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Abstract. In this paper, we introduce a notion of stationarity for the pair of flows in
a metric vector space and characterize it in such a way that there exist two relations,
called a dissipation-dissipation theorem and a fluctuation-dissipation theorem, among the
KM;O0-Langevin matrix associated with the pair of flows.

§1. Introduction.

In a series of papers ([1]-[12]), we have developped the theory of KM,O-Langevin
equations for the multi-dimensional local and weakly stationary process X = (X (n);
|n| < N) with discrete time and proposed a method to analyze the inner structure hidden
behind a given time series 2 = (Z'(n); 0 <n < N). In particular, we have proposed
three tests: one is a stationary test (Test (S)) that checks the weak stationarity of a given
time series; the other is a causal test (Test(CS)) that judges the existence and direction of
a causal relation between two kinds of time series passing Test(S); the third is a de-
terministic test (Test(D)) that judges the determinism of the time evolution of time series
passing Test(S).

The theoretical background for Test(S) lies in the fluctuation-dissipation theorem
(Theorems B.J and 4.1) and the construction theorem (Theorem 6.1) obtained in [1].
We note that Burg’s relation pays an important role in the proof of these two theorems.

In order to get a method that stands the test of analysis for complex time series,
however, we have to refine the results of 1] for the multi-dimensional local and weakly
stationary process X = (X (n); 0 <n < N) whose time domain is restricted to the same
set {0,1,..., N} as the time domain of the given time series Z = (2'(n);0 <n < N).
Further, there are four points to be reconsidered in two theorems stated above: one is
that we took a complicated procedure in the proof of Burg’s relation that is needed for
the proof of the fluctuation-dissipation theorem; the second is that we put an unsat-
isfactory assumption in the construction theorem such that the KM,O-Langevin matrix
can be constructed through the fluctuation-dissipation theorem; the third is that there
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was lacked for the consideration for the case k = ng in Step 15 of the proof of Burg’s
relation that is needed for the proof of the construction theorem; the fourth is that the
construction theorem gives only the stationary solution to the forward KM,O-Langevin
equation. For characterizing the stationary property of the process in terms of the
fluctuation-dissipation theorem, we have to take a careful consideration not only for the
forward KM,O-Langevin equation, but also for the backward KM,O-Langevin equation.

The purpose of this paper and subsequent papers ([13], [14]) is to solve four problems
stated above. From the viewpoint of the algebraic structure of stochastic processes, at
first in this paper, we shall reconstruct the theory of KM,;O-Langevin equations for the
multi-dimensional flow in a metric vector space and introduce a notion of stationarity
for the pair [X,Y] of flows X and Y in the metric vector space. Next, by rearranging
the structure in the proof of two theorems in stated above and giving a simplified
proof of Burg’s relation, we shall characterize a notion of stationarity for the pair of
flows in such a way that there exist two relations, called a dissipation-dissipation theorem
and a fluctuation-dissipation theorem, among the KM;O-Langevin matrix associated
with the pair of flows. As a byproduct, we will find that Burg’s relation holds for any
stationary pair of flows. We note that Burg’s relation has been proved for the usual
weakly stationary process.

Now let us state the contents of the present paper. Let (W, (%,%)) be any metric
vector space with an inner product (%, ) over real field R. By a pair of d-dimensional
flows in W, we mean a pair [X,Y] such that X=(X(n);0<n<N) and Y=
(Y(/); =N </ <0) are families of d-dimensional column vectors moving in W with
discrete time.

In §2, we shall derive a forward (resp. backward) KM,O-Langevin fluctuation flow
vy =(vi(n); 0 <n < N) (resp. v = (v_(/); —N </ <0)) associated with the flow X
(resp. Y) by using the innovation method.

The aim of §3 is to derive the KM;,O-Langevin matrix . ([X,Y]) associated with
the pair [X, Y] of flows and the KM,O-Langevin equations describing the time evolution
of X and Y that consist of the dissipation part and the fluctuation part, under the
independence condition for X and Y.

In §4, we shall introduce a concept of stationary property for the pair [X,Y] of
flows. We say that the pair [X,Y] of flows satisfies stationary property if there exists
a matrix function R:{-N,-N+1,....N—1,N} - M(d;R) such that for any
m,n (0 <m,n < N),

(X(m), X(n) = Rim—n) and (¥(=m), ' ¥(~n)) = R(—m +n),

where for any two L-dimensional column vectors x = (xy,...,xz) and y = "(y;,..., y;)
whose elements x;, y; (1 < j <L) belong to W, we denote by (x,’y) an L x L matrix,
called to be an inner matrix of x and y: (x,y) = ((xj, ¥));<;x<r- Then we call the
pair [X, Y] the stationary pair of flows and the matrix function R the covariance matrix
function of the stationary pair [X,Y] of flows, respectively. We shall state in §4 the
main theorem in this paper that characterizes the notion of stationary
property for the pair [X, Y] of flows in terms of the dissipation-dissipation theorem (for
abbreviation (DDT)) and the fluctuation-dissipation theorem (for abbreviation (FDT)).
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These two theorems, (DDT) and (FDT), will be proved in §5 and §6 for the
stationary pair of flows, respectively. It will be found that Burg’s relation pays an
important role in the proof of (FDT), which will be proved in [Theorem 6.3. We note
that (DDT), (FDT) and Burg’s relation have been already proved in [1] for the usual
weakly stationary process.

In §7, we shall prove that (DDT) and (FDT) imply stationary property for the pair
[X,Y] of flows by taking the same consideration as in the proof of Burg’s relation in
of this paper and rearranging the structure in the proof of the construction
theorem in [1].

From the viewpoint of the fluctuation-dissipation theorem, as a continuation of the
present paper, we shall prove a construction theorem for KM,O-Langevin matrix and an
extension theorem for stationary pair of flows in two subsequent papers and [14],
respectively.

§2. KM,O-Langevin fluctuation flows associated with flows.

