C.
Then they asked which number can be realized by the order of N¢/g. Our investigation
of the twistor spaces via Donaldson—Friedman construction shows that the smallest
value (=1) can be realized by the twistor space in [Proposition 1.2, See also [Hon3].

This paper is organized as follows: In Section 2, we explain an equivariant version
of a result of LeBrun—Singer ([ LS]), which is fundamental for our investigations. Key
examples of compact self-dual reflection orbifolds and their equivariant connected sum are
also given. In Section 3, the twistor spaces of the two orbifolds M, and Mgy are described.

Section 4 is a main part of this paper. In §4.1, we construct a pair (Z',S’) of a
normal crossing 3-fold with a holomorphic U(1)-action and an invariant Cartier divisor
on it. Then in §4.2-4.5 we show that a U(1)-equivariant smoothing of (Z',S’) exists
and the resulting pair (Z, S) satisfies (i) Z is a twistor space of 4CP?, (ii) S is an element
of | = (1/2)Kz| and has a structure of rational elliptic surface (with a U(1)-action).
Finally in Section 5, we study the algebraic structure of the above pair (Z,S) and
complete the proof of [Theorem 1.1 and [Proposition 1.2,

We would like to thank Professor A. Fujiki for valuable conversations.
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2. Equivariant connected sum of self-dual reflection orbifolds.

In their paper ([DF]) Donaldson—Friedman developed a general theory for con-
structing self-dual metrics on the connected sum of compact self-dual manifolds, using
twistor theory and deformation theory of compact complex spaces. Later, LeBrun—
Singer ([LS]) generalized their construction to the case of connected sum of orbifolds
whose isotropy groups at the orbifold points are {+1}. In the first half of this section,
we explain an equivariant version of their result. We only give statements, since the
proofs are almost parallel to those of Pedersen—Poon ([PP2]), who developed an
equivariant version of the original construction of Donaldson—Friedman. In the latter
half, a key example of an equivariant connected sum is given.

We recall that an orbifold is said to be a reflection orbifold ([LS]) if the isotropy
group at each orbifold point is { +1}. If M| and M, are oriented reflection orbifolds of
the same dimension and if an orbifold point of each M; is specified, the connected sum
at the orbifold points can be made in an obvious way (cf. [LS]) and we denote the
resulting orbifold (or manifold) by M, #z, M».

Let (M,g1) and (M>,g>) be compact self-dual reflection orbifolds. We assume for
simplicity that M, and M, have unique orbifold points p, € M| and p, e M, respectively.
Further we suppose that a compact Lie group G is acting on both M; and M, iso-
metrically and leaving p,, i=1,2 fixed. Let Z; (i=1,2) be the twistor space of
(M;,g;) and L; be the twistor line over p;. Z; has A;-singularities along L; (cf. [LS]).
We have a holomorphic G-action on Z; which is induced by that on M;.

Let u;: Z] — Z; (i=1,2) be the blowing-up along L; and Q; be the exceptional
divisor. Z] is non-singular and also has a G-action. It is easy to see that Q; ~ CP' x
CP! and Nog,z ~ 0(-2,2), where 0(0,1) denotes the pull-back of O, (1) ([LS]).

Let ¢: Q1 — O, be a biholomorphic map which preserves the real structures and
satisfies ¢*0p,(1,0) ~ Op,(0,1). We further assume that ¢ is G-equivariant. (The
existence of such an isomorphism is equivalent to the condition that G-equivariant
connected sum can be made at the orbifold points.) Using this isomorphism, we set
(IDF, LS))

z'=2z\) 7z
¢
Z' is a normal crossing variety which has a real structure ¢’ induced by those on Z; and
Z,. Then we have

1
@Z’ =~ NQI/ZI/ ®NQ2/22/ ~ (QQ,

(here we set Q:= Q) ~ 0>, = Z’) and hence Z’ is d-semi-stable in the sense of R.
Friedman, and we may consider smoothings of Z’.
The following lemma is a key to prove [Proposition 2.3 below:

Lemma 2.1. (¢f [PP2]) Let G,(M; gi),p;, Zi, Z! (i=1,2) and Z' be as above.
Then the action of G on H°(0L,) ~ C induced by that on Z' is the trivial action.

ProposiTION 2.2. ([LS]) With the notations in Lemma 2.1, suppose that
Hz(@ZI,Ql) = H2(022’7Q2) =0.

Then we have T%, =0.
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ProPOSITION 2.3.  With the notations and assumptions in Proposition 2.2, let p : & —
Bc T), p71(0) ~ Z' be the Kuranishi-family of deformations of Z', where we may regard
B as an open ball in T, containing 0 by Proposition 2.2. Let B® denote the subspace
of B whose points are G-invariant and real. Then B%° is at least one-dimensional and
for general element t of B%°, Z, = p~'(t) has a natural structure of a twistor space of
M #z, My with G-symmetry.

Next we give examples of compact self-dual reflection orbifolds with U(1)-actions
and their equivariant connected sum. We recall that an action of a Lie group G on a
manifold (or an orbifold) is said to be semi-free if the isotropy group is either {e¢} or G
itself at every point.

ExAMPLE 2.4. Let w: Mg, — C?/{+1} be the minimal resolution of the (4;-)
singularity. M}y, has a hyperKdhler metric g3, called Eguchi—-Hanson metric. It was
shown in that (M3, g%;) has a one point compactification (Mg, gem) as an anti-
self-dual reflection orbifold. We reverse the complex orientation and will work on
self-duality.

For later references, we introduce a U(l)-action on Mgy. Let (z,w) be complex
coordinates on C? and consider a U(1)-action defined by

(z,w) = (z,tw)

for te U(1). This induces an isometric U(1)-action on Mgy. We note that this action
is not semi-free. In fact, any point of Mgy which lies on the image of {z=0}\
{(0,0)}(=C?) has the isotropy group {+1}.

