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Abstract. We show that there exist on 4CP
2, the connected sum of four complex

projective planes, self-dual metrics with the following properties: (i) the sign of the

scalar curvature is positive, (ii) the identity component of the isometry group is U�1�, (iii)

the metrics are not conformally isometric to the self-dual metrics constructed by LeBrun

[LB1]. These are the ®rst examples of self-dual metrics with non semi-free U�1�-

isometries on simply connected manifolds. Our proof is based on the twistor theory:

we use an equivariant orbifold version of the construction of Donaldson and Friedman

[DF]. We also give a rough description of the structure of the algebraic reduction of the

corresponding twistor spaces.

1. Introduction.

Let S3 � S1 be the Riemannian product of the standard spheres, which is a confor-

mally ¯at 4-manifold. We denote by Rp and Rq the re¯ections with respect to points

p A S3 and q A S1 respectively. Let fp :� Rp � �ÿ1� and fq :� Rq � �ÿ1� denote the com-

position of the re¯ections with the anti-podal maps �ÿ1�, whose ®xed points are fGpg

and fGqg respectively. Then it is easy to see that t :� �fp; fq� is an orientation

preserving isometric involution on S3 � S1 and that the ®xed points set consists of

four points �p; q�; �ÿp; q�; �p;ÿq� and �ÿp;ÿq�. Let M0 :� S 3 � S1=hti denote the

conformally ¯at Riemannian orbifold with four orbifold points obtained as a quotient of

S3 � S1. It is readily seen that M0 is simply connected and b2 � 0.

On the other hand, let MEH be the (compacti®ed) Eguchi±Hanson space, which has

a unique orbifold point whose isotropy group is Z2. MEH is also simply connected and

b2 � 1.

Let M0 aZ2
4MEH be the (smooth) 4-manifold obtained by connecting M0 with

four copies of MEH at the orbifold points. M0 aZ2
4MEH is di¨eomorphic to 4CP

2,

the connected sum of four complex projective planes. Then the results of LeBrun±

Singer ([LS, Theorem A]) and Pontecorvo ([Pont, Proposition 2.4]) imply that 4CP
2

admits a self-dual metric. In brief, 4CP
2 has a self-dual metric originated from so

called a Kummer type construction ([LS]).

In this paper, we shall investigate this example, which seems to be basic one, in detail

and show that among the self-dual metrics on 4CP
2 obtained in this way, there exists a
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family of self-dual metrics of positive scalar curvature with U�1�-symmetry which are

not LeBrun's metrics ([LB1]). More precisely, we show the following:

Theorem 1.1. There exists a self-dual metric g on 4CP
2 with the following

properties: (i) the scalar curvature of g is positive type, (ii) the identity component of

the group of orientation preserving conformal transformations of g is U�1�, (iii) g is not

conformally isometric to the self-dual metrics of LeBrun ([LB1]).

The proof of the theorem is based on an equivariant version of a result of LeBrun±

Singer ([LS]). We ®rstly construct a normal crossing 3-fold Z 0 � Z 0
0 U 4Z 0

EH , where Z 0
0

and Z 0
EH are the resolution of the twistor space of M0 and MEH respectively. Then we

will see that there is a U�1�-action on Z 0 which is induced by those on M0 and MEH .

Further we will observe that there exists a U�1�-invariant Cartier divisor S 0 on Z 0 and

show that the pair �Z 0;S 0� can be smoothed preserving the U�1�-action to give a twistor

space Z of 4CP
2. Then the self-dual metric on 4CP

2 corresponding to Z is the

required one.

We also study an algebraic structure of the above twistor space Z. We recall

that there exists a natural square root, which we will denote by ÿ�1=2�KZ, of the

anticanonical bundle of Z. Let jÿ�1=2�KZj denote the associated complete linear

system on Z. Then we have

Proposition 1.2. Let Z be the twistor space of 4CP
2 as above. Then jÿ�1=2�KZj

is two-dimensional and has no base locus, and the morphism j : Z ! CP
2 induced by

jÿ�1=2�KZj is an elliptic ®bration. (That is, a general ®ber of j is an elliptic curve.)

Further, the algebraic dimension of Z is two.

Let us explain another motivation of this paper. Recently, Campana and Kreussler

([CK ]) has obtained the following result: Let Z be a twistor space over 4CP
2 and S

be a real smooth element of jÿ�1=2�KZj. Assume that jÿKSj contains a smooth curve

C and let NC=S be the normal bundle of C in S. It is easy to see that the degree of

NC=S is zero. Let a�Z� be the algebraic dimension of Z. Then they showed that

�1U� a�Z�U 2 and the equality holds if and only if NC=S is of ®nite order in Pic0 C.

Then they asked which number can be realized by the order of NC=S. Our investigation

of the twistor spaces via Donaldson±Friedman construction shows that the smallest

value ��1� can be realized by the twistor space in Proposition 1.2. See also [Hon3].

This paper is organized as follows: In Section 2, we explain an equivariant version

of a result of LeBrun±Singer ([LS]), which is fundamental for our investigations. Key

examples of compact self-dual re¯ection orbifolds and their equivariant connected sum are

also given. In Section 3, the twistor spaces of the two orbifoldsM0 andMEH are described.

Section 4 is a main part of this paper. In §4.1, we construct a pair �Z 0;S 0� of a

normal crossing 3-fold with a holomorphic U�1�-action and an invariant Cartier divisor

on it. Then in §4.2±4.5 we show that a U�1�-equivariant smoothing of �Z 0;S 0� exists

and the resulting pair �Z;S� satis®es (i) Z is a twistor space of 4CP
2, (ii) S is an element

of j ÿ �1=2�KZj and has a structure of rational elliptic surface (with a U�1�-action).

Finally in Section 5, we study the algebraic structure of the above pair �Z;S� and

complete the proof of Theorem 1.1 and Proposition 1.2.

We would like to thank Professor A. Fujiki for valuable conversations.
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2. Equivariant connected sum of self-dual re¯ection orbifolds.

In their paper ([DF]) Donaldson±Friedman developed a general theory for con-

structing self-dual metrics on the connected sum of compact self-dual manifolds, using

twistor theory and deformation theory of compact complex spaces. Later, LeBrun±

Singer ([LS]) generalized their construction to the case of connected sum of orbifolds

whose isotropy groups at the orbifold points are fG1g. In the ®rst half of this section,

we explain an equivariant version of their result. We only give statements, since the

proofs are almost parallel to those of Pedersen±Poon ([PP2]), who developed an

equivariant version of the original construction of Donaldson±Friedman. In the latter

half, a key example of an equivariant connected sum is given.

We recall that an orbifold is said to be a re¯ection orbifold ([LS]) if the isotropy

group at each orbifold point is fG1g. If M1 and M2 are oriented re¯ection orbifolds of

the same dimension and if an orbifold point of each Mi is speci®ed, the connected sum

at the orbifold points can be made in an obvious way (cf. [LS]) and we denote the

resulting orbifold (or manifold) by M1 aZ2
M2.

Let �M1; g1� and �M2; g2� be compact self-dual re¯ection orbifolds. We assume for

simplicity that M1 and M2 have unique orbifold points p1 AM1 and p2 AM2 respectively.