Let (W, (%,%)) be any metric vector space with an inner product (x,x*) over real
field R. By a d-dimensional flow in the space W, we mean a function Z =
(Zn); £ <n<r):{/,/+1,...,r —1,r} — W such that for each n (/ <n <r),

(2.1) Z(n) ="(Z1(n), Z5(n), ..., Z4(n)),

where / and r (/ <r) are integers and Z;(n) are vectors in W (1< j<d,/<n<r).
Furthermore, for a d-dimensional flow Z = (Z(n);/ <n<r) and two integers n,
ny (/ <m <m <r), we define a subspace M;’>(Z) of the vector space W by

(2.2) M2(Z) = the subspace generated by {Z;(m); 1 < j<d, nj <m <mj}.
Let [X,Y] be any pair of d-dimensional flows X = (X(n); 0 <n < N) and Y =
(Y(/); =N </ <0) in the space W. We project for each n (0 < n < N)d components

n—1

of the vector X(n) in the closed subspace My ' (X) to get a d-dimensional flow v, =
(v4(n); 0 <n < N) such that

(2.34) v+(0) = X(0)

(2.4,) vi(n) = X(n) — PM(r;—l(X)X(n) (1<n<N).

By rewriting (2.3,) and (2.4,), we can get an orthogonal decomposition of the flow X:
(2.54) X(0) =v(0)

(2.64) X(n) = PMS—I(X)XO’l) +vi(n) (1 <n<N).

We call this d-dimensional flow v, a forward KM,;O-Langevin fluctuation flow asso-
ciated with the flow X. We define a forward KM;O-Langevin fluctuation matrix
function V. = (V,.(n); 0 <n < N) associated with the flow X as follows:

(2.7+) Vi(n) = (v4(n),'vi(n)) (0<n<N).
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It is easy to see that the following relations hold between the flow X and the
forward KM;O-Langevin fluctuation flow v,.

THEOREM 2.1.

(1) M (X) = Mg (vy) (0<n<N)
(ii) (X(m), v (n)) =0 (0<m<n<N)
(iii) (vi(m), vi(n)) =6 Vi(n) (0 <m,n<N).

Moreover, by projecting for each / (—N </ <0) d components of the vector
Y(/) in the closed subspace MY, (Y), we can get a d-dimensional flow v_ =
(v_(/); =N </ <0) such that

(2.5.) Y(0) = v_(0)
(2.6.) Y (/) = Py

/+1

WY +v () (-N</< -1).

We call this d-dimensional flow v_ a backward KM,O-Langevin fluctuation flow
associated with the flow Y. For each n (0 <n<N), we denote by V_=
(V_(n); 0 <n < N) the backward KM,O-Langevin fluctuation matrix function:

(2.7-) V_(n) = (v—(-n),'v_(-n)) (0<n<N).
In the same way as in [Theorem 2.1, we have
THEOREM 2.2.
(i) M (Y) =M’ (v.) (0<n<N)
(i) (Y(~m),"v_(~n)) =0 0<m<n<N)
(ii) (v (=m), v (1)) =0 V_(n) (0 <m,n<N)

ExampLE 2.1. Let X = (X(n); 0 <n < N) be any d-dimensional flow in the metric
vector space W. We define a d-dimensional flow X = (X(¢); —N </ <0) by

(2.8) X(/) = X(N+7).
We call this pair [X,X] of flows a natural pair of flows associated with the flow X.

ExampLE 2.2. Let X = (X(n); |n| < N) be any d-dimensional flow in the metric
vector space W. We define a d-dimensional flow X, = (X,(n); 0 <n < N) by

(2.9) X.(n) = X(n).

Further, we define for each s (0<s<N) a d-dimensional flow X'¥) = (X" (/); —N </ <0)
by

(2.10) X)) =X(s+7).

Then we can obtain N + 1 pairs [X.,X"] of flows.



KM, 0-Langevin equations and characterization theorem 821
§3. KM,0O-Langevin equations and KM,O-Langevin matrix associated with
the pair of flows.

Let [X,Y] be any pair of d-dimensional flows X = (X(n); 0 <n < N) and Y =
(Y(/); =N </ <0) in the metric vector space W. We shall derive a forward (resp.
backward) KM,O-Langevin equation that governs the forward (resp. backward) time
evolution of the flow X (resp. Y) under the following independence conditions:

(3.1y-1) {Xi(n); 1<j<d,0<n<N -1} is linearly independent in W
(3.25-1) {Yi(-n); 1 <j<d,0<n<N -1} is linearly independent in W.

The above conditions imply that there uniquely exist two systems {y, (n,k);
1<n<N,0<k<n}and {y_(nk); 1 <n<N,0<k<n} of dxd matrices such that

(3.3,) Py X (1) = = 7. (n, k)X (k) (1 <n<N)
k=0
n—1

(3.32) PMQW(Y)Y(—n) =—>» y.(nk)Y(=k) (1<n<N,).
k=0

Immediately from (2.5;) and (2.61), we have

(3.41) X(0) = v..(0)

(3.54) X(n) = —: vo(m k)X (k)+vi(n) (1<n<N)
and _

(3.4-) Y(0) =v-(0)

(3.5.) Y(—n) = — nzly(n,k) Y(=k)+v_(-n) (1<n<N).

—
In particular, for each n (1 <n < N), we put

(3.6+) d+(n) =74 (n,0).

We call equation (3.5;) (resp. (3.5_)) with initial condition (3.4,) (resp. (3.4_)) a
forward (resp. backward) KM,O-Langevin equation for the d-dimensional flow X (resp.
Y). Further, we call the matrix function y, = (y,.(n,k); 0 <k <n<N) (resp. y_ =
(y_(n,k); 0<k<n<N)) a forward (resp. backward) KM,O-Langevin dissipation matrix
function associated with the flow X (resp. Y). In particular, we call the matrix function
0r=04(n); 1<n<N) (resp. 0_=(0_(n); 1 <n<N)) a forward (resp. backward)
KM,O-Langevin partial correlation matrix function associated with the flow X (resp.
Y). We define a system Z.#([X,Y]) by

L([X,Y]) ={ys(n,k),0.(n), Vi(m); 0<k<n<N,0<m<N}
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and call this system a KM,O-Langevin matrix associated with the pair [X,Y] of
d-dimensional flows X and Y.

When we need to represent explicitly the time domain of the flows X and Y, we
adopt the following notation: for each natural number M less than or equal to N, we
restrict the time domain of the flow X (resp. Y) to the subset {0,1,..., M — 1, M}
(resp. {—M,—M +1,...,—1,0}) and get the pair [X™) Y] of flows XM =
(X(n);0<n< M) and Y™ = (Y(/); —M </ <0). Since the pair [X*) YM)] of
flows satisfies also the independence conditions (3.1,_;) and (3.2),_;), we can get the
KM,0O-Langevin matrix associated with the pair [X(M ) yWM )] of flows and denote it by

L (XM Y = 0 (0, k), 68 (n), VM (m); 0 <k <n< M0 <m < M},

(YV) =M°

—n+1(Y(M)) fOI' any

By noting that M}~ (X)) = M~!(X*)) and M°
n (1<n< M), we can show

n+l1

TaeoreM 3.1 (Consistency Condition). For each natural numbers M,N(M < N),

(i) y M k) =M (k) (0<k<n< M)
(i) oM (n) = 6™ (n) (1<n<M)
(i) V) =v™m)  0<m< M)

§4. Stationary property and its characterization theorem.