ExAMPLE 2.5. (cf. or Introduction) Let (S° x S!, g3 ® g1) be the Riemannian
product of the spheres, where g, denotes the standard metric on S*. g3 @ g; is confor-
mally flat. We embed S> in C? as the unit sphere and let p := (i,0) be a point on S°.
Let R, denote the reflection with respect to p, that is R,(z,w)=(z,w). Then ¢,(z,w) :=
(—Z,—w) defines an orientation reversing isometric involution whose fixed points are
{+p}. Similarly, S' has such an isometric involution Gy 4 € S'. We get then an
isometric involution 7 on S° x S!;

T(xvy):(¢p(x)7¢q(y))7 (x7y)ES3 x S

7 is orientation preserving with the fixed-points (p,q), (—p,q), (p,—¢q) and (—p, —q).

It follows that M, := S* x S'/{(z) is a reflection orbifold with a conformally flat
metric go, having four orbifold points. It is clearly seen that M, is simply connected
and b, =0. We also note that if one regards S° x S' as a quotient of C*\{0} =
H\{0} by the Z-action defined by ¢ — A"q for ge H\{0} and ne Z (A >0, A #1), 1
is induced by g — ¢!

Next we introduce a U(1)-action. For e U(1) and x = (z,w) e S* = C? and ye
S we set

Z(X, y) - ((Za ZW), y)

Then this U(1)-action is isometric and commutes with the involution 7, and hence we
get an isometric U(1)-action on M,. Since the maps 7 and t = —1 € U(1) coincide on
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the disjoint two spheres {z = —Z,y =1} and {z = —Z, y = —1}, the U(1)-action on M,
has non-trivial isotropy {+1} on their images.

ExampLE 2.6. (cf. [I4]) We consider an equivariant connected sum of the above
two examples. It is readily seen that we can make a U(1)-equivariant connected sum
My #z,4M gy and the resulting U(1)-action on My #z, 4Mgy is not semi-free. In fact,
there exist disjoint two spheres on which = —1¢€ U(1) acts trivially. The 4-manifold
My #2z,4Mgy 1s diffeomorphic to 4CP>.

Applying [Proposition 2.3 to Example 2.6, we can prove the assertions of (ii) and (iii)
of Theorem 1.1. But to prove (i), we need to consider additional data: we will observe
that there exists a U(1)-invariant Cartier divisor S’ on Z’ (see §4.1) and consider U(1)-
equivariant deformations of the pair (Z’,S’). Due to this consideration, we can obtain
a twistor space of 4CP? with a U(1)-action which is a special one.

3. Descriptions of the twistor spaces.

3.1. The twistor space of the Eguchi—Hanson space

In this subsection, we use the notations in Example 2.4. The twistor space of
the hyperKéhler manifold (M3, g5,) is explicitly described in [Hi]. But it is more
convenient to use the following different description due to Fujiki ([F]), which relates the
twistor space of (Mgy,gry) with the non-projective abstract algebraic variety con-
structed by Nagata ([Nal).

Let C be the complex projective line and X := CP! x CP' x C be the product of
three complex projective lines. We fix any identification of the first factor with the
second one and regard X as the trivial bundle over C. Let oy denote the anti-
holomorphic involution on X which is defined by

ax(x, ;1) := (a1(y), 01(x),01(1)),

where o) denotes the anti-podal map. We choose any point 0 of C and put oo := a1(0).
We fix any non-singular curve 4 of bidegree (1,1) on CP' x CP' which is real with
respect to the above real structure and set

Ay =4 x {0} € X, := CP' x CP' x {0},
A=A x {0} =X, :=CP' x CP' x {0},
and
Oy =4xCcX.
Let
Y =X

denote the blowing-up along 4y ][ 4., and Z} and Z’ (~X,, the Hirzebruch surface of
degree 2) the exceptional divisors of 4y and 4, respectively, and Qy(~Qx), X;(~X)),
and X (~X,) the proper transforms of Qy, Xy and X, respectively. oy naturally lifts
on Y and defines an anti-holomorphic involution on Y which we denote by gy. The
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normal bundle of X and X/ in Y is isomorphic to ¢(—1,—1) and hence X;; and X/,
can be blown-down along each projection to CP'. Let

Hy Y = Zpy
be the blowing-down of X and X/ along the different projections. We set Bj:=
1r(X) (=CPY), B, := uy(X.) (=CP'") and Q:= u,(Qy) (~Qy). oy descends to
Zy and defines an anti-holomorphic involution o,. The projection X — C induces
a surjective morphism f : Z;,; — C. We set D' := 771(0) and D' = f ). D’ and
D' are biholomorphic to X, and all the other fibers are biholomorphic to CP! x CP!.

uz/ \‘m
By B € 7' l X =CP'xCP'xC 2 Ao, A

SN

C =CP!

Diagram 1

We can readily see that Ng,z; =~ Ug(—2,2), where Op(1,0) denotes the pull-back
of O¢(1). Let

1 Zpy — Zen

be the contraction of Q along the appropriate projection and set L, := u(Q).

Z;y 1s the abstract algebraic variety constructed by Nagata and it was
remarked by Fujiki that Zgy equipped with the real structure ogy (which is induced
by o) is the twistor space of (Mg, gen), L, is the twistor line corresponding to the
orbifold point p,, and the restriction of f on Zp,\Q = Zgy\L,, is the holomorphic
map associated to the hyperKihler structure.

We can show that

1

—5 Kz, = 0(Q)® [ 0c(2).

The U(1)-action which corresponds to that on (Mgy,ggy) given in Example 2.9 is
induced by the following U(1)-action on X via the above birational transform:

(x, y,u) — (tx,ty,tu) for te U(1).