Further we suppose that a compact Lie group G is acting on both M1 and M2 iso-

metrically and leaving pi; i � 1; 2 ®xed. Let Zi �i � 1; 2� be the twistor space of

�Mi; gi� and Li be the twistor line over pi. Zi has A1-singularities along Li (cf. [LS]).

We have a holomorphic G-action on Zi which is induced by that on Mi.

Let mi : Z
0
i ! Zi �i � 1; 2� be the blowing-up along Li and Qi be the exceptional

divisor. Z 0
i is non-singular and also has a G-action. It is easy to see that Qi FCP

1 �

CP
1 and NQi=Z 0

i
FO�ÿ2; 2�; where O�0; 1� denotes the pull-back of OLi

�1� ([LS]).

Let f : Q1 ! Q2 be a biholomorphic map which preserves the real structures and

satis®es f�
OQ2

�1; 0�FOQ1
�0; 1�. We further assume that f is G-equivariant. (The

existence of such an isomorphism is equivalent to the condition that G-equivariant

connected sum can be made at the orbifold points.) Using this isomorphism, we set

([DF, LS])

Z 0
:� Z 0

1 6
f

Z 0
2:

Z 0 is a normal crossing variety which has a real structure s 0 induced by those on Z1 and

Z2. Then we have

Y1
Z 0 FNQ1=Z 0

1
nNQ2=Z 0

2
FOQ;

(here we set Q :� Q1 FQ2 JZ 0) and hence Z 0 is d-semi-stable in the sense of R.

Friedman, and we may consider smoothings of Z 0.

The following lemma is a key to prove Proposition 2.3 below:

Lemma 2.1. (cf. [PP2]) Let G; �Mi; gi�; pi;Zi;Z
0
i �i � 1; 2� and Z 0 be as above.

Then the action of G on H 0�Y1
Z 0�FC induced by that on Z 0 is the trivial action.

Proposition 2.2. ([LS]) With the notations in Lemma 2.1, suppose that

H 2�YZ 0
1
;Q1

� � H 2�YZ 0
2
;Q2

� � 0:

Then we have T 2
Z 0 � 0.
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Proposition 2.3. With the notations and assumptions in Proposition 2.2, let p : Z !

BJT 1
Z 0 ; pÿ1�0�FZ 0 be the Kuranishi-family of deformations of Z 0, where we may regard

B as an open ball in T 1
Z 0 containing 0 by Proposition 2.2. Let BG;s denote the subspace

of B whose points are G-invariant and real. Then BG;s is at least one-dimensional and

for general element t of BG;s, Zt :� pÿ1�t� has a natural structure of a twistor space of

M1 aZ2
M2 with G-symmetry.

Next we give examples of compact self-dual re¯ection orbifolds with U�1�-actions

and their equivariant connected sum. We recall that an action of a Lie group G on a

manifold (or an orbifold) is said to be semi-free if the isotropy group is either feg or G

itself at every point.

Example 2.4. Let $ : M �
EH ! C

2=fG1g be the minimal resolution of the (A1-)

singularity. M �
EH has a hyperKaÈhler metric g�EH called Eguchi±Hanson metric. It was

shown in [Kr] that �M �
EH ; g

�
EH� has a one point compacti®cation �MEH ; gEH� as an anti-

self-dual re¯ection orbifold. We reverse the complex orientation and will work on

self-duality.

For later references, we introduce a U�1�-action on MEH . Let �z;w� be complex

coordinates on C
2 and consider a U�1�-action de®ned by

�z;w� 7! �z; tw�

for t A U�1�. This induces an isometric U�1�-action on MEH . We note that this action

is not semi-free. In fact, any point of MEH which lies on the image of fz � 0gn

f�0; 0�g�JC
2) has the isotropy group fG1g.

Example 2.5. (cf. [I4] or Introduction) Let �S3 � S1; g3 l g1� be the Riemannian

product of the spheres, where gk denotes the standard metric on S k. g3 l g1 is confor-

mally ¯at. We embed S3 in C
2 as the unit sphere and let p :� �i; 0� be a point on S3.

Let Rp denote the re¯ection with respect to p, that is Rp�z;w���z;w�. Then fp�z;w� :�

�ÿz;ÿw� de®nes an orientation reversing isometric involution whose ®xed points are

fGpg. Similarly, S1 has such an isometric involution fq; q A S1. We get then an

isometric involution t on S3 � S1;

t�x; y� � �fp�x�; fq�y��; �x; y� A S3 � S1:

t is orientation preserving with the ®xed-points �p; q�; �ÿp; q�; �p;ÿq� and �ÿp;ÿq�.

It follows that M0 :� S3 � S1=hti is a re¯ection orbifold with a conformally ¯at

metric g0, having four orbifold points. It is clearly seen that M0 is simply connected

and b2 � 0. We also note that if one regards S3 � S1 as a quotient of C
2nf0g �

Hnf0g by the Z-action de®ned by q 7! lnq for q A Hnf0g and n A Z �l > 0; l0 1�, t

is induced by q 7! qÿ1.

Next we introduce a U�1�-action. For t A U�1� and x � �z;w� A S3
JC

2 and y A

S1, we set

t�x; y� � ��z; tw�; y�:

Then this U�1�-action is isometric and commutes with the involution t, and hence we

get an isometric U�1�-action on M0. Since the maps t and t � ÿ1 A U�1� coincide on
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the disjoint two spheres fz � ÿz; y � 1g and fz � ÿz; y � ÿ1g, the U�1�-action on M0

has non-trivial isotropy fG1g on their images.

Example 2.6. (cf. [I4]) We consider an equivariant connected sum of the above

two examples. It is readily seen that we can make a U�1�-equivariant connected sum

M0 aZ2
4MEH and the resulting U�1�-action on M0 aZ2

4MEH is not semi-free. In fact,

there exist disjoint two spheres on which t � ÿ1 A U�1� acts trivially. The 4-manifold

M0 aZ2
4MEH is di¨eomorphic to 4CP

2.

Applying Proposition 2.3 to Example 2.6, we can prove the assertions of (ii) and (iii)

of Theorem 1.1. But to prove (i), we need to consider additional data: we will observe

that there exists a U�1�-invariant Cartier divisor S 0 on Z 0 (see §4.1) and consider U�1�-

equivariant deformations of the pair �Z 0
;S 0�. Due to this consideration, we can obtain

a twistor space of 4CP
2 with a U�1�-action which is a special one.

3. Descriptions of the twistor spaces.

3.1. The twistor space of the Eguchi±Hanson space

In this subsection, we use the notations in Example 2.4. The twistor space of

the hyperKaÈhler manifold �M �
EH ; g

�
EH� is explicitly described in [Hi]. But it is more

convenient to use the following di¨erent description due to Fujiki ([F]), which relates the

twistor space of �MEH ; gEH� with the non-projective abstract algebraic variety con-

structed by Nagata ([Na]).

Let C be the complex projective line and X :� CP
1 � CP

1 � C be the product of

three complex projective lines. We ®x any identi®cation of the ®rst factor with the

second one and regard X as the trivial bundle over C. Let sX denote the anti-

holomorphic involution on X which is de®ned by

sX �x; y; t� :� �s1�y�; s1�x�; s1�t��;

where s1 denotes the anti-podal map. We choose any point 0 of C and put y :� s1�0�.