Let [X,Y] be any pair of d-dimensional flows X = (X(n);0 <n<N) and Y =
(Y(/); =N </ <0) in the space W. We shall define a concept of stationary property
for the pair [X,Y] of flows.

DEerINITION 4.1. We say that the pair [X,Y] of flows has stationary property if
there exists a matrix function R: {—-N,—-N+1,...,.N —1,N} — M(d;R) such that

(4.1) (X(m), X (n)) = R(m —n) (0<m,n<N)
(4.2) (Y(—=m),"Y(—n)) = R(—m+n) (0<m,n<N).

Then we call the pair [X,Y] of flows and the matrix function R a d-dimensional
stationary pair of flows in the space W and the covariance matrix function of the pair
[X,Y] of flows, respectively.

ExaMPLE 4.1. Let X = (X (n);0 <n < N) be any d-dimensional flow considered in
Example 2.1. Moreover, we assume that X satisfies condition [4.1]. Then, the natural
pair [X,X] of the flow X has stationary property and its covariance matrix function as
the pair of flows is equal to the matrix function R in [4.1}.

ExampLE 4.2. Let X = (X(n); |[n| < N) be the same d-dimensional flow as in
Example 2.2. Moreover, we asssume that X satisfies the usual weakly stationary
property. Then, for each s (0 <s < N), the pair [X,,X")] defined in [2.9] and [2.10)
has stationary property.
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Let [X,Y] be any stationary pair of flows in the space W such that
X=(X(n);0<n<N)and Y=(Y(/); —N </ <0). Itis to be noted that
(4.3) ‘R(n) = R(—n) (0 <n<N).

By using and [4.2), we can introduce some unitary operators which represent
certain equivalence between the flows X and Y.

THEOREM 4.1. (i) There exists a unitary operator U : MY (X) — M° \(Y) such that
(4.4) UXj(m))=Y;(-N+m) (1<j<d,0<m<N).

(i) For each integers /,r,n (0 </ <r<N,0<n<N —r), there exists a unitary
operator UJ(n) : M}(X) — M"(X) such that
(4.5) U m) (X, (m) = X(m+n) (1< j<d, { <m<p).

(iii) For each integers /,r,n (—N </ <r<0,0<n <N +/), there exists a unitary
operator UJ(—n) : M}(Y) — M, (Y) such that

(4.6) U/(—n)(Yi(m)) =Yim—n) (1<j<d,/<m<r).

Let [X,Y] be any pair of flows in the space W satisfying the independence con-
ditions (3.1y-;) and (3.2y-;). We shall state the following main theorem in this paper
that characterizes stationary property, which will be proved in §5, §6 and §7.

THEOREM 4.2 (Characterization Theorem for Stationary Property). The necessary
and sufficient condition for the pair [X,Y] of flows to have stationary property is that

(DDT) Dissipation-Dissipation Theorem: For each integer n,k (1 <k <n <N),
(DDT-) y,(nk)=y,(n—1Lk—=1)+06,(n)y_(n—1,n—k—1)
(DDT-ii) y_(mk)=y_(n—1k—-1)+0o_(n)y,(n—1,n—k—1)
(FDT) Fluctuation-Dissipation Theorem: For each integer n (1 <n < N),
(FDT-)  Vy(n) = (1 = 0. (0o () Vs (n — 1)
(FDT-ii) V_(n) = —0_-(n)os(n))V_-(n—1)
(FDT-ii) Vi(n—1)%0_(n)=0,(n)V_(n—1)
(FDT-v) V. (n)'5_(n) =0, (m)V_(n),
where

(4.7) V. (0) = V_(0) = (X(0), "X(0)) = (¥(0), 'Y(0)).

§5. Dissipation-Dissipation Theorem—(DDT)

Let [X,Y] be any pair of the flows X=(X(n);0<n<N) and Y=
(Y(/); =N </ <0) satisfying stationary property with the independence conditions
(3.1y-1) and (3.2y_;) in the metric vector space W. The aim of this section is to show

(DDT) in [Theorem 4.2
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At first, we shall represent the independence conditons (3.1y_;) and (3.2y_;) in
terms of the covariance matrix function R of the pair [X, Y] of flows. We define for
each integer n (1 <n < N + 1) a block matrix Ty (n)(e M(nd;R)), called to be Toeplitz
matix, by

R(0) R(+1) R(+(n—1))
R(F1) R(0) R(+(n—2))
(5.14) Ti(n)= .
R(F(n—1)) R(F(n-2)) R(0)

It follows from that
(5:2) T (1) = T-(1) = R(0)
(534) 'Ty(n)=Ty(n) (1<n<N-+1).

In the sequel, we shall treat the case where the following condition holds:
(5.4) R(0) € GL(d; R).

For each integer n (1 <n < N + 1), we define two nd-dimensional column vectors
Z(n) by

(5.5.) Z.(n)
(5.5.) Z_(n)

('X(n—1),'X(n—2),...,'X(0))
('X(0), "X (1),...,"X(n—1)).

It can be seen that

LemMMA 5.1.

Te(n) = (Zs(n),'Zs(n) (1<n<N+1).

By using [Lemma 5.1, we shall prove

LEMMA 5.2.  Either of the following (i) and (ii) holds:

(i) T.(n),T_(n) e GL(nd;R) (1 <n<N+1).

(1) There exists some ny (1 <ng < N) such that
T,(n),T_(n) e GL(nd;R) (1 <n < ny)
T.(n),T_(n) ¢ GL(nd;R) (np+1<n<N+1).

Proor. Since it follows from that for each n (1 <n<N+1),T,(n)
is a regular matrix if and only if 7_(n) is a regular matrix, it suffices to show the
statements in (i) and for the matrices T, (n) (1 <n <N +1). Suppose that (i)
does not hold. We define ny by no = min{2 <n < N+1;T.(n) ¢ GL(d;R)}—1. When

nog =N, holds. Let ny be any integer such that 1 <ny <N —1. It follows
from the definition of n( that T (no+ 1) ¢ GL(nd;R) and T (n) € GL(nd;R) for any
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n (1 <n<np). Further, we find that for any n (np+2<n<N+1), T.(n) ¢
GL(nd;R), because if T,(n)e GL(nd;R), it then follows from that
Ti(no+1)e GL(ny,1d; R). Ll

Immediately from Lemmas 5.1 and 5.2, we have

PropoSITION 5.1. (i) The independence condition (3.1y_1) holds if and only if the
independence condition (3.2x_1) holds.