3.2. The twistor space of (M, go)

In this subsection, we use the notations in Example 2.5. We fix a positive real
number A # 1 and let G := {A"|n € Z} be the infinite cyclic group generated by 1. Let
(z,w) be coordinates on C? and we regard S° x S' as a quotient space C>\{0}/G,
where G acts on C? by the scalar multiplication. The Hermitian metric

o dzdz + dwdw

2 + wl?
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which is defined on C? — {0} induces a Hermitian metric on S° x S' and it is con-
formally isometric to the product metric g3 @ ¢g;. Using this description, the twistor

space of (S*x S!,g3@®g;) is given by ([Pont])

where ((1,—1) denotes the holomorphic line bundle over CP' x CP' whose bidegree is
(1,—1) and the action of G on (O(1,—1) is given by the scalar multiplication as a vector
bundle. By construction, W, has a holomorphic fiber bundle map

#: Wy — CP' x CP!
whose fibers are biholomorphic to an elliptic curve
E:.=C"/G.

By a theorem of Campana [C], the algebraic dimension of W, is two and hence all of
the divisors on W, are pull-backs of curves on CP' x CP'. We also have —(1/2)Ky, ~
2*0(1,1) (Pont]).

Let (zo:z; : 22 : z3) be homogeneous coordinates on cpP’ (which we regard as the
twistor space of the standard 4-sphere) and

‘Z’:(Z()Zzl:Zz:Z3)I—>(22:Z3ZZO:Zl)

a holomorphic involution on CP?. If we regard ¢(1,—1)\{0} as an open subset of
CP? via the rational map

(zo:z1:22:23) — ((z0 : 21), (22 : 23)),

7 induces a holomorphic involution on W, which we also denote by 7. 7 on W is
nothing but the lifted involution of 7 on S® x S'. The set of fixed points of 7 on W,
consists of four twistor lines Lo;, Loa, Los and Lgs which correspond to the four fixed
points of 7. Let

fO: WO —>Z() = W0/<‘I’>

be the quotient map and set Lo, := fy(Lo;) for 1 <i <4. Z, is the twistor space of M,
and has A;-singularities along Ly;, and Ly, (1 <i < 4) is the twistor line corresponding
to the orbifold points of My. 7 (on W) induces a holomorphic involution on CP' x
CP! and we denote it by 1. 1 is explicitly given by

v: ((uo =), (v 2 01)) = ((vo 2 01), (uo = ),

where ((uo : u1), (vo : v1)) denote appropriate bihomogeneous coordinates on CP! x CP!
and hence the resulting quotient space of CP! x CP! is biholomorphic to CP?. Let
A <= CP' x CP' denote the set of fixed points of 7,4 : CP' x CP' — CP? the quotient
map and set 4 :=u(4), a conic. Let

n:Zy — CP?
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be the morphism induced by 7. We have
7N A)~Ax E, 7' (4)~d4xCP!

and 7|; (resp. n|; ) is a biholomorphic map onto A (resp. 4) for each 1<i<4.
In summary, we have the following commutative diagrams:

Loi SWo —— No Wo —— CP' xCP"

s bl J

Loi € Zo —— My, Zy —~— CP?
Diagram 2

The U(1)-action on CP? given by (zg:z; : 22 : z3) — (20 : tz1 : 23 : tz3) descends to
Wy and Zj, which correspond to the U(1)-actions given in Example 2.5. They also
define U(1)-action on CP' x CP! and on CP?, respectively. Let %, be the curve on
CP! x CP' which is uniquely determined by the following conditions: (i) %, is an
i-invariant element of |¢(1,1)], (i) %o is real with respect to the real structure induced
by that on W, (iii) %, is not equal to A.

Next we see that there is a U(l)-invariant divisor on W, and Z; which will
play important roles in our investigations. We set Ry := ' (%), which is a real U(1)-
invariant element of |—(1/2)Ky,|. Then clearly Ry ~ %, x E. Further, we set % :=
n(‘go), a real line on CP?, and S, := n1(%y). That is, Sy is obtained as a quotient of
Ry ~ CP' x E with E ~ C*/Z by the involution

(*) ((Zo : Z]),W) s ((Zo . —Zl), I/W),
where (z:z;) denote homogeneous coordinates on CP' and w is a holomorphic
coordinate on C* < C.

So is clearly a U(l)-invariant real element of [—(1/2)Kz| = |1*Ocp2(1)].
Moreover, we observe that Sy intersects each Ly, (1 <i <4) with two points {py;, Py, }
and these 8 points are A;-singularities of Sy;. Sy is a rational elliptic surface with
a U(l)-action. Let p,:S;— Sp be the minimal resolution of singularities and
loi == 1y (po;) and lo;:== ug'(py;) (1 <i<4) the exceptional curves. As an elliptic
surface, S; has two singular fibers, both of which are type I; in Kodaira’s notation, and
every non-singular fiber is the same elliptic curve E. Moreover, the elliptic fibration
Sy — CP!' is induced by the anticanonical system.

Alternatively, S; can be also obtained by blown-down to CP' x CP' as in the
following figure and the resulting U(1)-action on CP!' x CP! is given by

((Co:<1), (o :m)) = ((Co = S1)s (mg = 1my)),

where (& :¢;) denote homogeneous coordinates in the direction of fibers of S} — 4.
To see these, it suffices to check that the self-intersection numbers of the U(1)-invariant
(rational) curves are indicated in Figure 1. But this fact can be proved in elementary
ways. Then following up the figure in a reverse order, we see that S; can be blown-
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dotted 4 points dotted 4 points

\7)
-1
™~ - 1 1s Y

o N e Wy
blowing-up at y blowing-up at

N
] A N
17
= ~ - Ny 1 i§ L
CP! x CP! g

Figure 1

down to get CP! x CP!. The claim for the U(l)-action can also be checked in a
similar way.