We ®x any non-singular curve D of bidegree �1; 1� on CP
1 � CP

1 which is real with

respect to the above real structure and set

D0 :� D� f0gJX0 :� CP
1 � CP

1 � f0g;

Dy :� D� fygJXy :� CP
1 � CP

1 � fyg;

and

QX :� D� CJX :

Let

m1 : Y ! X

denote the blowing-up along D0

`
Dy, and ~Z 0

0 and ~Z 0
y
�FS2, the Hirzebruch surface of

degree 2) the exceptional divisors of D0 and Dy respectively, and QY �FQX �;X
0
0�FX0�;

and X 0
y
�FXy� the proper transforms of QX ;X0 and Xy respectively. sX naturally lifts

on Y and de®nes an anti-holomorphic involution on Y which we denote by sY . The
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normal bundle of X 0
0 and X 0

y in Y is isomorphic to O�ÿ1;ÿ1� and hence X 0
0 and X 0

y

can be blown-down along each projection to CP
1. Let

m2 : Y ! Z 0
EH

be the blowing-down of X 0
0 and X 0

y along the di¨erent projections. We set B0 :�

m2�X
0
0� �FCP

1�;By :� m2�X
0
y� �FCP

1� and Q :� m2�QY � �FQY �. sY descends to

Z 0
EH and de®nes an anti-holomorphic involution s 0

EH . The projection X ! C induces

a surjective morphism f : Z 0
EH ! C. We set D 0

:� f ÿ1�0� and D
0
:� f ÿ1�y�. D 0 and

D
0
are biholomorphic to S2 and all the other ®bers are biholomorphic to CP

1 � CP
1.

We can readily see that NQ=Z 0
EH
FOQ�ÿ2; 2�, where OQ�1; 0� denotes the pull-back

of OC�1�. Let

m : Z 0
EH ! ZEH

be the contraction of Q along the appropriate projection and set Lpy :� m�Q�.

Z 0
EH is the abstract algebraic variety constructed by Nagata [Na] and it was

remarked by Fujiki [F] that ZEH equipped with the real structure sEH (which is induced

by s 0
EH ) is the twistor space of �MEH ; gEH�, Lpy is the twistor line corresponding to the

orbifold point py, and the restriction of f on Z 0
EHnQ � ZEHnLpy is the holomorphic

map associated to the hyperKaÈhler structure.

We can show that

ÿ
1

2
KZ 0

EH
FO�Q�n f �

OC�2�:

The U�1�-action which corresponds to that on �MEH ; gEH� given in Example 2.9 is

induced by the following U�1�-action on X via the above birational transform:

�x; y; u� 7! �tx; ty; tu� for t A U�1�:

3.2. The twistor space of �M0; g0�

In this subsection, we use the notations in Example 2.5. We ®x a positive real

number l0 1 and let G :� flnjn A Zg be the in®nite cyclic group generated by l. Let

�z;w� be coordinates on C
2 and we regard S3 � S1 as a quotient space C

2nf0g=G,

where G acts on C
2 by the scalar multiplication. The Hermitian metric

h0 :�
dzdz� dwdw

jzj2 � jwj2

Diagram 1
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which is de®ned on C
2 ÿ f0g induces a Hermitian metric on S3 � S1 and it is con-

formally isometric to the product metric g3 l g1. Using this description, the twistor

space of �S3 � S1; g3 l g1� is given by ([Pont])

W0 � �O�1;ÿ1�nf0g�=G;

where O�1;ÿ1� denotes the holomorphic line bundle over CP
1 � CP

1 whose bidegree is

�1;ÿ1� and the action of G on O�1;ÿ1� is given by the scalar multiplication as a vector

bundle. By construction, W0 has a holomorphic ®ber bundle map

~p : W0 ! CP
1 � CP

1

whose ®bers are biholomorphic to an elliptic curve

E :� C
�=G:

By a theorem of Campana [C], the algebraic dimension of W0 is two and hence all of

the divisors on W0 are pull-backs of curves on CP
1�CP

1. We also have ÿ�1=2�KW0
F

~p
�
O�1; 1� ([Pont]).

Let �z0 : z1 : z2 : z3� be homogeneous coordinates on CP
3 (which we regard as the

twistor space of the standard 4-sphere) and

~t : �z0 : z1 : z2 : z3� 7! �z2 : z3 : z0 : z1�

a holomorphic involution on CP
3. If we regard O�1;ÿ1�nf0g as an open subset of

CP
3 via the rational map

�z0 : z1 : z2 : z3� 7! ��z0 : z1�; �z2 : z3��;

~t induces a holomorphic involution on W0 which we also denote by ~t. ~t on W0 is

nothing but the lifted involution of t on S3 � S1. The set of ®xed points of ~t on W0

consists of four twistor lines ~L01; ~L02; ~L03 and ~L04 which correspond to the four ®xed

points of t. Let

f0 : W0 ! Z0 :� W0=h~ti

be the quotient map and set L0i :� f0�~L0i� for 1U iU 4. Z0 is the twistor space of M0

and has A1-singularities along L0i, and L0i �1U iU 4� is the twistor line corresponding

to the orbifold points of M0. ~t (on W0) induces a holomorphic involution on CP
1 �

CP
1 and we denote it by i. i is explicitly given by

i : ��u0 : u1�; �v0 : v1�� 7! ��v0 : v1�; �u0 : u1��;

where ��u0 : u1�; �v0 : v1�� denote appropriate bihomogeneous coordinates on CP
1 � CP

1

and hence the resulting quotient space of CP
1 � CP

1 is biholomorphic to CP
2. Let

~DJCP
1 � CP

1 denote the set of ®xed points of i; a : CP
1 � CP

1 ! CP
2 the quotient

map and set D̂ :� a� ~D�, a conic. Let

p : Z0 ! CP
2
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be the morphism induced by ~p. We have

~pÿ1� ~D�F ~D� E; pÿ1�D̂�F D̂� CP
1

and ~pj ~L0i
(resp. pjL0i

) is a biholomorphic map onto ~D (resp. D̂) for each 1U iU 4.

In summary, we have the following commutative diagrams:

The U�1�-action on CP
3 given by �z0 : z1 : z2 : z3� 7! �z0 : tz1 : z2 : tz3� descends to

W0 and Z0, which correspond to the U�1�-actions given in Example 2.5. They also

de®ne U�1�-action on CP
1 � CP

1 and on CP
2, respectively. Let ~C0 be the curve on

CP
1 � CP

1 which is uniquely determined by the following conditions: (i) ~C0 is an

i-invariant element of jO�1; 1�j, (ii) ~C0 is real with respect to the real structure induced

by that on W0, (iii) ~C0 is not equal to ~D.

Next we see that there is a U�1�-invariant divisor on W0 and Z0 which will

play important roles in our investigations. We set R0 :� ~pÿ1� ~C0�, which is a real U�1�-

invariant element of jÿ�1=2�KW0
j. Then clearly R0 F

~C0 � E. Further, we set C0 :�

p� ~C0�, a real line on CP
2, and S0 :� pÿ1�C0�. That is, S0 is obtained as a quotient of

R0 FCP
1 � E with EFC

�=Z by the involution

��z0 : z1�;w� 7! ��z0 : ÿz1�; 1=w�;���

where �z0 : z1� denote homogeneous coordinates on CP
1 and w is a holomorphic

coordinate on C
�
JC .