(i) The independence condition (3.1y_1) is equivalent to the following Toeplitz
conditon (5.6y):

(5.6x) T.(n),T_(n) e GL(nd;R) (1 <n<N).
(iii) The following independence condition (3.1y):
(3.1y) {Xj(n); 1 <j<d,0<n<N} is linearly independent in W
is equivalent to the following Toeplitz condition (5.6y.1):
(5.65+1) T.(n),T_(n) e GL(nd;R) (1 <n<N+1).
To prove (DDT), we shall prepare one more lemma.

LEmMA 5.3. For each n,/ (1<n<N,0</<n-1),

n—1

(1) Rin—0)==> 7 (nk)R(k =)
k=0
n—1

(i) Rin—¢) ==Y 7 (n,k)R(k - ¢).
k=0

PrOOF. By taking the inner product of the both-hand sides in the forward KM,O-
Langevin equation (3.5;) and the vector X (/), we have (i). Noting [4.2), similarly, we

can show [(if). ]
By virtue of [Proposition 5.1 and [Lemma 5.3, we can show the following (DDT) by
using the same procedure as in in and so omit its proof.

THEOREM 5.1 (Dissipation-Dissipation Theorem).  For each integer n,k(1<k<n<N),

(1) y+(n,k):y+(n—l,k—1)+5+(n)y_(n—l,n—k—l)
(1) y(mk)=y_ (n—1,k—-1)+0_(n)y,(n—1,n—k—1).

§6. Fluctuation-Dissipation Theorem—(FDT).

Let [X,Y] be any stationary pair of flows with the independence conditions (3.1y_;)
and (3.2y_1) in the metric vector space W. In this section, we shall show (FDT) in
Mheorem 4.2. For that purpose, we shall prepare some lemmas. From Theorems 2.
and 2.2, we have
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LEmMMA 6.1.
(1) (X (n), 'vi(n)) = Vi(n) (0<n<N)
(i) (Y(=n),v_(—n))=V_(n) (0<n<N).
LEMMA 6.2.
(1) detTi(n):nHldet Vilk) (1<n<N-+1)
k=0
(i1) Vi(n),V_(n)e GL(d;R) (0<n<N-1).

PrOOF. By taking the inner product of the both-hand sides in the forward KM,O-
Langevin equation (3.5;) and the vector X (n), we find from (4.1}, (4.3) and [Lemma 6.1
(i) that

J—

(6.1) RO) =~ 3 700, k) ‘R(n — k) + V. 1),
0

Representing and n relations in (i) in the form of block matrices, we
have

=
Il

I y.,(nn—1) - - y,(n0) Vi(n) 0 e 0
0 1 0 0 ‘R(1)

0 ; T.(n+1) = T.(n)
6 O ()' I tR:(n)

and so that det 7, (n+ 1) =det V (n)det T (n). As T, (1) = R(0) = V(0), we obtain
the plus part in (i). The minus part in (i) is also similarly proved. Since it follows
from [Proposition 5.1 (i) that Toeplitz condition (5.6y) holds, comes from (i). []

LEMMA 6.3.
() Vi) =y (nn— OR(£K) + R(O) (0 <n<N)
k=1
(i) R(i(n+1)):—n1yi(n,k)R(i(k+1))—5+(n+1)VJ—r(n) O<n<N-1)
k=0

Proor. (i) follows immediately from in the proof of [Lemma 6.2. By
replacing 7/ and n in (i) by 0 and n + 1, respectively, and using Theoreml
5.1 (i), we have

n

R(n+1)==> "y, (n,k—1)R(k) =6, (n+ 1){i y_(n,n—k)R(k) + R(O)}.
k=1

k=1
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Further, by substituting (i) into the second term of the right-hand side,
we find that the plus part in holds. In a similar way, the minus part in is
proved. O

By Lemmas (i) and 6.3 [{if), we can obtain a formula for two KM,0O-Langevin
partial correlation matrix functions d; =0, (x) and d_ =J_(*).

THEOREM 6.1 (Formula for KM,O-Langevin Partial Correlation Matrix Function).
For each integer n (0 <n <N —1),

n—1

(i) 5+(n+1):—{R(n—l—l)+2y+(n,k)R(k+1)}V_(n)1
k=0
n—1

(i) o_(n+1)= —{’R(n +1)+ Zy,(n,k) ‘R(k + 1)} Ve(n)™
k=0

Next, we shall prove the following fluctuation-dissipation theorem.

THEOREM 6.2 (Fluctuation-Dissipation Theorem-1).

(i) Vi(n) = (I =0, (md_(m)Ve(n—1) (1 <n<N)
(i) Vo(n) = (I —6- (o (m)V-(n—1) (1<n<N).
PrROOF. By (i) and (i), we have

n—1
V., (n) :5+(n){’R(n) +Y 7 n—1k=1) ’R(k)}
k=1

—|—Zy+ —1,n—k—1)'R(k) + R(0).

Therefore, we can see from (i) and [ii] in [Lemma 6.3 that (i) holds. In a similar way,
we have [ii). O

Next, we shall show that Burg’s relation holds for the stationary pair [X,Y] of
flows.

THEOREM 6.3 (Burg’s relation).

> R(k+1) Zy+nk +1) (I1<n<N).

In order to prove Burg’s relation, we shall define d x d matrices 4, (1 <n < N) by

—

(6.2) dr= SORUA )y (0 K) =Sy (n k)R + 1),
0

T
=
e
Il
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Immediately from (if], we have
LEmMMA 6.4. A, =0, (n+1)V_(n)—V (n)'o_(n+1) (1<n<N-1).