Conversely, if a rational surface X is obtained by blowing-up CP' x CP' 8 times as
in Figure 1, then X is also given by the quotient of CP' x E by the involution () and
then resolving all of the (A))-singularities.

Further, we note that U(l)-action on S; is not semi-free, since there exist four
(disjoint) (—1)-curves on S; on which t = —1€ U(1l) acts trivially.

4. Equivariant smoothings.

4.1. A construction of a pair with a U(1)-action

Let Zy and Zgy be the twistor space described in the previous section. In this
subsection, using Zj and Zgy, we construct a normal crossing variety Z' with U(1)-
action and invariant Cartier divisor S’ on Z’. We use the notations of the previous
section, unless otherwise stated.

First we consider the twistor space Z, which was described in §3.2. Z; is the twistor
space of the conformally flat reflection orbifold (M, go) and has four distinguished
twistor lines Lo; (1 <i<4) along which Z, has A4;-singularities. Let u,: Z; — Z, be
the blowing up along Lo [ Loa [ Loz [[Los and Qo (1 <i<4) be the exceptional
divisor of Lo; and put Qp := 3.+, Qo. Then Zj is non-singular and Qy; ~ CP' x CP!
and N, 7z ~ 0(=2,2) where 0(0,1) denotes the pull-back of O, (1) ([LS]). Further,
let S; denote the proper transform of Sy. Then g, is the minimal resolution of Sj.

On the other hand, let i, : W] — W, be the blowing-up of Wy along Loi [] Loz ||
Los[[Los and Qy; (1 <i<4) be the exceptional divisor of L. (Lo is the twistor
line corresponding to Lg.) We have Qy ~ CP' x CP! and NQol-/WO’ ~ (O(—1,1) where
0(0,1) denotes the pull-back of ¢; (1). Moreover, let R; be the proper transform of
Ro. [ R i1s 8-points blowing-up of the non-singular surface Ry. We have the fol-
lowing commutative diagram:
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WO/ L W ., CP' x CP!

4]

zy ' Zy -  CP%.

We note that U(1) acts on the whole of the diagram.

Let Z!, 1 <i <4, be copies of the blown-up twistor space Z,, described in §3.1.
Z! is obtained by blowing-up the twistor space Zgy of the anti-self-dual reflection
orbifold (Mgy,gen) along the singular twistor line.

We recall that there exists a surjective holomorphic map f;: Z/ — C = CP' (cf.
§3.1). Further we have a divisor Q; = Z! which is biholomorphic to CP' x CP'. We
set

and
l;:=D;N Qi, l_, = Di N Q,‘.

D; and D; are biholomorphic to X», and /; and /; are non-singular rational curves.
Next we construct a pair of normal crossing varieties which is the main object we
study in this section. First we choose four biholomorphic maps

¢I~ZQ01‘—>Q1‘, 1Sl£4
which preserve both the real structures and U(1)-actions and satisfy ¢;(/;) =/ and
¢;(lo;) = [;. Using these isomorphisms, we set

4
7' =2zju (H Z,.’),
i=1

4
S = S)U (H(D;]_[D,f)).
i=1

It is obvious that S’ is a real Cartier divisor on Z’. Further, Z’ has a U(1)-action
under which S’ is invariant.

These varieties are illustrated as follows:

z; D 1D,
Ql l Hil
/Qz Z /b D, 11D,
Z(,) \Q3 56 W\L
Z Dy D,
Q4 iR
Zy D,1D,
A S’

Figure 2



A Kummer type construction 149

4.2. Calculations of obstructions

Let Zo, Lo (S2Z0), uo:Z{— Zo, Qo=31 00 Z and Q; (1<i<4) have
the meanings of the previous subsection. Let Ry (= W), R) (W), So (£2y),
S; (€2)), Di,D; (€Z;) and D}, D, (cZ]) also denote the U(l)-invariant divisors
defined in §§3 and 4.1. In this subsection, we show that the cohomology groups
HZ(QZ&QO(—SI’)) and Hz(@z;7Q,.(—D; —D;)) vanish. These results will be needed to
prove the unobstructedness of deformations of the pair (Z’/,S’).

4.2.1 The case of (My,qo).

In this subsection, we show that the cohomology group H 2(8267Q0(—S6)) vanishes.
The proof is the same line as that of [LS, Lemma 1]; that is, we reduce it to the
vanishing of a cohomology group of the double cover. In the proofs of the following
lemmas and propositions, we omit the subscript 0 for simplicity.

We begin with the following:

LemmA 4.1. We have H/(Ow,(—Ry)) =0 for any j > 0.

ProoF. We recall that R = 7~'(%), where 4 = CP' x CP! is a (real) non-singular
curve of bidegree (1,1). We have the following exact sequence of sheaves on W

([Pont]):
(1) 0— Ow, = O — T Oppiycp — 0.
Tensoring (1) with Op(—R) ~ T*Orpiycpi(—1,—1), we have
(2) 0—-70(-1,-1) - Op(—R) — 7 (O(1,-1) ® O(-1,1)) — 0.
It is easy to see that for any j > 0, we have
H/ (7 0(—1,-1)) = H (7*(0(1,-1) ® 0(-1,1))) = 0.
Hence by the cohomology exact sequence of (2), we have
H/(Ow(—R)) =0 for any j> 0. ]
Next we prove
LemMA 4.2. We have Hj(@W()/,Q()(_R(I))) =0 for any j>0.