S0 is clearly a U�1�-invariant real element of jÿ�1=2�KZ0
j � jp�

O
CP

2�1�j.

Moreover, we observe that S0 intersects each L0i �1U iU 4� with two points fp0i; p0ig

and these 8 points are A1-singularities of S0. S0 is a rational elliptic surface with

a U�1�-action. Let m0 : S
0
0 ! S0 be the minimal resolution of singularities and

l0i :� mÿ1
0 �p0i� and l0i :� mÿ1

0 �p0i� �1U iU 4� the exceptional curves. As an elliptic

surface, S 0
0 has two singular ®bers, both of which are type I�0 in Kodaira's notation, and

every non-singular ®ber is the same elliptic curve E. Moreover, the elliptic ®bration

S 0
0 ! CP

1 is induced by the anticanonical system.

Alternatively, S 0
0 can be also obtained by blown-down to CP

1 � CP
1 as in the

following ®gure and the resulting U�1�-action on CP
1 � CP

1 is given by

��x0 : x1�; �h0 : h1�� 7! ��x0 : x1�; �h0 : th1��;

where �x0 : x1� denote homogeneous coordinates in the direction of ®bers of S 0
0 !

~D.

To see these, it su½ces to check that the self-intersection numbers of the U�1�-invariant

(rational) curves are indicated in Figure 1. But this fact can be proved in elementary

ways. Then following up the ®gure in a reverse order, we see that S 0
0 can be blown-

Diagram 2
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down to get CP
1 � CP

1. The claim for the U�1�-action can also be checked in a

similar way.

Conversely, if a rational surface X is obtained by blowing-up CP
1 � CP

1 8 times as

in Figure 1, then X is also given by the quotient of CP
1 � E by the involution ��� and

then resolving all of the �A1�-singularities.

Further, we note that U�1�-action on S 0
0 is not semi-free, since there exist four

(disjoint) �ÿ1�-curves on S 0
0 on which t � ÿ1 A U�1� acts trivially.

4. Equivariant smoothings.

4.1. A construction of a pair with a U�1�-action

Let Z0 and ZEH be the twistor space described in the previous section. In this

subsection, using Z0 and ZEH , we construct a normal crossing variety Z 0 with U�1�-

action and invariant Cartier divisor S 0 on Z 0. We use the notations of the previous

section, unless otherwise stated.

First we consider the twistor space Z0 which was described in §3.2. Z0 is the twistor

space of the conformally ¯at re¯ection orbifold �M0; g0� and has four distinguished

twistor lines L0i �1U iU 4� along which Z0 has A1-singularities. Let m0 : Z
0
0 ! Z0 be

the blowing up along L01

`
L02

`
L03

`
L04 and Q0i �1U iU 4� be the exceptional

divisor of L0i and put Q0 :�
P4

i�1 Q0i. Then Z 0
0 is non-singular and Q0i FCP

1 � CP
1

and NQ0i=Z
0
0
FO�ÿ2; 2� where O�0; 1� denotes the pull-back of OL0i

�1� ([LS]). Further,

let S 0
0 denote the proper transform of S0. Then m0 is the minimal resolution of S0.

On the other hand, let ~m0 : W
0
0 ! W0 be the blowing-up of W0 along ~L01

`
~L02

`

~L03

`
~L04 and ~Q0i �1U iU 4� be the exceptional divisor of ~L0i. (~L0i is the twistor

line corresponding to L0i.) We have ~Q0i FCP
1 � CP

1 and N ~Q0i=W
0
0
FO�ÿ1; 1� where

O�0; 1� denotes the pull-back of O ~L0i
�1�. Moreover, let R 0

0 be the proper transform of

R0. ~m0jR 0
0
is 8-points blowing-up of the non-singular surface R0. We have the fol-

lowing commutative diagram:

Figure 1
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W 0
0 ���!

~m0
W0 ���!

~p
CP

1 � CP
1

f 0
0

?
?
?
y

f0

?
?
?
y

?
?
?
y

a

Z 0
0 ���!

m0
Z0 ���!

p
CP

2
:

We note that U�1� acts on the whole of the diagram.

Let Z 0
i , 1U iU 4; be copies of the blown-up twistor space Z 0

EH described in §3.1.

Z 0
i is obtained by blowing-up the twistor space ZEH of the anti-self-dual re¯ection

orbifold �MEH ; gEH� along the singular twistor line.

We recall that there exists a surjective holomorphic map fi : Z
0
i ! C � CP

1 (cf.

§3.1). Further we have a divisor Qi JZ 0
i which is biholomorphic to CP

1 � CP
1. We

set

D 0
i :� f ÿ1

i �0�; D
0
i :� f ÿ1

i �y�;

and

li :� Di VQi; li :� Di VQi:

Di and Di are biholomorphic to S2, and li and li are non-singular rational curves.

Next we construct a pair of normal crossing varieties which is the main object we

study in this section. First we choose four biholomorphic maps

fi : Q0i ! Qi; 1U iU 4

which preserve both the real structures and U�1�-actions and satisfy fi�l0i� � li and

fi�l0i� � li. Using these isomorphisms, we set

Z 0
:� Z 0

0 U

a4

i�1

Z 0
i

 !

;

S 0
:� S 0

0 U

a4

i�1

D 0
i

a

D
0

i

� �
 !

:

It is obvious that S 0 is a real Cartier divisor on Z 0. Further, Z 0 has a U�1�-action

under which S 0 is invariant.

These varieties are illustrated as follows:

Figure 2
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4.2. Calculations of obstructions

Let Z0;L0i �JZ0�, m0 : Z
0
0 ! Z0, Q0 �

P4
i�1 Q0i, Z 0

i and Qi �1UiU4� have

the meanings of the previous subsection. Let R0 �JW0�, R 0
0 �JW 0

0�, S0 �JZ0�,

S 0
0 �JZ 0

0�, Di;Di �JZi� and D 0
i ;D

0

i �JZ 0
i � also denote the U�1�-invariant divisors

de®ned in §§3 and 4.1. In this subsection, we show that the cohomology groups

H 2�YZ 0
0
;Q0

�ÿS 0
1�� and H 2�YZ 0

i
;Qi

�ÿD 0
i ÿD

0

i �� vanish. These results will be needed to

prove the unobstructedness of deformations of the pair �Z 0;S 0�.

4.2.1 The case of �M0; g0�.

In this subsection, we show that the cohomology group H 2�YZ 0
0
;Q0

�ÿS 0
0�� vanishes.

The proof is the same line as that of [LS, Lemma 1]; that is, we reduce it to the

vanishing of a cohomology group of the double cover. In the proofs of the following

lemmas and propositions, we omit the subscript 0 for simplicity.

We begin with the following:

Lemma 4.1. We have H j�YW0
�ÿR0�� � 0 for any jV 0.