Moreover, by taking the same procedure as Step 4 in the proof of Lemma 4.3 in [T],
we can show

LEMMA 6.5. For each natural number n (2 <n < N),

Ay = 6. (0)1,'S5_(n) + 64 (), + II1,'5_(n) + 1V,

where
I=—V(n=1) 61— 1) +6-(1— 1)V, (n— 1)
n—2
y(mn—1ln—1—=j)R(j+1)
j=1
n—2
n—l{ R(Gj+1)'y l’l—l])} Vin-1)'y_ (n—1,n-2)
j=0
n—2
I, =R(1)+> R(j+ 1)y, (n—1,n—1-))
=1
n—2
_{ y+(n—l,j)R(j+l)}t5+(n—1)—|—y+(n—1,n—2)V+(n—l)
=0
n—3 n—3
IVnZ—Zh(’?—l] (j+2) +ZR]+2 _(n—1,))
Jj=0 j=0

n—3
. {ZM" ~LJR(j+ 1>}fy<n ~1Ln-2)

=0

n—3
+y.(n—1,n=-2 { R(Gj+1)'y n—lj)}
j=0

After the above preparations, we shall show [Theorem 6.3.

PrOOF OF THEOREM 6.3. We shall show that 4, =0 for each n (1 <n < N) by
induction on n. We treat the case n=1. We see from that 4; = R(1) 0_(1) —
0+ (1)R(1). Since it follows from that 64 (1) = —R(+£1)R(0)™", we
find that 4; =0. For any fixed ny (2 <no < N), we assume that 4, =0 for each
m (1 <m<nog—1). It then follows from that

(6.3) o (m)V_(m—1)=V,(m—1)0_(m) (1 <m<ny).
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Further, by combining with [Theorem 6.2, we can show
(6.4) O (m)V_(m)=V,.(m)'6_(m) (1 <m<ny).

Next, we shall show that I, =1II,, =III,, =1V,, =0 for each m (2 <m < ny).
Immediately from (6.4), it follows that I, =0 for each m (2 <m <ngy). By using

Mheorem 5.1 (i) [(ii), Theorem 6.2 and the assumption of mathematical induction, we see

that for each m (2 <m < ny),
I, =—(I—-96_(m—1)0,(m— 1)){R(1) + iy(m —2m—=2—j)R(j+1)

J=1

+V_-(m—=2)"y_(m- 1,m—2)}.

By using Theorem 6.1 (i), Mheorem 5.1 [ii] and [6.3), we can get

m—2
R(1) + Zy_(m —2m=2— )R+ +V_-m-=2)"y_ (m—1,m-2)=—II, ;.
=

Hence, we see that I, = (I —J_(m — 1)0,(m — 1))II,_; and so
(6.5) Iy =(I—-0_-(m—1)0(m—=1))---(I—-0-(2)0+(2)IL,.

Since a simple computation gives us that /I, =0, we conclude from that 17,, =0
for each m (2 <m <np). In the same way, we can show that III,, =0 for each
m (2 <m < ny).

Noting that for each j (0<j<m—-3), j+2=m—1—-(m—3—j) and 0 <m—
3—j<(m—-1)—1, we can apply the case where n=m—1 and /=m—3—j in
(i) to see that for each j (0 < j<m—3),

R(j+2)=Rm—1—(m—-3—))

m—3
=—y m—-—1m-2)R(j+1)—>» y.(m—1,k)R(j— (m—3—-k)).
k=0
Hence, we have
m—3
(6.6) Y R(j+2)'y_(m—1,j)
=0
m—3
==y (m—1,m=2) R(j+1)"y_(m— l,j)}
=0
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By noting R(j +2) = (‘"R(j +2)) and using (if), similarly, we have

(95}

3

67) Y rim—1)RG+2)

T
(=]

m—3
- _{Z yo(m—1,))R(j + 1)}fy_(m— I,m—2)

j=0

-3

3

m—3
- ZV—I—(m_ 1}]){

=0

R(j—(m=3=k)'y_(m- 171)}-

T

0

Therefore, we can conclude from and that 1V, = 0 for each m (2 <m < ny).
Thus we have proved that 4,, =0 for each m (2 <m < ng), which completes the
proof of [Theorem 6.3. O

REMARK 6.1. In §4 of [T], we have proved through thirteen steps by
expanding the term IV, in A, of successively with respect to KM,O-
Langevin partial correlation matrix functions.

We shall also call relations and the fluctuation-dissipation theorem.

A

THeOREM 6.4 (Fluctuation-Dissipation Theorem-2).
(i) o.(m)V_(n—1)=V,.(n—1)6_(n) (1<n<N)
(i) S MV-(n)=Vi(m)'o-(n)  (1<n<N).

§7. Characterizaton theorem for stationary flow.

The aim of this section is to complete the proof of [Theorem 4.2. Let [X,Y] be any
pair of the flows X = (X(n); 0 <n<N) and Y= (Y(/); —N </ <0) satisfying the
independence conditions (3.1y-1) and (3.2y_;) in the metric vector space W. Further,
we shall assume that (DDT) and (FDT) hold. As we have found in [6.4], we note that
(FDT-iv) comes from (FDT-i), (FDT-ii) and (FDT-iii).

We shall introduce some notations. For each m,n (0 <m,n < N), we denote by
R (m,n) (resp. R_(—m,—n)) the inner product of X(m) and X (n) (resp. the inner
product of Y(—m) and Y(—n)):

(7.1,) Ry (m,n) = (X(m), X (n))
(7.1.) R (—m,—n) = (Y(-m), " Y(-n)).
It is to be noted that

(7.24) ‘Ri(+m, +n) = Ry (£n, +m).

Further, we define a d x d matrix V by

(7.3) V = R,(0,0) = R_(0,0) = (X(0), X (0)) = (Y(0),Y(0)).
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In order to complete the proof of [Theorem 4.2, we have only to show the following
IProposition 7.1l.

ProposiTioN 7.1.  If (DDT) and (FDT) hold, then the pair [X,Y] of flows satisfies
the following properties:

(1) Ri(tm+/,+n+t/l)=Ri(+tm,+n) 0<n<m<N,0</<N-m)

(i)  Ry(m,n) = R_(—n,—m) (0<n<m<N).

In the sequel, we shall prove [Proposition 7.1 by showing seven lemmas consisting of
eighteen claims.

[Step 1] By using Theorems 2.1, and KM,0O-Langevin equations (3.5;), we
have

Lemma 7.1.
(1) (X(m), vi(n)) =0mnVi(n) (0<m<n<N)
(ii) (Y(=m),"v—(=n)) =0mnV-(n) (0<m<n<N).