Proor. We have the following exact sequence of sheaves on W'

_ 4
(3) 0— 0y, 5 i'Ow — [ (@Nii/w> — 0.
i=1

Here, L; = Lo (1 <i<4) is the center of the blowing-up u =y, Since Nj, W
0(1)®?, we have W Ny~ (OQ_(O,I)@z, where 05 (0,1) := @*0p,(1). Then tensoring

Ow (—R') ~ g*Ow(—R) with (3), we have the exact sequence

4
(4) 0— @WQQ(_R/) & ﬂ*(@W(_R)) - E:}? (QQ

0,-1)®* — 0.

1
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Hence by the cohomology exact sequence of (4), we have
(5) H'(6y, 5(-R") ~ H'(i"(@w(-R))) for any j=>0.

Since u is a blowing-up, we have

(6) H'(i*(@w(—R))) ~ H (@ (—R)) for any j>0.
Then the claim follows from (5), (6) and [Lemma 4.1. O

The following lemma can be directly verified using local coordinates.

LemMA 4.3. Let g: X — Y be a ramified double covering of complex manifold
branched along a smooth divisor D. Let D := g~'(D) denote the ramification divisor.
Then we have the following natural isomorphism of O x-modules:

g*@y’p sl @Xi)'
Applying this lemma to f: W] — Z}, we have

LemMA 4.4. We have a natural isomorphism fé*@zé,QO >0y 5,
07

Using these lemmas, we show the following:
PrOPOSITION 4.5. We have H*(0z o,(=S;)) = 0.

Proor. First we note that since /' : W’ — Z' is the quotient map of the action of
Z, with fixed locus Q,[[ O, ]] O;]] Q4, we have a holomorphic line bundle F on Z’
and a holomorphic section ¢ of (7 (Q) which satisfies

F®F ~0z(0)
and
W'~ {neF|n’=¢e0z(0)}
Then we have (cf. for example)

Oz ®@F ' ¢=0,
0 q=>1.

7 Riflow =
On the other hand, by [Lemma 4.4 we have
["(0z1,0(=S")) = Oy, 5 ® [ 0z/(-5")
~ 0y, 5(—R).
Therefore using (7), we get
H/(W', 0y, 5(—R")) ~ H(Z',02,o(~S") ® H'(Z',07,0(~S") ® F ')

for any j>0. But now we have H*(W', 0y, 5(—R’)) = 0 by [Lemma 42. Hence we
have H*(Z',0z o(—S")) = 0. ]
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4.2.2. The case of Eguchi—Hanson space

In this subsection, we show that the cohomology group H?*(6z ¢ (—D] - D)
vanishes, where Z/ (1 <i <4) is the resolution of the twistor space of Eguchi—-Hanson
space (cf. §§2 and 3.1). We omit the subscript i for simplicity in this subsection.
Recall that there exists the following diagram:

Y
2 !

Z//‘l\\X=CPxCPxC
NS

C =CP!

Diagram 3

D' and D' are fibers of fover 0 and oo € C respectively and Q is the image of Qy =
Ax C (SX) by the rational map u,-u;', where 4 is a real non-singular curve of
bidegree (1,1) in CP' x CP'. We have D' ~ %, ~D',0 ~ CP' x CP' and Ny/x ~
0(—2,2) where ((1,0) denotes the pull-back of O¢(1).

The following two lemmas are easy to prove:

LemMMmA 4.6. We have a natural isomorphism
#307(~Q—D' = D') = Oy(~Qy — Z{ — Z!, - Xo — X.,),

where Z}, Z'., Xo, X, and Qy are the proper transforms of D' =: Zé,lj/ = 7'  Xp=CP'x
CP' x {0} (cX), X, = CP' x CP' x {0} (=X), and Qx respectively.

LemMmA 4.7.  With the notations of the previous lemma, we have a natural isomorphism
Oy(=Qy =2y = Zl, — Xo — X)) = Oy(=Z5 = Z1,) ® pi Ux (= Q)
where Qy = u,(Qy) as before.
Next we prove the following
LemmA 4.8. For any j >0, we have a natural isomorphism
H/(0z(-Q—D' - D)) ~ H(Oy(—Qy — Z{ — Z., — Xo — X..)).
ProoF. Since u, is the blowing-up of Z’ along B[] B, (cf. §3.1), we have the
following exact sequence of sheaves on Y:

(8) 0= Oy = 1,07 — (g 5 @Oy (-1) ®(Og 5 @0z (—1)) =0,

where Oy 5 denotes the sheaf of relative tangent vector field with respect to the

projection Xy — By and ¢ )20(_1) denotes the tautological line bundle over X;, where we
regard X, as the projectified normal bundle P(Npg,/z/). Since Np 7 =~ @(—1)®2, we
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have
Oz /5, ~ 0(2,0)
and
Og,(=1) ~ O(=1,-1),
where (0(0,1) denotes the pull-back of (¢ (1). Hence (8) becomes
9) 0— Oy — w50z — Oz (1,-1)® Oy (1,-1) — 0.
Tensoring Oy(—Qy — Z{ — Z!, — Xo — X..,) with (9) and using and the

isomorphisms
Oy(Qy)ly, = O,
Oy(Zy)lg, ~ Og (1,1),
@Y(Xo)b?o =Ny)v = (0;?0(—1»—1)7
together with the same isomorphisms for the sheaves on X, we get an exact sequence
(10) 0— Oy(—Qy — Zj— Z!, = Xo — X.) = u3(@z(-Q— D' - D"))
— Oz (1,-1)® 0y (1,-1) = 0.

Then the desired isomorphism follows from the cohomology exact sequence of and
a Leray spectral sequence for u,. OJ

In the same way, using [Lemma 4.7, we can show the following
LEMMA 4.9. For any j >0, we have a natural isomorphism
H/(Oy(—Qy — Zy— Z!, — Xo— X)) ~ H (0x(—0x — Xo — X.)).
By Lemmas 4.8 and 4.9, we have
LemMMA 4.10. For any j >0, we have a natural isomorphism
H/(62(—~Q—D'=D")) =~ H'(Ox(—Qx — Xo— X)) for any j>0.
Next we have

LemmA 4.11. For any j >0, we have
H/(07/(-Q— D'~ D) =0.