Proof. We recall that R � ~pÿ1� ~C�, where ~CJCP
1 � CP

1 is a (real) non-singular

curve of bidegree �1; 1�. We have the following exact sequence of sheaves on W

([Pont]):

0 ! OW0
! YW ! ~p�Y

CP
1�CP

1 ! 0:�1�

Tensoring (1) with OW �ÿR�F ~p�O
CP

1�CP
1�ÿ1;ÿ1�, we have

0 ! ~p�O�ÿ1;ÿ1� ! YW �ÿR� ! ~p��O�1;ÿ1�lO�ÿ1; 1�� ! 0:�2�

It is easy to see that for any jV 0, we have

H j�~p�O�ÿ1;ÿ1�� � H j�~p��O�1;ÿ1�lO�ÿ1; 1��� � 0:

Hence by the cohomology exact sequence of (2), we have

H j�YW �ÿR�� � 0 for any jV 0: r

Next we prove

Lemma 4.2. We have H j�YW 0
0
; ~Q0

�ÿR 0
0�� � 0 for any jV 0.

Proof. We have the following exact sequence of sheaves on W 0:

0 �! YW 0; ~Q �!
~m�

~m�YW �! ~m� 0
4

i�1

N ~Li=W

 !

�! 0:�3�

Here, ~Li � ~L0i �1U iU 4� is the center of the blowing-up m � m0. Since N ~Li=W
F

O�1�l2, we have ~m�N ~Li=W
FO ~Qi

�0; 1�l2, where O ~Qi
�0; 1� :� ~m�OLi

�1�. Then tensoring

OW 0�ÿR 0�F ~m�
OW �ÿR� with (3), we have the exact sequence

0 �! YW 0; ~Q�ÿR 0� �!
~m�

~m��YW �ÿR�� �! 0
4

i�1

O ~Qi
�0;ÿ1�l2

�! 0:�4�

A Kummer type construction 149



Hence by the cohomology exact sequence of (4), we have

H j�YW 0
;
~Q�ÿR 0��FH j�~m��YW �ÿR��� for any jV 0:�5�

Since m is a blowing-up, we have

H j�~m��YW �ÿR���FH j�YW �ÿR�� for any jV 0:�6�

Then the claim follows from (5), (6) and Lemma 4.1. r

The following lemma can be directly veri®ed using local coordinates.

Lemma 4.3. Let g : X ! Y be a rami®ed double covering of complex manifold

branched along a smooth divisor D. Let ~D :� gÿ1�D� denote the rami®cation divisor.

Then we have the following natural isomorphism of OX -modules:

g�YY ;D FYX ;
~D:

Applying this lemma to f 0
0 : W

0
0 ! Z 0

0, we have

Lemma 4.4. We have a natural isomorphism f 0�0 YZ 0
0
;Q0

FYW 0
0
;
~Q0
.

Using these lemmas, we show the following:

Proposition 4.5. We have H 2�YZ 0
0
;Q0

�ÿS 0
0�� � 0.

Proof. First we note that since f 0
: W 0 ! Z 0 is the quotient map of the action of

Z2 with ®xed locus ~Q1

`

~Q2

`

~Q3

`

~Q4, we have a holomorphic line bundle F on Z 0

and a holomorphic section x of OZ 0�Q� which satis®es

F nF FOZ 0�Q�

and

W 0
F fh A F j h2 � x A OZ 0�Q�g:

Then we have (cf. [BPV] for example)

Rq f 0
�OW 0 F

OZ 0 lFÿ1 q � 0,

0 qV 1.

�

�7�

On the other hand, by Lemma 4.4 we have

f 0��YZ 0
;Q�ÿS 0��FYW 0

;
~Q n f 0�

OZ 0�ÿS 0�

FYW 0
;
~Q�ÿR 0�:

Therefore using (7), we get

H j�W 0
;YW 0

;
~Q�ÿR 0��FH j�Z 0

;YZ 0
;Q�ÿS 0��lH j�Z 0

;YZ 0
;Q�ÿS 0�nFÿ1�

for any jV 0. But now we have H 2�W 0
;YW 0

;
~Q�ÿR 0�� � 0 by Lemma 4.2. Hence we

have H 2�Z 0
;YZ 0

;Q�ÿS 0�� � 0. r
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4.2.2. The case of Eguchi±Hanson space

In this subsection, we show that the cohomology group H 2�YZ 0
i
;Q i

�ÿD 0
i ÿD

0
i ��

vanishes, where Z 0
i �1U iU 4� is the resolution of the twistor space of Eguchi±Hanson

space (cf. §§2 and 3.1). We omit the subscript i for simplicity in this subsection.

Recall that there exists the following diagram:

D 0 and D
0
are ®bers of f over 0 and y A C respectively and Q is the image of QX �

D� C �JX� by the rational map m2 � m
ÿ1
1 , where D is a real non-singular curve of

bidegree �1; 1� in CP
1 � CP

1. We have D 0
FS2 FD

0
;QFCP

1 � CP
1 and NQ=X F

O�ÿ2; 2� where O�1; 0� denotes the pull-back of OC�1�.

The following two lemmas are easy to prove:

Lemma 4.6. We have a natural isomorphism

m�
2OZ 0�ÿQÿD 0 ÿD

0
�FOY �ÿQY ÿ ~Z 0

0 ÿ
~Z 0
y ÿ ~X0 ÿ ~Xy�;

where ~Z 0
0;

~Z 0
y; ~X0, ~Xy and QY are the proper transforms of D 0 �: Z 0

0;D
0
�: Z 0

y;X0 � CP
1 �

CP
1 � f0g �JX�, Xy � CP

1 � CP
1 � fyg �JX�, and QX respectively.

Lemma 4.7. With the notations of the previous lemma, we have a natural isomorphism

OY �ÿQY ÿ ~Z 0
0 ÿ

~Z 0
y ÿ ~X0 ÿ ~Xy�FOY �ÿ ~Z 0

0 ÿ
~Z 0
y�n m�

1OX �ÿQX �;

where QX � m1�QY � as before.

Next we prove the following

Lemma 4.8. For any jV 0, we have a natural isomorphism

H j�YZ 0�ÿQÿD 0 ÿD
0
��FH j�YY �ÿQY ÿ ~Z 0

0 ÿ
~Z 0
y ÿ ~X0 ÿ ~Xy��:

Proof. Since m2 is the blowing-up of Z 0 along B0

`
By (cf. §3.1), we have the

following exact sequence of sheaves on Y:

0 ! YY ! m�
2YZ 0 ! �Y ~X0=B0

nO ~X0
�ÿ1��l �Y ~Xy=By

nO ~Xy
�ÿ1�� ! 0;�8�

where Y ~X0=B0
denotes the sheaf of relative tangent vector ®eld with respect to the

projection ~X0 ! B0 and O ~X0
�ÿ1� denotes the tautological line bundle over ~X0, where we

regard ~X0 as the projecti®ed normal bundle P�NB0=Z 0�. Since NB0=Z 0 FO�ÿ1�l2, we

Diagram 3
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have

Y ~X0=B0
FO�2; 0�

and

O ~X0
�ÿ1�FO�ÿ1;ÿ1�;

where O�0; 1� denotes the pull-back of OB0
�1�. Hence (8) becomes

0 ! YY ! m�
2YZ 0 ! O ~X0

�1;ÿ1�lO ~Xy
�1;ÿ1� ! 0:�9�

Tensoring OY �ÿQY ÿ ~Z 0
0 ÿ

~Z 0
y
ÿ ~X0 ÿ ~Xy� with (9) and using Lemma 4.6 and the

isomorphisms

OY �QY �j ~X0
FO ~X0

;