By taking the same procedure as in Lemmas and 6.3, we obtain

LEmMMmA 7.2.
n—1
(1) Ri(+n, +t/)=—-> y,(nk)Ri(+k, +7) (0</<n<N)
k=0
n—1
(i) Ri(£n, tn)=—-> y.(nk)Ri(tk,£n)+Vi(n) (1<n<N)
k=0

[Step 2] By a direct calculation, we can show

LeMMA 7.3,
(i) Vi(0)=V(0)=¥

(i) Ro(+1,0)= —o, (1)V
(i) R.(1,0) = R_(0, 1)

(iv) Ri(+1,+1)=R.(0,0)= V.

Lemma 7.4. For each n (1 <n < N),

(1) Ri(n,0) = =0 (m)V_(n—1) - nz_lh(n —Lk=1)R.(k,0)
k=1

(i) V_o(n)=V+ i R.(0,k)'y_(n,n—k).
=1
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ProoOF. By induction on 7, we shall show (i) together with [ii]. When n=1, (i)
(resp. [if)) follows from (i) (resp. Lemmas (i) and 7.3 [iv]). For any
fixed ny (2<np <N —1), let us assume that (i) and hold for n=no—1. By
(i) and (DDT-i), we have

n()l

10,0) = = 3 70— Lk = DR (k)

no—1
_5+(n0){ V) y (no—1mg—1- k)R+(k,O)}.
k=1

By applying [ii] with n =ny — 1 into the second term of the above right-hand side, we
find that (i) holds for n = ny.

Next, we shall show [11) for n = ng. Since V_(x) is symmetric, we can transpose the
both-hand sides of (FDT-ii) with (FDT-iii) to get.

V,(no) = V,(l’lo — 1) - V,(l’lo — 1) 25+<n0> t5,(n0).
By taking the both-hand sides of (i) with n = ny and noting (7.2, ), we have
no— 1
V_(no—1) 04 (no) = —R+(0,ng) Z R.(0,k) "y, (no — 1,k —1).

By substituting this into the above second term, we obtain

1’1071
V,(I’ZO) = V,(I’lo — 1) + {R+(O,n0) + Z R+(0’k) ty+(n0 — 2,k — 1)}25(7’10)

k=1

By applying with n =ny — 1 to the first term in the above equation, we have

i’lo—l

Vo(no)=V+ > Ru(0,k)'y_(no—1,ng—1—k)

k=1

1’1071
+ {R+(O,n0) + Z R.(0,k) "y, (no— 1,k — 1)}t5(n0 —1).
Finally, we can apply (DDT ii) to the above equation to find that (i1} with n = n( holds.
Thus, we find that (i) and [ii] hold for each n (I <n < N). O

[Step 3] For each n (1 <n < N), we shall consider the following four statements
(A,), (Bn),(Cy) and (D,):

n—1 n—1

(An) Zy+(nak)R+(k + 170> = ZR+(k + 170) ty7<n7k)
k=0 k=0

(8,) Vi) =V + > Ro(k,0) 'y, (mn— k)

k=1
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n—1

(C) Ry (0,n) = =0 (mVi(n—=1)=> y_(n—1,k—=1)R(0,k)
k=1
(D) R (0,n) nzfy (n, k)R, (0, k).
k=0

We shall investigate some logical relations among the above statements.
LemMmA 7.5.

(i)  (41), (B1), (C1) and (Dy) hold.
(i) If (An) holds, then (C,i1) holds for each n (1 <n<N —1).
(iii) If (By—1) and (Cy,) hold, then (B,) and (D,) hold for each n (2 <n < N).

PROOF By Lemma 7.3 (i) and (FDT-iii), we see that (A4;) holds. Immediately
from [4.7) and [7.3) , we see that (B1) holds. By [4.7), [7.3), [Lemma 7.3 [ii) and (FDT-
iii), we ﬁnd that (Cy) and (D;) hold. Thus, we have (i).

By taking the transpose of the both-hand sides of (i) with n replaced
by n+1 and then noting (FDT-ii) and (7.2.), we see that R (0,n+1)=
—0_(n+ 1)V, (n) — S0 =g Ry (0,k + 1) 'y, (n,k). Thus, we obtain [i).

Finally, we shall show (iu1). It follows from (DDT-i) and (B,-;) that the
right-hand side of (B,) = V, (n—1) 4+ {R, (n,0) + S27—| Ry (k,0)"y_(n— 1,k — 1)}'6, (n).
By taking the transpose of (C,) and noting (7.2,), we find that R (n,0)-+

Z;} Ry (k,0)'y_(n—1,k—1) = =V, (n—1)"0_(n). Therefore, we see that the right-
hand side of (B,) = Vi(n—1) = V,y(n—1)'_(n) and so that (B,) comes from (FDT-i)
and (FDT-iii). By substituting the transpose of the both-hand sides of (B,_;) into
V+(n— 1) in the first term of (C,) and using (DDT-ii), we see that R (0,n) =

o_(m)V =3, 1y (n,k)R.(0,k), which with (3.6_) implies that (D,) holds. O
Immediately from Lemma 7.3, we have

LEMMA 7.6. Let n be any integer such that 2 <n < N. If relation (A,,) holds for
eachm (2 <m < n—1), then relations (By,), (Cp) and (D,,) hold for each m (1 <m<n).

[Step 4] After the above preparations, we shall show

LemmaA 7.7.
(i) R (j,k)=Ri(j—k,0) for any k,j (0<k<j<N)
(ii) R (—j,—k)=Ry(k,j) for any k,j (0<k<j<N).

For that purpose, we shall consider for each n (1 <n < N) the following statements
(E,) and (F,):

(En) R+<]7k) = R+(]_k70) for any ka] (0 <k< ] < I’l)
(Fn) R (—j,—k)=Ry(k,j) for any k,j (0 <k <j<n)

and show these together with the statement (A4,) by induction on n. Immediately from
Lemmas (iv) and 7.5 (i), we have
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Cramm 1. The statements (Ay), (E\) and (Fy) hold.