ProoF. By lemma 4.10, it suffices to show that H(@x(—Qx — Xo — X)) = 0 for
any i >0. Let 0x(0,0,1) denote the pull-back of (¢(1). Then we have

@X = @X(za 07 0) @ @X(07 27 0) @ @X<07 07 2)

and
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(QX(_QX — X() - Xo@) jad (9)((—1, —1, —2)
From these isomorphisms, we easily get the desired results. O
Next we show the following:

ProroSITION 4.12. We have

=/

H*(@z o(—D'—D")) = 0.
ProOF. We consider the exact sequence

(11) 0—60z(—Q—D'—D")— Oz o(~D' = D') — Oy(—1 — 1) =0,

where /=D'NQ and [ = D'n Q as before. From the cohomology sequence of and
Lemma 4.11, we have

H*(@7,9(=D' = D)) ~ H*(Oo(~ 1))
and since we have @p(—1—1) ~ 0(2,-2) ® O, we get the desired result. O

4.3. U(1)-equivariant smoothings of S’

In this subsection, we investigate deformations of S’ (cf. §4.1) and show that we can
deform S’ preserving the U(1)-action into a non-singular rational elliptic surface. This
result is needed to know what kind of complex surface we obtain when one can smooth
the pair (Z',S") U(1)-equivariantly. We continue to use the notations of §4.1. We only
give outlines of proofs of the lemmas and propositions below, since they are something
standard.

We have the following lemma:

LeMMmA 4.13. We have the following isomorphisms
4
@q ~ @(01169(9[_/) q: 17
S’ — i=1
0 q=2.
Moreover, the induced U(1)-action on H°(OL,) ~ C® is trivial.

For the proof, we use the facts that S’ is normal crossing, /7 = l_,-2 = —2 on S and
I? —I =2 on D! for any 1 <i<4.

PROPOSITION 4.14.  We have H*(Og/) = T2, = 0. In particular, deformations of S’
are unobstructed.

ProoF. (outline) Using the description of S; in Figure 1, we can show that

(12) H2<@ —0.

S,EE (1,+li~))

On the other hand, it is easy to see that H*(Op: ) = H*(@ ;) =0, recalling that /;
(resp. [;) is a (+2)-section of D; ~ X, (resp. D; ~ X,). Then and the cohomology
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exact sequence of

4 4
O—)@S/—>V*<@S67z;11(li+l‘i)® < 1(@D;711®8D_;,l_,))> — o (@l,®@[’)—>07
1= 1=
show that H?(@g/) = 0. (Here, v denotes the normalization of S’.) Then
and a local to global spectral sequence shows that there exists an exact sequence

) 4
(13) 0— H'(Os) — T4 — @ H’(0, ® 0;) — H*(Os)) — T5 — 0.
i=1

Hence we get T2 = 0. L]

Let p: % — B, p~'(0) ~ S’ be the Kuranishi family of deformations of S’, where B
can be identified with an open ball in T!, containing 0 by [Proposition 4.14. Let v e T,
be any real element such that all of 8 components of r(v) (see (13)) are non-zero, and let
B’ be any non-singular holomorphic curve in B whose tangent vector at 0 is v. Then
by (13) S, = p~'(¢),t € B'\{0} is a non-singular complex surface, at least if we choose
B’ sufficiently small. Further, such S, is rational and satisfies ¢(S;) =0. To see this,
first we recall that S{ is a 8 points blowing-up of CP' x CP'. Let f: %' — S| x C
be the blowing-up along T ,((/; x 0) II (/; x 0)) and put ¢ := pr-f, where pr denotes
the projection from S| x C to C. Then ¢ !(0) is biholomorphic to S’, from which we
get ¢7(S,) =0. The rationality of S, follows easily from the rationality of irreducible
components of S’, Castelnuovo’s criterion and upper-semi-continuity of dimensions of
cohomology groups.

Next we study U(1)-equivariant smoothings of S’. Let ve T4, be any real and
U(1)-invariant element such that all of 8 components of r(v) (see (13)) is non-zero.
(Such an element exists by the last claim of [Lemma 4.13.) Let B’ be any non-singular
curve in B whose tangent vector at 0 is v. Then p|g : |z — B’, the restriction of the
Kuranishi family on B’, gives a U(1)-equivariant smoothing of S’. Now we recall that
S’ can be illustrated as follows:

Figure 3
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Using the notations in this figure, we put

C=GUATLTAILL), C=CU(HTA T/ ILf),
El’ =EU(g1 I g,), Ei =E U (9211 gy),
E,:=EU(g:113,), E,:=E;U(gs11g;).

We note that all of these six curves are connected and U(1)-invariant Cartier divisors on
S’. Then we have

PROPOSITION 4.15.  All of these six curves on S’ are stable under the above U(1)-
equivariant smoothing p|g : S|z — B’ and also deformed into irreducible non-singular
rational curves.

PrOOF. (outline) We put 4 := C'+ C' +E| + E, + Ej + E, for simplicity. We
can show that T § 4 =0 by similar calculations in the proof of [Proposition 4.14. In
particular, deformations of the pair (S’, A) are unobstructed.

Next, the same argument as in the proof of Lemma 5.4 in [Honl| shows that there
exists a U(l)-equivariant exact sequence

N T.Sl”.,A—> TSI/_>H1((9A(A))_> Té,VA SN

Thus to prove the stability of 4 under U(1)-equivariant deformations, it is sufficient to
show that H'(04(A4)) U = 0. This in turn can be shown by careful calculations using
standard methods.