OY � ~Z
0
0�j ~X0

FO ~X0
�1; 1�;

OY � ~X0�j ~X0
FN ~X0=Y

FO ~X0
�ÿ1;ÿ1�;

together with the same isomorphisms for the sheaves on ~Xy, we get an exact sequence

0 ! YY �ÿQY ÿ ~Z 0
0 ÿ

~Z 0
y ÿ ~X0 ÿ ~Xy� ! m�

2�YZ 0�ÿQÿD 0 ÿD
0
���10�

! O ~X0
�1;ÿ1�lO ~Xy

�1;ÿ1� ! 0:

Then the desired isomorphism follows from the cohomology exact sequence of (10) and

a Leray spectral sequence for m2. r

In the same way, using Lemma 4.7, we can show the following

Lemma 4.9. For any jV 0, we have a natural isomorphism

H j�YY �ÿQY ÿ ~Z 0
0 ÿ

~Z 0
y ÿ ~X0 ÿ ~Xy��FH j�YX �ÿQX ÿ X0 ÿ Xy��:

By Lemmas 4.8 and 4.9, we have

Lemma 4.10. For any jV 0, we have a natural isomorphism

H j�YZ 0�ÿQÿD 0 ÿD
0
��FH j�YX �ÿQX ÿ X0 ÿ Xy�� for any jV 0:

Next we have

Lemma 4.11. For any jV 0, we have

H j�YZ 0�ÿQÿD 0 ÿD
0
�� � 0:

Proof. By lemma 4.10, it su½ces to show that H i�YX �ÿQX ÿ X0 ÿ Xy�� � 0 for

any iV 0. Let OX �0; 0; 1� denote the pull-back of OC�1�. Then we have

YX FOX �2; 0; 0�lOX �0; 2; 0�lOX �0; 0; 2�

and
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OX �ÿQX ÿ X0 ÿ Xy�FOX �ÿ1;ÿ1;ÿ2�:

From these isomorphisms, we easily get the desired results. r

Next we show the following:

Proposition 4.12. We have

H 2�YZ 0
;Q�ÿD 0 ÿD

0
�� � 0:

Proof. We consider the exact sequence

0 ! YZ 0�ÿQÿD 0 ÿD
0
� ! YZ 0

;Q�ÿD 0 ÿD
0
� ! YQ�ÿl ÿ l � ! 0;�11�

where l � D 0 VQ and l � D
0
VQ as before. From the cohomology sequence of (11) and

Lemma 4.11, we have

H 2�YZ 0
;Q�ÿD 0 ÿD

0
��FH 2�YQ�ÿl ÿ l ��

and since we have YQ�ÿl ÿ l �FO�2;ÿ2�lO, we get the desired result. r

4.3. U�1�-equivariant smoothings of S 0

In this subsection, we investigate deformations of S 0 (cf. §4.1) and show that we can

deform S 0 preserving the U�1�-action into a non-singular rational elliptic surface. This

result is needed to know what kind of complex surface we obtain when one can smooth

the pair �Z 0
;S 0� U�1�-equivariantly. We continue to use the notations of §4.1. We only

give outlines of proofs of the lemmas and propositions below, since they are something

standard.

We have the following lemma:

Lemma 4.13. We have the following isomorphisms

Y
q
S 0 F

0
4

i�1

�Oli lO
li
� q � 1,

0 qV 2.

8

>

<

>

:

Moreover, the induced U�1�-action on H 0�Y1
S 0�FC

8 is trivial.

For the proof, we use the facts that S 0 is normal crossing, l2i � l
2

i � ÿ2 on S 0
0 and

l 2i � l
2

i � 2 on D 0
i for any 1U iU 4.

Proposition 4.14. We have H 2�YS 0� � T 2
S 0 � 0. In particular, deformations of S 0

are unobstructed.

Proof. (outline) Using the description of S 0
0 in Figure 1, we can show that

H 2
Y

S 0
0
;S

4
i�1�li�li�

� �

� 0:�12�

On the other hand, it is easy to see that H 2�YD 0
i
; li� � H 2�Y

D
0

i ; li
� � 0, recalling that li

(resp. li) is a ��2�-section of Di FS2 (resp. Di FS2). Then (12) and the cohomology
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exact sequence of

0 ! YS 0 ! n� Y
S 0
0
;S

4
i�1�li�li�

l 0
4

i�1

�YD 0
i
; li lY

D
0

i ; li
�

 ! !

! 0
4

i�1

�Yli lY
li
� ! 0;

show that H 2�YS 0� � 0. (Here, n denotes the normalization of S 0.) Then Lemma 4.13

and a local to global spectral sequence shows that there exists an exact sequence

0 �! H 1�YS 0� �! T 1
S 0 �!

r
0
4

i�1

H 0�Oli lO
li
� �! H 2�YS 0� �! T 2

S 0 �! 0:�13�

Hence we get T 2
S 0 � 0. r

Let p : S ! B, pÿ1�0�FS 0 be the Kuranishi family of deformations of S 0, where B

can be identi®ed with an open ball in T 1
S 0 containing 0 by Proposition 4.14. Let v A T 1

S 0

be any real element such that all of 8 components of r�v� (see (13)) are non-zero, and let

B 0 be any non-singular holomorphic curve in B whose tangent vector at 0 is v. Then

by (13) St � pÿ1�t�; t A B 0nf0g is a non-singular complex surface, at least if we choose

B 0 su½ciently small. Further, such St is rational and satis®es c21�St� � 0. To see this,

®rst we recall that S 0
1 is a 8 points blowing-up of CP

1 � CP
1. Let b : S

0 ! S 0
1 � C

be the blowing-up along q4
i�1��li � 0� q �li � 0�� and put q :� pr � b, where pr denotes

the projection from S 0
1 � C to C . Then qÿ1�0� is biholomorphic to S 0, from which we

get c21�St� � 0. The rationality of St follows easily from the rationality of irreducible

components of S 0, Castelnuovo's criterion and upper-semi-continuity of dimensions of

cohomology groups.

Next we study U�1�-equivariant smoothings of S 0. Let v A T 1
S 0 be any real and

U�1�-invariant element such that all of 8 components of r�v� (see (13)) is non-zero.

(Such an element exists by the last claim of Lemma 4.13.) Let B 0 be any non-singular

curve in B whose tangent vector at 0 is v. Then pjB 0 : SjB 0 ! B 0, the restriction of the

Kuranishi family on B 0, gives a U�1�-equivariant smoothing of S 0. Now we recall that

S 0 can be illustrated as follows:

Figure 3
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Using the notations in this ®gure, we put

C 0
:� C 0

0 U � f1 q f2 q f3 q f4�; C
0
:� C

0

0 U � f 2 q f 1 q f 4 q f 3�;

E 0
1 :� E1 U �g1 q g2�; E

0

1 :� E1 U �g2 q g1�;

E 0
2 :� E1 U �g3 q g4�; E

0

2 :� E2 U �g4 q g3�:

We note that all of these six curves are connected and U�1�-invariant Cartier divisors on

S 0. Then we have

Proposition 4.15. All of these six curves on S 0 are stable under the above U�1�-

equivariant smoothing pjB 0 : SjB 0 ! B 0 and also deformed into irreducible non-singular

rational curves.