[Step 5] Fix any integer ny (2 <ny < N) and assume that (4,,),(E,) and (F,)
hold for any m (1 <m <np—1). The aim is to show that the statements (4,,), (E,,)
and (F,,) hold. From the assumption that (E,,) hold for any m (1 <m <ny—1) and
noting (7.2;), we can show

CLamM 2. For each n (1 <n<ny—1),

(i) Ri(j,k) =Ri(n—k,n—j) (0<j,k<n)

(ii) Ri(j+ 1,k)=R:(j,k—1) (0<j,k—1<ny—2)

(iii) Rin—k,j+1)=R.(n—1—k,}) 0<j<n—-20<k<n-—1)
1v) R.(n—kn—1)=R. (0,k—1) (1<k<n)

(v) R.(j,0)=R;(n—kn—k—j) (0<j<n—k<n)

(vi) R (k,n) =R, (0,n—k) (0<k<n)

(vii) R.(j+2,00=R.(ng—1,np—3—j) (0<j<ny—3)

(viii) R.(j+1,00=R.(no—2,np—3—j) (0<j<ng—3)

(ix) R.(ng—1—k,0) =R (no— 1,k) 0<k<ny—1)

(x) R (k,ng—3—j)=R.(j,no—3—k) (0<j,k<ny—3)

Cramm 3. For each k (1 <k <ng—1),
R+(n0,k) = R+(I’l0 — l,k — 1) —5+(I’10)H,(k; nop — 1),
where the matrix function H_(x;*) is defined by

n—1

(7.4) H_(kin)=R.(0,k) +> "y (n, j)Re(n—k,j) (1 <k<n).
j=0

PrROOF. By using (i) and (DDT-i) and noting (7.2, ) and using Claim 2
(if), we have

no—2
R, (ng,k) = —5+(n0){R+(0,k) + > y-(no—1,/)R(ng—1— j,k)}

J=0

}’l()—l
+ Z j)+(n0 - laj_ 1)R+<J7k_ 1)
=1
Applying (i) to the above equation, we have Claim 3. O
By using [Lemma 7.6, we have
Coam 4. H_(m;n) =0 (1 <n<ny).

We shall obtain certain algorithm about the matrix function H_(x;*).
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Cramm 5. For each nyk 2<n<np,1 <k<n-1),
k—
H (k;n)=H_ (k;n—1)+0_( Z (k= jin—1—).

ProOF. By using (DDT-ii) and Claim 2 [{ii}, we have
H (ln) = H_(kn— 1) +8_(n){Ry (n — k,0) + T, (k;n)},

where J, (k;n) = Z;’;OZ ye(n—1,n—2—j)Ri(n—k,j+1). By using (DDT-i), Claim 2
and Claim 2 [iv), we see that J(k;n) =0.(n—1)H_(k—1;n-2) + J.(k—1;n—1).
Therefore, we get

H_ (k;n)=H_(ksn—1)+0_(n)o (n—1)H_(k—1;n—2)
O_(m){Ry(n—k,0)+J,(k—1;n—1)}.

By repeating the same procedure, we have

bl

H_(k;n) = H_(k;n—1) +0_(n) _15+(n — H-(k = jin—1-)
1

o_(m{Ry(n—k,0)+J (Iin—k+1)}.

On the other hand, it can be seen from Claim 2 (v) and (i) that
R (n—k,0)+J.(1;n—k+1)=0. Thus we have proved Claim 5. O

.
Il

Cramm 6. H_(k;n) =0 (1 <k <n <ny).
Proor. We shall consider for each n (1 <n <ng) the following statement
(%) H_(k;n)=0 for any k (1 <k <n)

and prove it by induction on n. The statement (%) follows from Claim 3. Let
ny be any fixed integer such that 1 <n; <ny—1 and assume that the statement
(x,) holds for each n (1 <n<mn;). The statement that H_(k;n; +1) =0 for any
k (1<k<mn) comes from Claim 3 when k=mn +1 and from Claim 4 when
1 < k < ny, respectively. ]

After the above preparations, we shall prove the statement (E,,).
Cram 7. The statement (E,,) holds;

(1) R (ng,k) = Ry(ng — k,0) for any k (1 <k <ng—1)
(i) Ry (ng,no) = R+(0,0).

Proor. (i) follows from Claim 3 and Claim 6. By (i) and Claim 2 [[vi),
we have

I’l()l

Ry (no,no) = =0, (n0)Ry.(0,n0) + V(o) = > 4 (no, k)R (0,n0 — k).
k=1
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By applying the statement (C,,), which comes from [Lemma 7.6, to the above equation,
we see that
R (no,no) = Vi(no) 404 (no)o—(no) Vy(no — 1)

l’lo—l

— " {y, (no,k) — .4 (no)y_(no — 1,m — k — 1)} R (0,my — k).
k=1

Therefore, by using (FDT-i), (FDT-iii) and (DDT-i), we have
no— 1

R (ng,ng) =Vi(nop—1) — Zy+ —1,ng—1—k)R.(0,k).
Further, by applying the statement (B,,), which comes from | , to the above
equation, we get [ii). O

[Step 6] Next, we shall prove the statement (A4,,). For that purpose, similarly as
in [6.2], we shall define d x d matrices 4, (1 <n<N) by

(7.5) A,= > R(k+1,0)" Zy+nk (k+1,0).
Je=

(=]

By taking the same procedure as in the proof of [Lemma 6.3, we can show

Cram 8. For each natural number n (2 <n < ny),

A, =06, (n)1,'5_(n) + 0 (), + IIT,'5_(n) + IV,
where

L=—V.(n-1)%.(n—1)+5(n—1DV,.(n—1)

o, =-R.(1,0) =) "y (n—1,n—1~ )R (j+1,0)
n—2
+5(n—1){ZR+(]+1,0) [})_(l/l—l,j)}— V,(l’l—l)[j)_<l’l—1,n—2)
j=0
N 2
IIIn:R+<170>+ R+(]+170) ty+<n_17n_1_]>

- {”_ yi(n =1, )R (j+ 1,0)}t5+(” D+ (n—-1,n=2)Vi(n—1)

j=0
. n—3 n—3
==Y p.n— )R (j+2,0)+ > R.(j+2,0)"s_(n—1,))
Jj=0 Jj=0
n—3
- {Zy+(n - 17])R+(J+ 170)}ty—(n - l,l’l - 2)
j=0

n—3
—I—y+(n—1,n—2){ R+(j—|—1,0)’y_(n—1,j)}.
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After the above preparations, we shall show the statement (A4,,). Immediately from
(FDT-iv), we have

CLamM 9. fno =0.
Cram 10. IT,, = 0.

Proor. By using (DDT-i), (DDT-ii), (FDT-ii) and the statement (A,,—1), which
comes from the assumption of mathematical induction, we see that

I10—2

(7.6) 17,10 = —(I —6_(n0—1)5+(n0—1)){R+(1,0) + Z y,(n0—2,no—2—j)R+(j+l,0)
=

+V_(ng—2)"y_(no—1,n —2)}.