The second claim of the proposition can be proved by the same argument of the
proof of [Proposition 2.3 of [Hon2]. 0

Let C,,C,,E,, E\,Ex and E, be the preserved irreducible non-singular U(l)-
invariant rational curves on S;:= p~!(z). Then a slight modification of the argument
in the proof of [Proposition 2.3 in [Hon2] shows that they satisfy

Ef,:EZ:—l for i=1,2,

it
C['El‘[:C[‘Eit:é['Eit:ét'Eit:O fori:1,2.

Further, if one notices that S, has a morphism onto CP' whose generic fiber is CP'
and that each of Ey;, E1;, Ex;, E»; is one of the irreducible components of distinct fibers of
the morphism, it is easy to see that there exist non-singular U(1)-invariant rational
curves I, and I, (1 <i<4) such that the configuration of the curves are exactly the
same as S (see Figure 1). Then again by following up the procedure in Figure 1 in the
reverse order, we can conclude that S, is also obtained by blowing CP' x CP'! up at 8
points as in the Figure 1 preserving the U(1)-action. Thus we get

PrROPOSITION 4.16. Let S’ be the normal crossing surface with a U(1)-action
constructed in §4.1.  Then for any U(1)-equivariant smoothing p: ¥ — B',0e B' = C
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with p~1(0) ~ S’, there exists an open neighbourhood B' of 0 with B' = B such that
S, = p~'(¢), t e B'\{0} is a rational elliptic surface obtained by the procedure in Figure 1.

4.4. U(1)-equivariant smoothings of (Z' S’)

Let (Z’,S’) be the pair of normal crossing varieties constructed in §4.1. Z' is a
normal crossing 3-fold with a holomorphic U(1)-action and S’ is a U(l)-invariant
Cartier divisor on Z’. Further, S’ is real with respect to the real structure on Z’. In
this subsection, we investigate deformations of (Z',S’) preserving the U(1)-action.

First we show the unobstructedness of deformations of (Z',S").

The following lemma can be proved exactly in the same way as in
[Honl] and we omit the proof.

LEMMA 4.17. We have the following isomorphisms

C—B (QQ:' q= 1,
@%’,S’ = @%/ =9 =l
0 q=2.
Using the results of §4.2, we show the following:

ProposITION 4.18.  Let (Z',S’) be the pair of normal crossing varieties as above.
Then we have T3, ¢ = H?*(0z(—=S'))=0. In particular, deformations of the pair
(Z',S") are unobstructed.

Proor. First we show that H*(@z(-S'))=0. Let v:Z|[[Z}— Z' =Z]UZ]
denote the normalization of Z’. Then we have an exact sequence

(14) 0—0z(-8") = (@Z' 00 (— (@ 0z.0,(= D;)))

4
~ @ O (1) 0.
i=1

Now by Propositions and 4.12, we easily get

m( (@Z,QO (@@Z, . _5;>))):o.

On the other hand, by considering the exact sequence
0— 07/(~Qi — D} — D;) = O7.9(~Dj — D)) = Og,(~l; — ;) = 0
for 1 <i <4 and using [Lemma 4.11 for j =2, the map
H'(07.0,(~D] ~ D;)) — H'(0g,(~1; ~ )
is surjective. Therefore by the cohomology exact sequence of [14), we get

H*(04(-S")) = 0.
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Combining this and |Proposition 4.14] with the cohomology exact sequence of

O — @Z/(—S,) — @Z/,S’ — @S/ — 07
we get
(15) H*(@z 5) =0.
Finally, the local to global spectral sequence
Eé’»l] = Hp<@%/,s/) = Tg;’:%/
with the aid of for ¢ > 2 induces an exact sequence
(16)  0—H'(Oz5)— Ty o — H' O, o) — H(Oz.5)— T &
— Hl(@%/’sl).

Now using for g =1, we get

4

H'(O),5) ~ @ H'(Co) =0

Hence by and (16), we have T3, g = 0. O

Let {Z LBy L Band ¥ — 7 } be the Kuranishi family of deformations of
the pair (Z',S’). [Proposition 4.1§ implies that B can be regarded as a small open
neighborhood of 0 in the vector space T 1,, g Letve Té,7 ¢ be any real U(l)-invariant
element such that r(v) (see (16)) is non-zero and let B’ be any U(1)-invariant real non-
singular holomorphic curve in B whose tangent vector at 0 is v. By choosing B’
sufficiently small, we have

ProposiTION 4.19. Let {Z' B ! LB } be the restriction of the Kuranishi
family on B'.  Then if t € B'\{0}, (i) and (ii) below hold. In addition, if such a t is real,
(iii)—(vi) below also hold. (i) both Z; = p~'(t) and S, = q~'(t) are non-singular, (i) Z,
has a U(1)-action under which S, is invariant, (iii) Z, has a real structure o, and (Z,,0;)
has a structure of twistor space of 4CP?, (iv) ¢, commutes with the U(1)-action, (v) S; is a
o,-invariant (i.e. real) element of |—(1/2)Kz,| which is also U(1)-invariant, (vi) S, has a
structure of rational elliptic surface obtained by blowing-up CP' x CP' 8 times as in
Figure 1.

Proor. We note that there exists a U(1)-equivariant commutative diagram |[cf.
Honl, Lemma 4.14]

4
Ty —— @D H(g)
i=1

| l

U N— @(HO(@»@HO(@E».