Proof. (outline) We put A :� C 0 � C
0
� E 0

1 � E
0

1 � E 0
2 � E

0

2 for simplicity. We

can show that T 2
S 0

;A � 0 by similar calculations in the proof of Proposition 4.14. In

particular, deformations of the pair �S 0
;A� are unobstructed.

Next, the same argument as in the proof of Lemma 5.4 in [Hon1] shows that there

exists a U�1�-equivariant exact sequence

� � � ! T 1
S 0

;A ! T 1
S 0 ! H 1�OA�A�� ! T 2

S 0
;A ! � � � :

Thus to prove the stability of A under U�1�-equivariant deformations, it is su½cient to

show that H 1�OA�A��
U�1� � 0. This in turn can be shown by careful calculations using

standard methods.

The second claim of the proposition can be proved by the same argument of the

proof of Proposition 2.3 of [Hon2]. r

Let Ct;Ct;E1t;E1t;E2t and E2t be the preserved irreducible non-singular U�1�-

invariant rational curves on St :� pÿ1�t�. Then a slight modi®cation of the argument

in the proof of Proposition 2.3 in [Hon2] shows that they satisfy

C2
t � C

2

t � ÿ2;

E2
it � E

2

it � ÿ1 for i � 1; 2;

Ct � Eit � Ct � Eit � Ct � Eit � Ct � Eit � 0 for i � 1; 2:

Further, if one notices that St has a morphism onto CP
1 whose generic ®ber is CP

1

and that each of E1t;E1t;E2t;E2t is one of the irreducible components of distinct ®bers of

the morphism, it is easy to see that there exist non-singular U�1�-invariant rational

curves lit and lit �1U iU 4� such that the con®guration of the curves are exactly the

same as S 0
0 (see Figure 1). Then again by following up the procedure in Figure 1 in the

reverse order, we can conclude that St is also obtained by blowing CP
1 � CP

1 up at 8

points as in the Figure 1 preserving the U�1�-action. Thus we get

Proposition 4.16. Let S 0 be the normal crossing surface with a U�1�-action

constructed in §4.1. Then for any U�1�-equivariant smoothing p : S ! B 0
; 0 A B 0

JC
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with pÿ1�0�FS 0, there exists an open neighbourhood B 0 of 0 with B 0 JB such that

St � pÿ1�t�; t A B 0 nf0g is a rational elliptic surface obtained by the procedure in Figure 1.

4.4. U�1�-equivariant smoothings of �Z 0
;S 0�

Let �Z 0
;S 0� be the pair of normal crossing varieties constructed in §4.1. Z 0 is a

normal crossing 3-fold with a holomorphic U�1�-action and S 0 is a U�1�-invariant

Cartier divisor on Z 0. Further, S 0 is real with respect to the real structure on Z 0. In

this subsection, we investigate deformations of �Z 0
;S 0� preserving the U�1�-action.

First we show the unobstructedness of deformations of �Z 0
;S 0�.

The following lemma can be proved exactly in the same way as Lemma 4.8 in

[Hon1] and we omit the proof.

Lemma 4.17. We have the following isomorphisms

Y
q
Z 0

;S 0 FY
q
Z 0 F

0
4

i�1

OQi
q � 1 ,

0 qV 2.

8

>

<

>

:

Using the results of §4.2, we show the following:

Proposition 4.18. Let �Z 0
;S 0� be the pair of normal crossing varieties as above.

Then we have T 2
Z 0

;S 0 � H 2�YZ 0�ÿS 0�� � 0. In particular, deformations of the pair

�Z 0
;S 0� are unobstructed.

Proof. First we show that H 2�YZ 0�ÿS 0�� � 0. Let n : Z 0
1

`

Z 0
2 ! Z 0 � Z 0

1 UZ 0
2

denote the normalization of Z 0. Then we have an exact sequence

0 ! YZ 0�ÿS 0� ! n� YZ 0
0
;Q0

�ÿS 0
0�l 0

4

i�1

YZ 0
i
;Qi

�ÿD 0
i ÿD

0

i �

 ! !

�14�

! 0
4

i�1

YQi
�ÿli ÿ li� ! 0:

Now by Propositions 4.5 and 4.12, we easily get

H 2
n� YZ 0

0
;Q0

�ÿS 0
0�l 0

4

i�1

YZ 0
i
;Qi

�ÿD 0
i ÿD

0
i �

 ! ! !

� 0:

On the other hand, by considering the exact sequence

0 ! YZ 0
i
�ÿQi ÿD 0

i ÿD
0
i � ! YZ 0

i
;Qi

�ÿD 0
i ÿD

0
i � ! YQi

�ÿli ÿ li� ! 0

for 1U iU 4 and using Lemma 4.11 for j � 2, the map

H 1�YZ 0
i
;Qi

�ÿD 0
i ÿD

0

i �� ! H 1�YQi
�ÿli ÿ li��

is surjective. Therefore by the cohomology exact sequence of (14), we get

H 2�YZ 0�ÿS 0�� � 0:
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Combining this and Proposition 4.14 with the cohomology exact sequence of

0 ! YZ 0�ÿS 0� ! YZ 0;S 0 ! YS 0 ! 0;

we get

H 2�YZ 0;S 0� � 0:�15�

Finally, the local to global spectral sequence

E
p;q
2 :� H p�Yq

Z 0;S 0� ) T
p�q
Z 0;S 0

with the aid of Lemma 4.17 for qV 2 induces an exact sequence

0 �! H 1�YZ 0;S 0� �! T 1
Z 0;S 0 �!

r
H 0�Y1

Z 0;S 0� �! H 2�YZ 0;S 0� �! T 2
Z 0;S 0�16�

�! H 1�Y1
Z 0;S 0�:

Now using Lemma 4.17 for q � 1, we get

H 1�Y1
Z 0;S 0�F 0

4

i�1

H 1�OQi
� � 0:

Hence by (15) and (16), we have T 2
Z 0;S 0 � 0. r

Let fZ !
p
B; S !

q
B and S ,! Zg be the Kuranishi family of deformations of

the pair �Z 0;S 0�. Proposition 4.18 implies that B can be regarded as a small open

neighborhood of 0 in the vector space T 1
Z 0;S 0 . Let v A T 1

Z 0;S 0 be any real U�1�-invariant

element such that r�v� (see (16)) is non-zero and let B 0 be any U�1�-invariant real non-

singular holomorphic curve in B whose tangent vector at 0 is v. By choosing B 0

su½ciently small, we have

Proposition 4.19. Let fZ 0
�!
p 0

B 0;S 0
�!
q 0

B 0g be the restriction of the Kuranishi

family on B 0. Then if t A B 0 nf0g, (i) and (ii) below hold. In addition, if such a t is real,

(iii)±(vi) below also hold. (i) both Zt � pÿ1�t� and St � qÿ1�t� are non-singular, (ii) Zt

has a U�1�-action under which St is invariant, (iii) Zt has a real structure st and �Zt; st�

has a structure of twistor space of 4CP
2, (iv) st commutes with the U�1�-action, (v) St is a

st-invariant (i.e. real) element of jÿ�1=2�KZt
j which is also U�1�-invariant, (vi) St has a

structure of rational elliptic surface obtained by blowing-up CP
1 � CP

1 8 times as in

Figure 1.