By using (i) and (DDT-ii), we get

n0—2
R+(1>O) + Z y_(l’l() - 27”0 -2- ])R+(]+ 170> + V_(l/l() - 2) [y_(l’l() - 1,”0 - 2)
Jj=1

n073
= R.(1,004+ Y y_(ng—2,n0—2 = j)R(j +1,0)
=1
no— 3
—0_(ng—2)04(nog—1)V_(nop—2) —0_(ny —2 Zy+ -2, )R (j+1,0)

+V_(ng—2)"y_(no—2,n0 —3) + V_(no — 2) 6, (ng — 2) '0_(ng — 1).

Since it follows from (FDT-iii) and (FDT-iv) that _(ng —2)d(no — 1)V_(nop —2) =
V_(ng—2) 04 (ny—2)0_(ng — 1), we find from (4,,—;) that

110—2
(7.7) Re(1,0)+ > y_(no—2,m0 =2 = )Ry (j+1,0) + V_(ng = 2) ‘p_(no — 1,n0 — 2)
j=1

= 11,1
Thus, it follows from (7.6) and (7.7) that IT,,, = (I —6_(ng — 1)d,(ng — 1))II,,_; and so

that II,,, = (I —6_(no—1)d4(no — 1)) - (1 —5:(2)5+(2))172. Since a direct calculation
gives us that II, =0, we can conclude that I7,, = 0. ]

By taking the same consideration as in Claim 10, we have
Cram 11. H7n0 = 0.

[Step 7] For completing the proof of the statement (A4,,), we have to show that
v n, = 0. For that purpose, we shall prove the statement (F,,). We have never used
the statements (F,) (1 <m <ny—1) until now. By using the same procedure as in
Claim 3, we can show
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Cramm 12. For each k (1 <k <ny—1),
R (—k,—no) =R (—(k—1),—(ng— 1)) — Hy(k;no — 1) '6_(ny),
where the matrix function H(x;*) is defined by

n—1
(7.8) Hi(kin)=R(0,k) + > Ri(n—k, j)'y.(n,j) (1<k<n).
=0
Relating to Claim 4, we shall show
Cramm 13. Hi(nm;n) =0 (1 <n <ny).
PrROOF. Let n be any integer such that 1 <n <mng. By [7.8), we get

n—1
Ho(m;n) =Ry (0,n) + > R.(0,)) 'y, (n, )).
j=0

By taking the transpose of the both-hand sides for / =0 in (i), we find that
the right-hand side of the above equation is equal to 0. ]

We shall obtain an algorithm for the matrix function H, (x;*) that corresponds to
Claim 5. By using the same procedure as in Claim 5, we can prove

Cram 14. For each k,n 2 <n<ng,1 <k<n-1),
k-1
H.(kin) = H.(kin— 1) + {Zm(k—j;n— 1)) f5+<n—j>}f6+<n>.
j=1

By taking the same consideration as in the proof of Claim 6, we can see from Claim
13 and Claim 14 that

Cramm 15. H,(k;n) =0 (1 <k <n<nyp).
After the above preparations, we shall prove the statement (F,,).

CLamM 16. The statement (F,,) holds, i.e.,
(i) R _(—ng,—k) = R (k,ng) for any k (1 <k <ny—1)

(11) R_(—no, —I/lo) = R+(n0,n0).

PrOOF. Let k be any integer such that 1 <k <ny— 1. By applying Claim 15 to
Claim 12, we see that R_(—ng,—k) = R_(—(n9—1),—(k —1)). Hence, by using the
statement (F,,_1), we have

(7.9) R_(—np, —k) = Ry (k — 1,mp — 1).

By using the statement (E,,), which has been proved in Claim 7, we find that (i) holds.
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Since it follows from (7.24), and Claim 2 (ix) that R_(—k,—ng) =
R, (no —k,0) (0<k<nyg—1), we see from that

}’l()—l

R_(=ng, —ng) = =0_(ng) Ry (n9,0) + V_(ng) = > _ y_(no,k)Ry.(no — k,0).
k=1

By applying (i) to the above equation and then using (DDT-ii) and Claim 2
(ix), we obtain

n072

R_(—ngy,—ng) =0_(no)o4(no)V_(ng — 1)+ V_(ng) — Z y_(no — 1,k)Ry (ny — 1, k).
k=1

Therefore, by applying the transpose of the both-hand sides of (i}, we find
that R, (no,no) = V, which with Claim 7 implies that holds. O

[Step 8] Next, we shall complete the proof of the statement (A,,).
CLamm 17. ﬁ/no = 0.

Proor. By Claim 2 and (i), we find that for each j
(0<j<ny—3),

R+(]+270) :R+(n0— 1,7’10—3—])

=~y (no—1,n0 = 2)R:(no — 2,n9 — 3 — j)

n0—3

- Z yy(no — 1, k)R (k,ng — 3 — j).
k=0

Hence, by using Claim 2 [viii}, we have

n0—3
(7.10) Y R(j+2,0) (no— 1,))
=0
}’10—3
=~y (no— 1,no — 2){ R (j+1,0)"y_(no— LJ')}
j=0

I’l()73 }’1073
= 7ilno— l,k){z R (k,ng—3—j)'y_(no — l,j)}'
k=0 j

On the other hand, by using Claim 2 and (F,,-1), we have
R+(j+ 2,0) = R+(n0 - 1,1’10 -3- ]) = R,(—(l’lo —-3- ]), —(l’lo - 1))
Hence, by (7.2_) and (i), we find that for each j (0 < j <mno—3),
R.(j+2,0)=—"R (—(ng—2),—(ng—3—j)) 'y_(ng— 1,n9 — 2)
no—3

— Y R (—k,—(ng = 3= j)) 'y_(no — 1,k).

k=0
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By wusing (7.24) and (F,,—;) again, we see that ‘R (—k,—(ngp—3—))) =
Ri(k,ng—3—j) (0 <k <mny—2). Hence, it follows from Claim 2 and Claim 2
(x) that

m=3
=0
m—3
= — Zy+(n0 —1,)R.(j+1,0) p'y_(ng— 1,np — 2)
=0
no—3 no—3
= > 7i(no =1,k > Ry(k,no—3— /) 'y_(no — 1,)
k=0 =0
Hence, we can see from (7.10) and (7.11) that IT/HO =0. O

By substituting Claim 9, Claim 10, Claim 11 and Claim 17 into Claim 8, we can
show

Cram 18. The statement (A,,) holds.

[Step 9] Consequently, we have arrived at the final position to show
7.1. From Claim 1, Claim 7, Claim 16 and Claim 18, we have [Lemma 7.7. Thus, we
can conclude that [Proposition 7.1 holds.
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