Then by the choice of v e T1/7 ¢/, the claims of (i) are clear. (ii) is also obvious since we
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choose B’ as U(1)-invariant. (iii) follows from Donaldson—Friedman. (iv) and (v) are
clear. (vi) immediately follows from [Proposition 4.16. ]

In particular, we get the following

THEOREM 4.20. Let (Z',S’) be the pair of normal crossing varieties with the U(1)-
action constructed in §4.1. Then there exists a U(1)-equivariant smoothing (Z;,S;)
of (Z',S") such that Z, is a twistor space of 4CP?, S, is a real element of |—(1/2)K|
and that S, has a structure of a rational elliptic surface obtained by the procedure in
Figure 1.

5. An algebraic structure of the twistor spaces

We continue to use the notations in the previous section. That is,

(Z',S"):  the pair of normal crossing varieties constructed in §4.1,

{Z LB, 7L B with ¥ — 7 }: the Kuranishi family of deformations of (Z’,S’)
(if we set Z,:=p~'(t), S;:=q '(¢) as before, they satisfy Zy ~ Z’ and Sy~ S’).

Further, let B’ = B be a U(1)-invariant real ,non-singula/lr holomorphic curve such
that the restriction of the Kuranishi family {2 LBy LB } gives a smoothing of
(Z',S") as in [Proposition 4.19. We denote by (B’)” the subset of B’ consisting of a real
element with respect to the real structure on 7. %,7 ¢~ (B')? is isomorphic to an open
interval in R. We recall that if 7 € (B')? is non-zero, Z, is a twistor space of 4CP?* with
a U(l)-action, and S; is a U(l)-invariant real element of |—(1/2)Kz|. Further we
recall that the anticanonical system of S, induces a morphism onto CP' whose generic
fiber is an elliptic curve.

The cohomology sequence of the exact sequence

— —Kg, — 0,

t

1
0— 0z — _EKZ

together with the simply connectivity of 4CP? implies the exactness of the sequence

1
0— HOz) — H0<—§Kzt> — H(—Kg,) — 0.

Hence |—(1/2)Kz,| induces a surjective morphism ¢, : Z, — CP? and ¢,| s, 1s the elliptic
fibration induced by | — Ks,|. On the other hand, it is easy to see that x~!(S;) =1,
where x7!(S;) denotes the anti-Kodaira dimension of S; (cf. [S]). Further, we have
a(Z) <1+x1(S,) by [C], where a(Z,) denotes the algebraic dimension of Z,.
Therefore we can conclude that a(Z,) = 2. So a generic fiber of ¢, must be an elliptic
curve. Thus we obtain

PROPOSITION 5.1.  The complete linear system |—(1/2)Kz | is two dimensional and
has no base locus. The morphism ¢,: Z; — CP? induced by |—(1/2)Kz| gives an
algebraic reduction of Z;.

It is easy to see that |0z/(S’)| is two dimensional and base point free. Let ¢, :
Z' — CP? denote the morphism induced by |0/(S’)|. We can readily see that ¢, 7%
Z, — CP* is f, (see §3.2), the morphism induced by |—(1/2)Kz| = |fiOcp>(1)].
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Moreover, ¢y, (1 <i<4) is the morphism induced by |f;/0c(2)], where
fitZl - C= CP' is the morphism described in §3.1. The image of @0l 1s the conic
A = CP?, which is the branch locus of the double covering map CP' x cP' — cp>.

Let plO04(9) denote the direct image sheaf (on B’) and consider the relative
morphism @ : &' — P(p.04(¥)) (cf. [U, Chapter 1]). Then for z € (B')?\{0}, we have
Oy(S)|z ~ —(1/2)Kz, and |-(1/2)Kz| is two dimensional, and hence the rank of
pLO4 () is three. Therefore the restriction of @ over (B')? induces a commutative
diagram

(2})° —2 (B)” x CP?

| |

(B) —— (B

such that for t e (B')?, ®°|, : Z; — CP? is ¢,. In brief, the morphism ¢, extends over
generic fiber to give an elliptic fibration ¢, : Z, — CP?>. With this observation in hand,
we complete the proof of [Theorem 1.1.

THEOREM 5.2. There exists a self-dual metric g, on 4CP?> with the following
properties: (1) the scalar curvature of g, is positive type, (ii) the identity component of the
group of orientation preserving conformal transformations of g, is U(1), (i) g, is not
conformally isometric to the self-dual metrics of LeBrun ([LB1]).

PrOOF. Let g, be one of the self-dual metrics on 4CP? which correspond to Z,.
Then a theorem of Gauduchon ([G, Théorem 2]) and the existence of the net |S;| imply
that the scalar curvature of g, is positive type. Hence we get (i).

Next let 4" denote the identity component of orientation preserving conformal
transformations of (4CP?,g,). Obata’s theorem implies that ¥* is compact. On the
other hand, a theorem of Poon ([P2, Theorem 1.3]) and the positivity of the scalar
curvature imply that ¢ is at most two dimensional. We now suppose that ¢ is two
dimensional; that is 4+ = U(1)%, the two dimensional torus. The action of U(1)* on
(4CP?,g,) induces a holomorphic action of U(1)* on Z, and we complexify it to get an
action of (C*)* on Z,. (C*)? also acts on the linear system |—(1/2)K,| and we obtain
an action of (C*)? on CP?. But since there exists the above diagram, the (C*)-action
on CP? is just the one on the central fiber Z’ and hence preserves 4, a conic on which
singular fibers of ¢, : Z' — CP? lie. Hence there exists a C*-subgroup of (C*)* which
acts trivially on CP?. But such C*-action on Z, must be trivial, since 0, Z— CP’ is
a non-trivial elliptic fibration. Therefore, U(1)? cannot act on Z, effectively. On the
other hand, we know that there exists a U(1)-action on Z;. Hence we have 4% = U(1)
and get (ii).

Finally, we recall that the U(1)-action on S; is not semi-free. Hence by [LB2,
Corollary 1], g, is not one of self-dual metrics of LeBrun ([ LB1}). O
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