Proof. We note that there exists a U�1�-equivariant commutative diagram [cf.

Hon1, Lemma 4.14]

T 1
Z 0;S 0 ���! 0

4

i�1

H 0�OQi
�

?
?
?
y

?
?
?
y

T 1
S 0 ���! 0

4

i�1

�H 0�Oli�lH 0�O
li
��:

Then by the choice of v A T 1
Z 0;S 0 , the claims of (i) are clear. (ii) is also obvious since we
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choose B 0 as U�1�-invariant. (iii) follows from Donaldson±Friedman. (iv) and (v) are

clear. (vi) immediately follows from Proposition 4.16. r

In particular, we get the following

Theorem 4.20. Let �Z 0;S 0� be the pair of normal crossing varieties with the U�1�-

action constructed in §4.1. Then there exists a U�1�-equivariant smoothing �Zt;St�

of �Z 0;S 0� such that Zt is a twistor space of 4CP
2, St is a real element of jÿ�1=2�KZt

j

and that St has a structure of a rational elliptic surface obtained by the procedure in

Figure 1.

5. An algebraic structure of the twistor spaces

We continue to use the notations in the previous section. That is,

�Z 0;S 0�: the pair of normal crossing varieties constructed in §4.1,

fZ !
p
B; S !

q
B with S ,! Zg: the Kuranishi family of deformations of �Z 0;S 0�

(if we set Zt :� pÿ1�t�, St :�qÿ1�t� as before, they satisfy Z0 FZ 0 and S0 FS 0).

Further, let B 0
JB be a U�1�-invariant real non-singular holomorphic curve such

that the restriction of the Kuranishi family fZ 0
�!
p 0

B 0; S 0
�!
q 0

B 0g gives a smoothing of

�Z 0;S 0� as in Proposition 4.19. We denote by �B 0�s the subset of B 0 consisting of a real

element with respect to the real structure on T 1
Z 0;S 0 . �B 0�s is isomorphic to an open

interval in R. We recall that if t A �B 0�s is non-zero, Zt is a twistor space of 4CP
2 with

a U�1�-action, and St is a U�1�-invariant real element of jÿ�1=2�KZt
j. Further we

recall that the anticanonical system of St induces a morphism onto CP
1 whose generic

®ber is an elliptic curve.

The cohomology sequence of the exact sequence

0 ! OZt
! ÿ

1

2
KZt

! ÿKSt
! 0;

together with the simply connectivity of 4CP
2 implies the exactness of the sequence

0 ! H 0�OZt
� ! H 0 ÿ

1

2
KZt

� �

! H 0�ÿKSt
� ! 0:

Hence jÿ�1=2�KZt
j induces a surjective morphism jt : Zt ! CP

2 and jtjSt
is the elliptic

®bration induced by j ÿ KSt
j. On the other hand, it is easy to see that k

ÿ1�St� � 1,

where k
ÿ1�St� denotes the anti-Kodaira dimension of St (cf. [S]). Further, we have

a�Zt�U 1� k
ÿ1�St� by [C], where a�Zt� denotes the algebraic dimension of Zt.

Therefore we can conclude that a�Zt� � 2. So a generic ®ber of jt must be an elliptic

curve. Thus we obtain

Proposition 5.1. The complete linear system jÿ�1=2�KZt
j is two dimensional and

has no base locus. The morphism jt : Zt ! CP
2 induced by jÿ�1=2�KZt

j gives an

algebraic reduction of Zt.

It is easy to see that jOZ 0�S 0�j is two dimensional and base point free. Let j0 :

Z 0 ! CP
2 denote the morphism induced by jOZ 0�S 0�j. We can readily see that j0jZ 0

0
:

Z 0
0 ! CP

2 is f0 (see §3.2), the morphism induced by jÿ�1=2�KZ0
j � j f �

0OCP
2�1�j.
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Moreover, j0jZ 0
i
�1U iU 4� is the morphism induced by j f �

i OC�2�j, where

fi : Z
0
i ! C � CP

1 is the morphism described in §3.1. The image of j0jZ 0
i
is the conic

D̂JCP
2, which is the branch locus of the double covering map CP

1 � CP
1 ! CP

2.

Let p 0
�OZ�S� denote the direct image sheaf (on B 0) and consider the relative

morphism F : Z
0 ! P�p 0

�OZ�S�� (cf. [U, Chapter 1]). Then for t A �B 0�snf0g, we have

OZ�S�jZt
F ÿ �1=2�KZt

and jÿ�1=2�KZt
j is two dimensional, and hence the rank of

p 0
�OZ�S� is three. Therefore the restriction of F over �B 0�s induces a commutative

diagram

�Z 0
0�

s
���!

Fs

�B 0�s � CP
2

?
?
?
y

?
?
?
y

�B 0�s ���!
F

�B 0�s

such that for t A �B 0�s, FsjZt
: Zt ! CP

2 is jt. In brief, the morphism j0 extends over

generic ®ber to give an elliptic ®bration jt : Zt ! CP
2. With this observation in hand,

we complete the proof of Theorem 1.1.

Theorem 5.2. There exists a self-dual metric gt on 4CP
2 with the following

properties: (i) the scalar curvature of gt is positive type, (ii) the identity component of the

group of orientation preserving conformal transformations of gt is U�1�, (iii) gt is not

conformally isometric to the self-dual metrics of LeBrun ([LB1]).

Proof. Let gt be one of the self-dual metrics on 4CP
2 which correspond to Zt.

Then a theorem of Gauduchon ([G, TheÂoreÁm 2]) and the existence of the net jStj imply

that the scalar curvature of gt is positive type. Hence we get (i).

Next let C
� denote the identity component of orientation preserving conformal

transformations of �4CP
2; gt�. Obata's theorem implies that C

� is compact. On the

other hand, a theorem of Poon ([P2, Theorem 1.3]) and the positivity of the scalar

curvature imply that C� is at most two dimensional. We now suppose that C� is two

dimensional; that is C
� � U�1�2, the two dimensional torus. The action of U�1�2 on

�4CP
2; gt� induces a holomorphic action of U�1�2 on Zt and we complexify it to get an

action of �C ��2 on Zt. �C ��2 also acts on the linear system jÿ�1=2�KZt
j and we obtain

an action of �C ��2 on CP
2. But since there exists the above diagram, the �C ��2-action

on CP
2 is just the one on the central ®ber Z 0 and hence preserves D̂, a conic on which

singular ®bers of j0 : Z
0 ! CP

2 lie. Hence there exists a C
�-subgroup of �C ��2 which

acts trivially on CP
2. But such C

�-action on Zt must be trivial, since jt : Zt ! CP
2 is

a non-trivial elliptic ®bration. Therefore, U�1�2 cannot act on Zt e¨ectively. On the

other hand, we know that there exists a U�1�-action on Zt. Hence we have C
� � U�1�

and get (ii).

Finally, we recall that the U�1�-action on St is not semi-free. Hence by [LB2,

Corollary 1], gt is not one of self-dual metrics of LeBrun ([LB1]). r
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